Files
MiniCPM-o/eval_mm/vlmevalkit/vlmeval/dataset/mvbench.py
2024-08-30 18:18:22 +00:00

578 lines
24 KiB
Python

import huggingface_hub
from huggingface_hub import snapshot_download
from ..smp import *
from .video_base import VideoBaseDataset
from .utils import build_judge, DEBUG_MESSAGE
from ..utils import track_progress_rich
import torchvision.transforms as T
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from decord import VideoReader, cpu
import imageio
import cv2
import zipfile
import os
import glob
from moviepy.editor import VideoFileClip, ImageSequenceClip
import moviepy.config_defaults
from .utils.mvbench import *
FAIL_MSG = 'Failed to obtain answer via API.'
moviepy.config_defaults.LOGGER_LEVEL = logging.CRITICAL + 1
class MVBench(VideoBaseDataset):
MD5 = 'ae2a2607e2f8618155709220c6e927a6'
SYS = """Carefully watch the video and pay attention to the cause and sequence of events, \
the detail and movement of objects, and the action and pose of persons. \
Based on your observations, select the best option that accurately addresses the question.
"""
TYPE = 'MCQ'
def __init__(self, dataset='MVBench', pack=False):
self.type_data_list = {
'Action Sequence': ('action_sequence.json',
'your_data_path/star/Charades_v1_480/', 'video', True), # has start & end
'Action Prediction': ('action_prediction.json',
'your_data_path/star/Charades_v1_480/', 'video', True), # has start & end
'Action Antonym': ('action_antonym.json',
'your_data_path/ssv2_video/', 'video', False),
'Fine-grained Action': ('fine_grained_action.json',
'your_data_path/Moments_in_Time_Raw/videos/', 'video', False),
'Unexpected Action': ('unexpected_action.json',
'your_data_path/FunQA_test/test/', 'video', False),
'Object Existence': ('object_existence.json',
'your_data_path/clevrer/video_validation/', 'video', False),
'Object Interaction': ('object_interaction.json',
'your_data_path/star/Charades_v1_480/', 'video', True), # has start & end
'Object Shuffle': ('object_shuffle.json',
'your_data_path/perception/videos/', 'video', False),
'Moving Direction': ('moving_direction.json',
'your_data_path/clevrer/video_validation/', 'video', False),
'Action Localization': ('action_localization.json',
'your_data_path/sta/sta_video/', 'video', True), # has start & end
'Scene Transition': ('scene_transition.json',
'your_data_path/scene_qa/video/', 'video', False),
'Action Count': ('action_count.json',
'your_data_path/perception/videos/', 'video', False),
'Moving Count': ('moving_count.json',
'your_data_path/clevrer/video_validation/', 'video', False),
'Moving Attribute': ('moving_attribute.json',
'your_data_path/clevrer/video_validation/', 'video', False),
'State Change': ('state_change.json',
'your_data_path/perception/videos/', 'video', False),
'Fine-grained Pose': ('fine_grained_pose.json',
'your_data_path/nturgbd/', 'video', False),
'Character Order': ('character_order.json',
'your_data_path/perception/videos/', 'video', False),
'Egocentric Navigation': ('egocentric_navigation.json',
'your_data_path/vlnqa/', 'video', False),
'Episodic Reasoning': ('episodic_reasoning.json',
'your_data_path/tvqa/frames_fps3_hq/', 'frame', True), # has start & end, read frame
'Counterfactual Inference': ('counterfactual_inference.json',
'your_data_path/clevrer/video_validation/', 'video', False),
}
super().__init__(dataset=dataset, pack=pack)
@classmethod
def supported_datasets(cls):
return ['MVBench']
def prepare_dataset(self, dataset_name='MVBench', repo_id='OpenGVLab/MVBench'):
def check_integrity(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if not os.path.exists(data_file):
return False
if md5(data_file) != self.MD5:
return False
data = load(data_file)
for idx, item in data.iterrows():
if not osp.exists(osp.join(pth, item['prefix'], item['video'])):
return False
return True
cache_path = get_cache_path(repo_id, branch='main')
if cache_path is not None and check_integrity(cache_path):
dataset_path = cache_path
else:
def unzip_hf_zip(pth):
pth = os.path.join(pth, 'video/')
for filename in os.listdir(pth):
if filename.endswith('.zip'):
# 构建完整的文件路径
zip_path = os.path.join(pth, filename)
# 解压 ZIP 文件
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(pth)
def generate_tsv(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if os.path.exists(data_file) and md5(data_file) == self.MD5:
return
json_data_dir = os.path.join(dataset_path, 'json')
self.data_list = []
for k, v in self.type_data_list.items():
with open(os.path.join(json_data_dir, v[0]), 'r') as f:
json_data = json.load(f)
for data in json_data:
self.data_list.append({
'task_type': k,
'prefix': v[1].replace('your_data_path', os.path.join(dataset_path, 'video')),
'data_type': v[2],
'bound': v[3],
'start': data['start'] if 'start' in data.keys() else None,
'end': data['end'] if 'end' in data.keys() else None,
'video': data['video'],
'question': data['question'],
'answer': data['answer'],
'candidates': data['candidates']
})
data_df = pd.DataFrame(self.data_list)
data_df = data_df.assign(index=range(len(data_df)))
data_df.to_csv(data_file, sep='\t', index=False)
def move_files(pth):
# special for mvbench
src_folder = os.path.join(pth, 'video/data0613')
for subdir in os.listdir(src_folder):
subdir_path = os.path.join(src_folder, subdir)
if os.path.isdir(subdir_path):
for subsubdir in os.listdir(subdir_path):
subsubdir_path = os.path.join(subdir_path, subsubdir)
if os.path.isdir(subsubdir_path):
for item in os.listdir(subsubdir_path):
item_path = os.path.join(subsubdir_path, item)
target_folder = os.path.join(pth, 'video', subdir, subsubdir, item)
if not os.path.exists(target_folder):
shutil.move(item_path, os.path.join(target_folder, item))
hf_token = os.environ.get('HUGGINGFACE_TOKEN')
huggingface_hub.login(hf_token)
dataset_path = snapshot_download(repo_id=repo_id, repo_type='dataset')
move_files(dataset_path)
unzip_hf_zip(dataset_path)
generate_tsv(dataset_path)
data_file = osp.join(dataset_path, f'{dataset_name}.tsv')
self.decord_method = {
'video': self.read_video,
'gif': self.read_gif,
'frame': self.read_frame,
}
self.nframe = 8
self.resolution = 224
self.frame_fps = 3
# transform
crop_size = self.resolution
scale_size = self.resolution
input_mean = [0.48145466, 0.4578275, 0.40821073]
input_std = [0.26862954, 0.26130258, 0.27577711]
self.transform = T.Compose([
GroupScale(int(scale_size), interpolation=InterpolationMode.BICUBIC),
GroupCenterCrop(crop_size),
Stack(),
ToTorchFormatTensor(),
GroupNormalize(input_mean, input_std)
])
return dict(root=dataset_path, data_file=data_file)
def get_index(self, bound, fps, max_frame, first_idx=0):
if bound:
start, end = bound[0], bound[1]
else:
start, end = -100000, 100000
start_idx = max(first_idx, round(start * fps))
end_idx = min(round(end * fps), max_frame)
seg_size = float(end_idx - start_idx) / self.num_segments
frame_indices = np.array([
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
for idx in range(self.num_segments)
])
return frame_indices
def read_video(self, video_path, bound=None):
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
max_frame = len(vr) - 1
fps = float(vr.get_avg_fps())
images_group = list()
frame_indices = self.get_index(bound, fps, max_frame, first_idx=0)
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy())
images_group.append(img)
torch_imgs = self.transform(images_group)
return torch_imgs
def read_gif(self, video_path, bound=None, fps=25):
gif = imageio.get_reader(video_path)
max_frame = len(gif) - 1
images_group = list()
frame_indices = self.get_index(bound, fps, max_frame, first_idx=0)
for index, frame in enumerate(gif):
if index in frame_indices:
img = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
img = Image.fromarray(img)
images_group.append(img)
torch_imgs = self.transform(images_group)
return torch_imgs
def read_frame(self, video_path, bound=None, fps=3):
max_frame = len(os.listdir(video_path))
images_group = list()
frame_indices = self.get_index(bound, fps, max_frame, first_idx=1) # frame_idx starts from 1
for frame_index in frame_indices:
img = Image.open(os.path.join(video_path, f'{frame_index:05d}.jpg'))
images_group.append(img)
torch_imgs = self.transform(images_group)
return torch_imgs
def save_video_frames(self, imgs, video_name, frames):
frame_paths = self.frame_paths(video_name, frames)
flag = np.all([osp.exists(p) for p in frame_paths])
if not flag:
block_size = imgs.size(0) // frames
split_tensors = torch.split(imgs, block_size)
to_pil = transforms.ToPILImage()
images = [to_pil(arr) for arr in split_tensors]
for im, pth in zip(images, frame_paths):
if not osp.exists(pth):
im.save(pth)
return frame_paths
def qa_template(self, data):
question = f"Question: {data['question']}\n"
question += 'Options:\n'
answer = data['answer']
answer_idx = -1
for idx, c in enumerate(eval(data['candidates'])):
question += f"({chr(ord('A') + idx)}) {c}\n"
if c == answer:
answer_idx = idx
question = question.rstrip()
answer = f"({chr(ord('A') + answer_idx)}) {answer}"
return question, answer
def load_into_video_and_process(self, line):
video_path = os.path.join(line['prefix'], line['video'])
if line['data_type'] in ['gif'] or os.path.splitext(video_path)[1] in ['.webm']:
processed_video_path = video_path.replace(os.path.splitext(video_path)[1], '.mp4')
if not os.path.exists(processed_video_path):
# using MoviePy to transform GIF, webm into mp4 format
gif_clip = VideoFileClip(video_path)
gif_clip.write_videofile(processed_video_path, codec='libx264')
gif_clip.close()
elif line['data_type'] in ['frame']:
input_images = os.path.join(video_path, '*.jpg')
processed_video_path = f'{video_path}.mp4'
if not os.path.exists(processed_video_path):
# using MoviePy to transform images into mp4
image_files = sorted(glob.glob(input_images))
image_clip = ImageSequenceClip(image_files, fps=self.frame_fps)
image_clip.write_videofile(processed_video_path, codec='libx264')
image_clip.close()
else:
processed_video_path = video_path
if line['bound']:
base_name, suffix = os.path.splitext(processed_video_path)
output_video_path = f'{base_name}_processed{suffix}'
if not os.path.exists(output_video_path):
video_clip = VideoFileClip(processed_video_path)
clip = video_clip.subclip(line['start'], min(line['end'], video_clip.duration))
clip.write_videofile(output_video_path)
clip.close()
else:
output_video_path = processed_video_path
return output_video_path
def build_prompt(self, line, num_frames, video_llm):
if isinstance(line, int):
assert line < len(self)
line = self.data.iloc[line]
question, answer = self.qa_template(line)
message = [dict(type='text', value=self.SYS)]
message.append(dict(type='text', value=question))
if video_llm:
new_video_path = self.load_into_video_and_process(line)
message.append(dict(type='video', value=new_video_path))
else:
bound = None
if line['bound']:
bound = (
line['start'],
line['end'],
)
video_path = os.path.join(line['prefix'], line['video'])
decord_method = self.decord_method[line['data_type']]
self.num_segments = num_frames if num_frames > 0 else self.nframe
torch_imgs = decord_method(video_path, bound)
img_frame_paths = self.save_video_frames(torch_imgs, line['video'], self.num_segments)
for im in img_frame_paths:
message.append(dict(type='image', value=im))
message.append(dict(type='text', value='\nOnly give the best option.'))
message.append(dict(type='text', value='Best option:('))
return message
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
assert eval_file.endswith('.xlsx'), 'data file should be an xlsx file'
tmp_file = eval_file.replace('.xlsx', '_tmp.pkl')
tgt_file = eval_file.replace('.xlsx', '_rating.json')
score_file = eval_file.replace('.xlsx', '_score.xlsx')
if not osp.exists(score_file):
res = {} if not osp.exists(tmp_file) else load(tmp_file)
res = {k: v for k, v in res.items() if FAIL_MSG not in v}
data = load(eval_file)
data_un = data[~pd.isna(data['prediction'])]
for idx in data['index']:
ans = data.loc[data['index'] == idx, 'answer'].values[0]
pred = data.loc[data['index'] == idx, 'prediction'].values[0]
options = eval(data.loc[data['index'] == idx, 'candidates'].values[0])
answer_idx = -1
for id, c in enumerate(options):
if c == ans:
answer_idx = id
ans = f"({chr(ord('A') + answer_idx)}) {ans}"
if FAIL_MSG in pred:
data.loc[idx, 'score'] = -1
else:
data.loc[idx, 'score'] = int(check_ans(pred, ans))
rejected = [x for x in data['score'] if x == -1]
print(
f'Among {len(data)} questions, failed to obtain prediction for {len(data) - len(data_un)} questions, '
f'failed to obtain the score for another {len(rejected)} questions. '
f'Those questions will be counted as -1 score in ALL rating, and will not be counted in VALID rating.'
)
dump(data, score_file)
rating = get_dimension_rating(score_file)
dump(rating, tgt_file)
return rating
class MVBench_MP4(VideoBaseDataset):
MP4_MD5 = '7b4608045347904c28c153015a7a2b6b'
SYS = """Carefully watch the video and pay attention to the cause and sequence of events, \
the detail and movement of objects, and the action and pose of persons. \
Based on your observations, select the best option that accurately addresses the question.
"""
TYPE = 'MCQ'
def __init__(self, dataset='MVBench_MP4', pack=False):
super().__init__(dataset=dataset, pack=pack)
@classmethod
def supported_datasets(cls):
return ['MVBench_MP4']
def prepare_dataset(self, dataset_name='MVBench_MP4', repo_id='OpenGVLab/MVBench'):
def check_integrity(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if not os.path.exists(data_file):
return False
if md5(data_file) != self.MP4_MD5:
return False
data = load(data_file)
for idx, item in data.iterrows():
if not osp.exists(osp.join(pth, item['prefix'], item['video'])):
return False
return True
cache_path = get_cache_path(repo_id, branch='video')
if cache_path is not None and check_integrity(cache_path):
dataset_path = cache_path
else:
def generate_tsv(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if os.path.exists(data_file) and md5(data_file) == self.MD5:
return
json_data_path = os.path.join(dataset_path, 'test.json')
json_data = load(json_data_path)
root_data_dict = json_data['root']
self.data_list = []
for k, v in json_data['meta'].items():
for item in v:
self.data_list.append({
'task_type': k,
'prefix': root_data_dict[k],
'video': item['video'],
'question': item['question'],
'answer': item['answer'],
'candidates': item['candidates']
})
data_df = pd.DataFrame(self.data_list)
data_df = data_df.assign(index=range(len(data_df)))
data_df.to_csv(data_file, sep='\t', index=False)
hf_token = os.environ.get('HUGGINGFACE_TOKEN')
huggingface_hub.login(hf_token)
dataset_path = snapshot_download(repo_id=repo_id, repo_type='dataset', revision='video')
generate_tsv(dataset_path)
data_file = osp.join(dataset_path, f'{dataset_name}.tsv')
self.nframe = 8
self.resolution = 224
# transform
crop_size = self.resolution
scale_size = self.resolution
input_mean = [0.48145466, 0.4578275, 0.40821073]
input_std = [0.26862954, 0.26130258, 0.27577711]
self.transform = T.Compose([
GroupScale(int(scale_size), interpolation=InterpolationMode.BICUBIC),
GroupCenterCrop(crop_size),
Stack(),
ToTorchFormatTensor(),
GroupNormalize(input_mean, input_std)
])
return dict(root=dataset_path, data_file=data_file)
def qa_template(self, data):
question = f"Question: {data['question']}\n"
question += 'Options:\n'
answer = data['answer']
answer_idx = -1
for idx, c in enumerate(eval(data['candidates'])):
question += f"({chr(ord('A') + idx)}) {c}\n"
if c == answer:
answer_idx = idx
question = question.rstrip()
answer = f"({chr(ord('A') + answer_idx)}) {answer}"
return question, answer
def get_index(self, max_frame):
seg_size = float(max_frame) / self.num_segments
frame_indices = np.array([
int((seg_size / 2) + np.round(seg_size * idx))
for idx in range(self.num_segments)
])
return frame_indices
def read_video(self, video_path, bound=None):
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
max_frame = len(vr) - 1
images_group = list()
frame_indices = self.get_index(max_frame)
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy())
images_group.append(img)
torch_imgs = self.transform(images_group)
return torch_imgs
def save_video_frames(self, imgs, video_name, frames):
frame_paths = self.frame_paths(video_name, frames)
flag = np.all([osp.exists(p) for p in frame_paths])
if not flag:
block_size = imgs.size(0) // frames
split_tensors = torch.split(imgs, block_size)
to_pil = transforms.ToPILImage()
images = [to_pil(arr) for arr in split_tensors]
for im, pth in zip(images, frame_paths):
if not osp.exists(pth):
im.save(pth)
return frame_paths
def build_prompt(self, line, num_frames, video_llm):
if isinstance(line, int):
assert line < len(self)
line = self.data.iloc[line]
question, answer = self.qa_template(line)
message = [dict(type='text', value=self.SYS)]
message.append(dict(type='text', value=question))
video_path = os.path.join(self.data_root, line['prefix'], line['video'])
if video_llm:
message.append(dict(type='video', value=video_path))
else:
video_path = os.path.join(self.data_root, line['prefix'], line['video'])
self.num_segments = num_frames if num_frames > 0 else self.nframe
torch_imgs = self.read_video(video_path)
img_frame_paths = self.save_video_frames(torch_imgs, line['video'], self.num_segments)
for im in img_frame_paths:
message.append(dict(type='image', value=im))
message.append(dict(type='text', value='\nOnly give the best option.'))
message.append(dict(type='text', value='Best option:('))
return message
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
assert eval_file.endswith('.xlsx'), 'data file should be an xlsx file'
tmp_file = eval_file.replace('.xlsx', '_tmp.pkl')
tgt_file = eval_file.replace('.xlsx', '_rating.json')
score_file = eval_file.replace('.xlsx', '_score.xlsx')
if not osp.exists(score_file):
res = {} if not osp.exists(tmp_file) else load(tmp_file)
res = {k: v for k, v in res.items() if FAIL_MSG not in v}
data = load(eval_file)
data_un = data[~pd.isna(data['prediction'])]
for idx in data['index']:
ans = data.loc[data['index'] == idx, 'answer'].values[0]
pred = data.loc[data['index'] == idx, 'prediction'].values[0]
options = eval(data.loc[data['index'] == idx, 'candidates'].values[0])
answer_idx = -1
for id, c in enumerate(options):
if c == ans:
answer_idx = id
ans = f"({chr(ord('A') + answer_idx)}) {ans}"
if FAIL_MSG in pred:
data.loc[idx, 'score'] = -1
else:
data.loc[idx, 'score'] = int(check_ans(pred, ans))
rejected = [x for x in data['score'] if x == -1]
print(
f'Among {len(data)} questions, failed to obtain prediction for {len(data) - len(data_un)} questions, '
f'failed to obtain the score for another {len(rejected)} questions. '
f'Those questions will be counted as -1 score in ALL rating, and will not be counted in VALID rating.'
)
dump(data, score_file)
rating = get_dimension_rating(score_file)
dump(rating, tgt_file)
return rating