Files
MiniCPM-o/finetune/finetune_ds.sh
2024-05-21 17:30:33 +08:00

55 lines
1.5 KiB
Bash

#!/bin/bash
GPUS_PER_NODE=8
NNODES=1
NODE_RANK=0
MASTER_ADDR=localhost
MASTER_PORT=6001
MODEL="path/to/minicpmv2"
# ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations.
# See the section for finetuning in README for more information.
DATA="path/to/trainging_data"
EVAL_DATA="path/to/test_data"
DISTRIBUTED_ARGS="
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--node_rank $NODE_RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT
"
torchrun $DISTRIBUTED_ARGS finetune.py \
--model_name_or_path $MODEL \
--data_path $DATA \
--eval_data_path $EVAL_DATA \
--remove_unused_columns false \
--label_names "labels" \
--prediction_loss_only false \
--bf16 true \
--bf16_full_eval true \
--do_train \
--do_eval \
--model_max_length 2048 \
--max_steps 80000 \
--eval_steps 200 \
--output_dir output/output_minicpmv2 \
--logging_dir output/output_minicpmv2 \
--logging_strategy "steps" \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 1 \
--evaluation_strategy "steps" \
--save_strategy "steps" \
--save_steps 1000 \
--save_total_limit 10 \
--learning_rate 5e-7 \
--weight_decay 0.1 \
--adam_beta2 0.95 \
--warmup_ratio 0.01 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--gradient_checkpointing True \
--deepspeed ds_config_zero2.json \
--report_to "tensorboard" # wandb