mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-05 02:09:20 +08:00
458 lines
20 KiB
Python
458 lines
20 KiB
Python
|
|
import gc
|
|
import math
|
|
import timm
|
|
import torch
|
|
from torch import Tensor
|
|
import torch.nn as nn
|
|
from torch.nn import CrossEntropyLoss
|
|
from typing import List, Optional, Tuple, Union
|
|
|
|
from transformers import AutoConfig, AutoModelForCausalLM
|
|
from transformers import MistralForCausalLM, MistralModel, MistralConfig
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
|
|
|
from omnilmm.model.utils import build_transform
|
|
from omnilmm.model.resampler import Resampler
|
|
|
|
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
|
DEFAULT_IM_START_TOKEN = "<im_start>"
|
|
DEFAULT_IM_END_TOKEN = "<im_end>"
|
|
|
|
|
|
class OmniLMMConfig(MistralConfig):
|
|
model_type = "omnilmm"
|
|
|
|
|
|
class Identity(torch.nn.Identity):
|
|
def forward(self, input: Tensor, **kwargs) -> Tensor:
|
|
return super().forward(input)
|
|
|
|
|
|
def create_vision_module(config):
|
|
vision_tower = timm.create_model('eva02_enormous_patch14_clip_224.laion2b_plus',
|
|
pretrained=False,
|
|
num_classes=0,
|
|
dynamic_img_size=True,
|
|
dynamic_img_pad=True)
|
|
|
|
if isinstance(vision_tower, timm.models.VisionTransformer):
|
|
if vision_tower.attn_pool is not None:
|
|
vision_tower.attn_pool = Identity()
|
|
|
|
# use 2nd last layer's output
|
|
vision_tower.blocks[-1] = Identity()
|
|
|
|
embed_dim = config.hidden_size
|
|
resampler = Resampler(
|
|
grid_size=int(math.sqrt(config.num_query)),
|
|
embed_dim=embed_dim,
|
|
num_heads=embed_dim // 128,
|
|
kv_dim=vision_tower.embed_dim,
|
|
)
|
|
return vision_tower, resampler
|
|
|
|
|
|
class OmniLMMModel(MistralModel):
|
|
config_class = OmniLMMConfig
|
|
|
|
def __init__(self, config: OmniLMMConfig, mm_vision_tower=None, mm_hidden_size=None, tune_clip=True):
|
|
super(OmniLMMModel, self).__init__(config)
|
|
|
|
if hasattr(config, "mm_vision_tower"):
|
|
vision_tower, resampler = create_vision_module(config)
|
|
|
|
print(__file__, 'skip loading vision tower weights')
|
|
|
|
# HACK: for FSDP
|
|
self.vision_tower = [vision_tower]
|
|
self.resampler = resampler
|
|
if tune_clip:
|
|
self.vision_tower = self.vision_tower[0]
|
|
|
|
self.vision_config = lambda x: None
|
|
|
|
def initialize_vision_modules(self, vision_tower, no_randaug, num_query, image_size, tune_clip=False):
|
|
self.config.mm_vision_tower = vision_tower
|
|
self.config.use_mm_proj = True
|
|
self.config.num_query = num_query
|
|
self.config.image_size = image_size
|
|
|
|
if not hasattr(self, 'vision_tower'):
|
|
vision_tower, resampler = create_vision_module(self.config)
|
|
state_dict = torch.load(
|
|
'/tt/data/public/multimodal/multimodal_model_ckpts/timm/eva02_enormous_patch14_clip_224.laion2b_plus.pt')
|
|
vision_tower.load_state_dict(state_dict, strict=False)
|
|
del state_dict
|
|
gc.collect()
|
|
else:
|
|
if isinstance(self.vision_tower, list):
|
|
vision_tower = self.vision_tower[0]
|
|
else:
|
|
vision_tower = self.vision_tower
|
|
resampler = self.resampler
|
|
self.vision_tower = vision_tower if tune_clip else [vision_tower]
|
|
self.resampler = resampler
|
|
|
|
train_img_transform = build_transform(
|
|
is_train=True, randaug=not no_randaug, input_size=self.config.image_size, std_mode='OPENAI_CLIP')
|
|
eval_img_transform = build_transform(
|
|
is_train=False, input_size=self.config.image_size, std_mode='OPENAI_CLIP')
|
|
|
|
return dict(
|
|
image_processor=(train_img_transform, eval_img_transform),
|
|
image_token_len=num_query,
|
|
vision_config=self.vision_config
|
|
)
|
|
|
|
def get_vision_embedding(self, pixel_values):
|
|
if isinstance(self.vision_tower, list):
|
|
vision_tower = self.vision_tower[0] # HACK: for FSDP
|
|
else:
|
|
vision_tower = self.vision_tower
|
|
|
|
dtype = vision_tower.pos_embed.data.dtype
|
|
vision_embedding = vision_tower.forward_features(
|
|
pixel_values.type(dtype))
|
|
if hasattr(vision_tower, 'num_prefix_tokens') and vision_tower.num_prefix_tokens > 0:
|
|
vision_embedding = vision_embedding[:,
|
|
vision_tower.num_prefix_tokens:]
|
|
res = self.resampler(vision_embedding)
|
|
return res
|
|
|
|
def get_vllm_embedding(self, data):
|
|
|
|
if 'vision_hidden_states' not in data:
|
|
pixel_values_list = data['pixel_values']
|
|
vision_hidden_states = []
|
|
for pixel_values in pixel_values_list:
|
|
if len(pixel_values) > 0:
|
|
vision_hidden_states.append(self.get_vision_embedding(pixel_values.unsqueeze(0))[0])
|
|
else:
|
|
vision_hidden_states.append([])
|
|
else:
|
|
vision_hidden_states = data['vision_hidden_states']
|
|
|
|
#vllm_embedding = self.llm.model.embed_tokens(data['input_ids']) * self.llm.config.scale_emb
|
|
inputs_embeds = self.embed_tokens(data['input_ids'])
|
|
vision_hidden_states = [i.type(inputs_embeds.dtype)
|
|
if isinstance(i, torch.Tensor) else i for i in vision_hidden_states
|
|
]
|
|
|
|
|
|
# HACK: replace back original embeddings for LLaVA pretraining
|
|
orig_embeds_params = getattr(self, 'orig_embeds_params', None)
|
|
|
|
new_input_embeds = []
|
|
cur_image_idx = 0
|
|
for cur_input_ids, cur_input_embeds in zip(data['input_ids'], inputs_embeds):
|
|
if (cur_input_ids == self.vision_config.im_patch_token).sum() == 0:
|
|
# multimodal LLM, but the current sample is not multimodal
|
|
cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum()
|
|
new_input_embeds.append(cur_input_embeds)
|
|
continue
|
|
|
|
if self.vision_config.use_im_start_end:
|
|
cur_image_features = vision_hidden_states[cur_image_idx]
|
|
num_patches = cur_image_features.shape[0]
|
|
if (cur_input_ids == self.vision_config.im_start_token).sum() != (cur_input_ids == self.vision_config.im_end_token).sum():
|
|
raise ValueError(
|
|
"The number of image start tokens and image end tokens should be the same.")
|
|
image_start_tokens = torch.where(
|
|
cur_input_ids == self.vision_config.im_start_token)[0]
|
|
for image_start_token_pos in image_start_tokens:
|
|
cur_image_features = vision_hidden_states[cur_image_idx].to(
|
|
device=cur_input_embeds.device)
|
|
num_patches = cur_image_features.shape[0]
|
|
if cur_input_ids[image_start_token_pos + num_patches + 1] != self.vision_config.im_end_token:
|
|
raise ValueError(
|
|
"The image end token should follow the image start token.")
|
|
if orig_embeds_params is not None:
|
|
cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos].detach(), cur_input_embeds[image_start_token_pos:image_start_token_pos+1], cur_image_features,
|
|
cur_input_embeds[image_start_token_pos + num_patches + 1:image_start_token_pos + num_patches + 2], cur_input_embeds[image_start_token_pos + num_patches + 2:].detach()), dim=0)
|
|
else:
|
|
cur_new_input_embeds = torch.cat(
|
|
(cur_input_embeds[:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:]), dim=0)
|
|
cur_image_idx += 1
|
|
new_input_embeds.append(cur_new_input_embeds)
|
|
else:
|
|
raise NotImplementedError
|
|
inputs_embeds = torch.stack(new_input_embeds, dim=0)
|
|
|
|
return inputs_embeds, vision_hidden_states
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
images: Optional[torch.FloatTensor] = None,
|
|
return_dict: Optional[bool] = None,
|
|
**kwargs
|
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
|
|
|
# HACK: replace back original embeddings for LLaVA pretraining
|
|
orig_embeds_params = getattr(self, 'orig_embeds_params', None)
|
|
|
|
if inputs_embeds is None and past_key_values is None:
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
|
|
vision_tower = getattr(self, 'vision_tower', None)
|
|
if vision_tower is not None and (input_ids.shape[1] != 1 or self.training) and images is not None:
|
|
|
|
if type(images) is list:
|
|
image_features = []
|
|
for image in images:
|
|
image_forward_out = self.get_vision_embedding(image.unsqueeze(0))[
|
|
0]
|
|
image_features.append(image_forward_out)
|
|
else:
|
|
image_features = self.get_vision_embedding(images)
|
|
|
|
dummy_image_features = torch.zeros(
|
|
self.config.num_query,
|
|
self.config.hidden_size,
|
|
device=inputs_embeds.device,
|
|
dtype=inputs_embeds.dtype)
|
|
|
|
new_input_embeds = []
|
|
cur_image_idx = 0
|
|
for cur_input_ids, cur_input_embeds in zip(input_ids, inputs_embeds):
|
|
if (cur_input_ids == self.vision_config.im_patch_token).sum() == 0:
|
|
# multimodal LLM, but the current sample is not multimodal
|
|
cur_input_embeds = cur_input_embeds + \
|
|
(0. * dummy_image_features).sum()
|
|
new_input_embeds.append(cur_input_embeds)
|
|
continue
|
|
|
|
if self.vision_config.use_im_start_end:
|
|
cur_image_features = image_features[cur_image_idx]
|
|
num_patches = cur_image_features.shape[0]
|
|
if (cur_input_ids == self.vision_config.im_start_token).sum() != (cur_input_ids == self.vision_config.im_end_token).sum():
|
|
raise ValueError(
|
|
"The number of image start tokens and image end tokens should be the same.")
|
|
image_start_tokens = torch.where(
|
|
cur_input_ids == self.vision_config.im_start_token)[0]
|
|
for image_start_token_pos in image_start_tokens:
|
|
cur_image_features = image_features[cur_image_idx].to(
|
|
device=cur_input_embeds.device)
|
|
num_patches = cur_image_features.shape[0]
|
|
if cur_input_ids[image_start_token_pos + num_patches + 1] != self.vision_config.im_end_token:
|
|
raise ValueError(
|
|
"The image end token should follow the image start token.")
|
|
if orig_embeds_params is not None:
|
|
cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos].detach(), cur_input_embeds[image_start_token_pos:image_start_token_pos+1], cur_image_features,
|
|
cur_input_embeds[image_start_token_pos + num_patches + 1:image_start_token_pos + num_patches + 2], cur_input_embeds[image_start_token_pos + num_patches + 2:].detach()), dim=0)
|
|
else:
|
|
cur_new_input_embeds = torch.cat(
|
|
(cur_input_embeds[:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:]), dim=0)
|
|
cur_image_idx += 1
|
|
new_input_embeds.append(cur_new_input_embeds)
|
|
else:
|
|
raise NotImplementedError
|
|
inputs_embeds = torch.stack(new_input_embeds, dim=0)
|
|
input_ids = None
|
|
|
|
return super(OmniLMMModel, self).forward(
|
|
input_ids=input_ids, attention_mask=attention_mask, past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds, use_cache=use_cache,
|
|
output_attentions=output_attentions, output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
**kwargs
|
|
)
|
|
|
|
|
|
class OmniLMMForCausalLM(MistralForCausalLM):
|
|
config_class = OmniLMMConfig
|
|
|
|
def __init__(self, config, mm_vision_tower=None, tune_clip=True):
|
|
super(MistralForCausalLM, self).__init__(config)
|
|
self.model = OmniLMMModel(
|
|
config, mm_vision_tower=mm_vision_tower, tune_clip=tune_clip)
|
|
|
|
self.lm_head = nn.Linear(
|
|
config.hidden_size, config.vocab_size, bias=False)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
images: Optional[torch.FloatTensor] = None,
|
|
return_dict: Optional[bool] = None,
|
|
**kwargs
|
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
# print(f'@@@ At forward, labels: {labels.shape}-{labels}', flush=True)
|
|
# print(f'@@@ At forward, input_ids: {input_ids.shape}-{input_ids}', flush=True)
|
|
# print(f'@@@ At forward, input_ids: {attention_mask.shape}-{attention_mask}', flush=True)
|
|
|
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
outputs = self.model(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
images=images,
|
|
**kwargs
|
|
)
|
|
|
|
hidden_states = outputs[0]
|
|
logits = self.lm_head(hidden_states)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
# Shift so that tokens < n predict n
|
|
shift_logits = logits[..., :-1, :].contiguous()
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
# Flatten the tokens
|
|
loss_fct = CrossEntropyLoss()
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
shift_labels = shift_labels.view(-1)
|
|
# Enable model/pipeline parallelism
|
|
shift_labels = shift_labels.to(shift_logits.device)
|
|
loss = loss_fct(shift_logits, shift_labels)
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[1:]
|
|
return (loss,) + output if loss is not None else output
|
|
|
|
return CausalLMOutputWithPast(
|
|
loss=loss,
|
|
logits=logits,
|
|
past_key_values=outputs.past_key_values,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
# TODO could be removed for generate_vllm()
|
|
def prepare_inputs_for_generation(
|
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
|
):
|
|
if past_key_values:
|
|
input_ids = input_ids[:, -1:]
|
|
|
|
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
|
if inputs_embeds is not None and past_key_values is None:
|
|
model_inputs = {"inputs_embeds": inputs_embeds}
|
|
else:
|
|
model_inputs = {"input_ids": input_ids}
|
|
|
|
model_inputs.update(
|
|
{
|
|
"past_key_values": past_key_values,
|
|
"use_cache": kwargs.get("use_cache"),
|
|
"attention_mask": attention_mask,
|
|
"images": kwargs.get("images", None),
|
|
}
|
|
)
|
|
return model_inputs
|
|
|
|
def generate_vllm(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
images: Optional[torch.FloatTensor] = None,
|
|
vision_hidden_states=None,
|
|
return_vision_hidden_states=False,
|
|
**kwargs
|
|
):
|
|
model_inputs = {'input_ids': input_ids}
|
|
if vision_hidden_states is None:
|
|
model_inputs['pixel_values'] = images
|
|
else:
|
|
model_inputs['vision_hidden_states'] = vision_hidden_states
|
|
|
|
with torch.inference_mode():
|
|
inputs_embeds, vision_hidden_states = self.model.get_vllm_embedding(model_inputs)
|
|
|
|
result = self.generate(
|
|
inputs_embeds=inputs_embeds,
|
|
**kwargs
|
|
)
|
|
|
|
if return_vision_hidden_states:
|
|
return result, vision_hidden_states
|
|
|
|
return result
|
|
|
|
|
|
def initialize_vision_tokenizer(self, mm_use_im_start_end, tokenizer, device,
|
|
tune_mm_mlp_adapter=False):
|
|
self.model.vision_config.use_im_start_end = mm_use_im_start_end
|
|
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
|
self.resize_token_embeddings(len(tokenizer))
|
|
|
|
if mm_use_im_start_end:
|
|
num_new_tokens = tokenizer.add_tokens(
|
|
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
|
self.resize_token_embeddings(len(tokenizer))
|
|
self.model.vision_config.im_start_token, self.model.vision_config.im_end_token = tokenizer.convert_tokens_to_ids(
|
|
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
|
|
|
|
if num_new_tokens > 0:
|
|
input_embeddings = self.get_input_embeddings().weight.data
|
|
output_embeddings = self.get_output_embeddings().weight.data
|
|
|
|
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
|
dim=0, keepdim=True)
|
|
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
|
dim=0, keepdim=True)
|
|
|
|
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
|
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
|
|
|
# for new sft data
|
|
num_new_tokens = tokenizer.add_tokens(
|
|
['<box>', '</box>', '<ref>', '</ref>', '<quad>', '</quad>'], special_tokens=True)
|
|
self.resize_token_embeddings(len(tokenizer))
|
|
|
|
if num_new_tokens > 0:
|
|
input_embeddings = self.get_input_embeddings().weight.data
|
|
output_embeddings = self.get_output_embeddings().weight.data
|
|
|
|
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
|
dim=0, keepdim=True)
|
|
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
|
dim=0, keepdim=True)
|
|
|
|
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
|
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
|
|
|
if tune_mm_mlp_adapter:
|
|
self.model.orig_embeds_params = [
|
|
self.get_input_embeddings().weight.data.clone().to(device=device)]
|
|
for p in self.get_input_embeddings().parameters():
|
|
p.requires_grad = True
|
|
for p in self.get_output_embeddings().parameters():
|
|
p.requires_grad = False
|
|
|
|
self.model.vision_config.im_patch_token = tokenizer.convert_tokens_to_ids(
|
|
[DEFAULT_IMAGE_PATCH_TOKEN])[0]
|
|
print(f'Tokenizer: {tokenizer}\n patch_token_id: {self.model.vision_config.im_patch_token}, visoin_config: {self.model.vision_config}', flush=True)
|
|
# exit()
|
|
|
|
|
|
AutoConfig.register("omnilmm", OmniLMMConfig)
|
|
AutoModelForCausalLM.register(OmniLMMConfig, OmniLMMForCausalLM)
|