mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-05 10:19:18 +08:00
151 lines
5.5 KiB
Python
151 lines
5.5 KiB
Python
from ..smp import *
|
|
from ..utils.dataset_config import img_root_map
|
|
from abc import abstractmethod
|
|
|
|
|
|
class BaseModel:
|
|
|
|
INTERLEAVE = False
|
|
allowed_types = ['text', 'image']
|
|
|
|
def use_custom_prompt(self, dataset):
|
|
"""Whether to use custom prompt for the given dataset.
|
|
|
|
Args:
|
|
dataset (str): The name of the dataset.
|
|
|
|
Returns:
|
|
bool: Whether to use custom prompt. If True, will call `build_prompt` of the VLM to build the prompt.
|
|
Default to False.
|
|
"""
|
|
return False
|
|
|
|
@abstractmethod
|
|
def build_prompt(self, line, dataset):
|
|
"""Build custom prompts for a specific dataset. Called only if `use_custom_prompt` returns True.
|
|
|
|
Args:
|
|
line (line of pd.DataFrame): The raw input line.
|
|
dataset (str): The name of the dataset.
|
|
|
|
Returns:
|
|
str: The built message.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def dump_image(self, line, dataset):
|
|
"""Dump the image(s) of the input line to the corresponding dataset folder.
|
|
|
|
Args:
|
|
line (line of pd.DataFrame): The raw input line.
|
|
dataset (str): The name of the dataset.
|
|
|
|
Returns:
|
|
str | list[str]: The paths of the dumped images.
|
|
"""
|
|
ROOT = LMUDataRoot()
|
|
assert isinstance(dataset, str)
|
|
img_root = osp.join(ROOT, 'images', img_root_map[dataset] if dataset in img_root_map else dataset)
|
|
os.makedirs(img_root, exist_ok=True)
|
|
if isinstance(line['image'], list):
|
|
tgt_path = []
|
|
assert 'image_path' in line
|
|
for img, im_name in zip(line['image'], line['image_path']):
|
|
path = osp.join(img_root, im_name)
|
|
if not read_ok(path):
|
|
decode_base64_to_image_file(img, path)
|
|
tgt_path.append(path)
|
|
else:
|
|
tgt_path = osp.join(img_root, f"{line['index']}.jpg")
|
|
if not read_ok(tgt_path):
|
|
decode_base64_to_image_file(line['image'], tgt_path)
|
|
tgt_path = [tgt_path]
|
|
return tgt_path
|
|
|
|
@abstractmethod
|
|
def generate_inner(self, message, dataset=None):
|
|
raise NotImplementedError
|
|
|
|
def check_content(self, msgs):
|
|
"""Check the content type of the input. Four types are allowed: str, dict, liststr, listdict.
|
|
"""
|
|
if isinstance(msgs, str):
|
|
return 'str'
|
|
if isinstance(msgs, dict):
|
|
return 'dict'
|
|
if isinstance(msgs, list):
|
|
types = [self.check_content(m) for m in msgs]
|
|
if all(t == 'str' for t in types):
|
|
return 'liststr'
|
|
if all(t == 'dict' for t in types):
|
|
return 'listdict'
|
|
return 'unknown'
|
|
|
|
def preproc_content(self, inputs):
|
|
"""Convert the raw input messages to a list of dicts.
|
|
|
|
Args:
|
|
inputs: raw input messages.
|
|
|
|
Returns:
|
|
list(dict): The preprocessed input messages. Will return None if failed to preprocess the input.
|
|
"""
|
|
if self.check_content(inputs) == 'str':
|
|
return [dict(type='text', value=inputs)]
|
|
elif self.check_content(inputs) == 'dict':
|
|
assert 'type' in inputs and 'value' in inputs
|
|
return [inputs]
|
|
elif self.check_content(inputs) == 'liststr':
|
|
res = []
|
|
for s in inputs:
|
|
mime, pth = parse_file(s)
|
|
if mime is None or mime == 'unknown':
|
|
res.append(dict(type='text', value=s))
|
|
else:
|
|
res.append(dict(type=mime.split('/')[0], value=pth))
|
|
return res
|
|
elif self.check_content(inputs) == 'listdict':
|
|
for item in inputs:
|
|
assert 'type' in item and 'value' in item
|
|
mime, s = parse_file(item['value'])
|
|
if mime is None:
|
|
assert item['type'] == 'text'
|
|
else:
|
|
assert mime.split('/')[0] == item['type']
|
|
item['value'] = s
|
|
return inputs
|
|
else:
|
|
return None
|
|
|
|
def generate(self, message, dataset=None):
|
|
"""Generate the output message.
|
|
|
|
Args:
|
|
message (list[dict]): The input message.
|
|
dataset (str, optional): The name of the dataset. Defaults to None.
|
|
|
|
Returns:
|
|
str: The generated message.
|
|
"""
|
|
assert self.check_content(message) in ['str', 'dict', 'liststr', 'listdict'], f'Invalid input type: {message}'
|
|
message = self.preproc_content(message)
|
|
assert message is not None and self.check_content(message) == 'listdict'
|
|
for item in message:
|
|
assert item['type'] in self.allowed_types, f'Invalid input type: {item["type"]}'
|
|
return self.generate_inner(message, dataset)
|
|
|
|
def message_to_promptimg(self, message):
|
|
assert not self.INTERLEAVE
|
|
model_name = self.__class__.__name__
|
|
warnings.warn(
|
|
f'Model {model_name} does not support interleaved input. '
|
|
'Will use the first image and aggregated texts as prompt. ')
|
|
num_images = len([x for x in message if x['type'] == 'image'])
|
|
if num_images == 0:
|
|
prompt = '\n'.join([x['value'] for x in message if x['type'] == 'text'])
|
|
image = None
|
|
else:
|
|
prompt = '\n'.join([x['value'] for x in message if x['type'] == 'text'])
|
|
image = [x['value'] for x in message if x['type'] == 'image'][0]
|
|
return prompt, image
|