mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-04 17:59:18 +08:00
553 lines
20 KiB
Python
553 lines
20 KiB
Python
#!/usr/bin/env python
|
|
# encoding: utf-8
|
|
import torch
|
|
import argparse
|
|
from transformers import AutoModel, AutoTokenizer
|
|
import gradio as gr
|
|
from PIL import Image
|
|
from decord import VideoReader, cpu
|
|
import io
|
|
import os
|
|
import copy
|
|
import requests
|
|
import base64
|
|
import json
|
|
import traceback
|
|
import re
|
|
import modelscope_studio as mgr
|
|
|
|
|
|
# README, How to run demo on different devices
|
|
|
|
# For Nvidia GPUs.
|
|
# python chatbot_web_demo_o2.6.py
|
|
|
|
|
|
# Argparser
|
|
parser = argparse.ArgumentParser(description='demo')
|
|
parser.add_argument('--model', type=str , default="openbmb/MiniCPM-o-2_6", help="huggingface model name or local path")
|
|
parser.add_argument('--multi-gpus', action='store_true', default=False, help='use multi-gpus')
|
|
args = parser.parse_args()
|
|
device = "cuda"
|
|
model_name = 'MiniCPM-o 2.6'
|
|
|
|
# Load model
|
|
model_path = args.model
|
|
if args.multi_gpus:
|
|
from accelerate import load_checkpoint_and_dispatch, init_empty_weights, infer_auto_device_map
|
|
with init_empty_weights():
|
|
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, attn_implementation='sdpa', torch_dtype=torch.bfloat16,
|
|
init_audio=False, init_tts=False)
|
|
device_map = infer_auto_device_map(model, max_memory={0: "10GB", 1: "10GB"},
|
|
no_split_module_classes=['SiglipVisionTransformer', 'Qwen2DecoderLayer'])
|
|
device_id = device_map["llm.model.embed_tokens"]
|
|
device_map["llm.lm_head"] = device_id # firtt and last layer should be in same device
|
|
device_map["vpm"] = device_id
|
|
device_map["resampler"] = device_id
|
|
device_id2 = device_map["llm.model.layers.26"]
|
|
device_map["llm.model.layers.8"] = device_id2
|
|
device_map["llm.model.layers.9"] = device_id2
|
|
device_map["llm.model.layers.10"] = device_id2
|
|
device_map["llm.model.layers.11"] = device_id2
|
|
device_map["llm.model.layers.12"] = device_id2
|
|
device_map["llm.model.layers.13"] = device_id2
|
|
device_map["llm.model.layers.14"] = device_id2
|
|
device_map["llm.model.layers.15"] = device_id2
|
|
device_map["llm.model.layers.16"] = device_id2
|
|
#print(device_map)
|
|
|
|
model = load_checkpoint_and_dispatch(model, model_path, dtype=torch.bfloat16, device_map=device_map)
|
|
else:
|
|
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16, init_audio=False, init_tts=False)
|
|
model = model.to(device=device)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model.eval()
|
|
|
|
|
|
|
|
|
|
ERROR_MSG = "Error, please retry"
|
|
MAX_NUM_FRAMES = 64
|
|
IMAGE_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.webp'}
|
|
VIDEO_EXTENSIONS = {'.mp4', '.mkv', '.mov', '.avi', '.flv', '.wmv', '.webm', '.m4v'}
|
|
|
|
def get_file_extension(filename):
|
|
return os.path.splitext(filename)[1].lower()
|
|
|
|
def is_image(filename):
|
|
return get_file_extension(filename) in IMAGE_EXTENSIONS
|
|
|
|
def is_video(filename):
|
|
return get_file_extension(filename) in VIDEO_EXTENSIONS
|
|
|
|
|
|
form_radio = {
|
|
'choices': ['Beam Search', 'Sampling'],
|
|
#'value': 'Beam Search',
|
|
'value': 'Sampling',
|
|
'interactive': True,
|
|
'label': 'Decode Type'
|
|
}
|
|
|
|
|
|
def create_component(params, comp='Slider'):
|
|
if comp == 'Slider':
|
|
return gr.Slider(
|
|
minimum=params['minimum'],
|
|
maximum=params['maximum'],
|
|
value=params['value'],
|
|
step=params['step'],
|
|
interactive=params['interactive'],
|
|
label=params['label']
|
|
)
|
|
elif comp == 'Radio':
|
|
return gr.Radio(
|
|
choices=params['choices'],
|
|
value=params['value'],
|
|
interactive=params['interactive'],
|
|
label=params['label']
|
|
)
|
|
elif comp == 'Button':
|
|
return gr.Button(
|
|
value=params['value'],
|
|
interactive=True
|
|
)
|
|
|
|
|
|
def create_multimodal_input(upload_image_disabled=False, upload_video_disabled=False):
|
|
return mgr.MultimodalInput(
|
|
upload_image_button_props={'label': 'Upload Image', 'disabled': upload_image_disabled, 'file_count': 'multiple'},
|
|
upload_video_button_props={'label': 'Upload Video', 'disabled': upload_video_disabled, 'file_count': 'single'},
|
|
submit_button_props={'label': 'Submit'}
|
|
)
|
|
|
|
|
|
def chat(img, msgs, ctx, params=None, vision_hidden_states=None):
|
|
try:
|
|
print('msgs:', msgs)
|
|
answer = model.chat(
|
|
image=None,
|
|
msgs=msgs,
|
|
tokenizer=tokenizer,
|
|
**params
|
|
)
|
|
res = re.sub(r'(<box>.*</box>)', '', answer)
|
|
res = res.replace('<ref>', '')
|
|
res = res.replace('</ref>', '')
|
|
res = res.replace('<box>', '')
|
|
answer = res.replace('</box>', '')
|
|
print('answer:', answer)
|
|
return 0, answer, None, None
|
|
except Exception as e:
|
|
print(e)
|
|
traceback.print_exc()
|
|
return -1, ERROR_MSG, None, None
|
|
|
|
|
|
def encode_image(image):
|
|
if not isinstance(image, Image.Image):
|
|
if hasattr(image, 'path'):
|
|
image = Image.open(image.path).convert("RGB")
|
|
else:
|
|
image = Image.open(image.file.path).convert("RGB")
|
|
# resize to max_size
|
|
max_size = 448*16
|
|
if max(image.size) > max_size:
|
|
w,h = image.size
|
|
if w > h:
|
|
new_w = max_size
|
|
new_h = int(h * max_size / w)
|
|
else:
|
|
new_h = max_size
|
|
new_w = int(w * max_size / h)
|
|
image = image.resize((new_w, new_h), resample=Image.BICUBIC)
|
|
return image
|
|
## save by BytesIO and convert to base64
|
|
#buffered = io.BytesIO()
|
|
#image.save(buffered, format="png")
|
|
#im_b64 = base64.b64encode(buffered.getvalue()).decode()
|
|
#return {"type": "image", "pairs": im_b64}
|
|
|
|
|
|
def encode_video(video):
|
|
def uniform_sample(l, n):
|
|
gap = len(l) / n
|
|
idxs = [int(i * gap + gap / 2) for i in range(n)]
|
|
return [l[i] for i in idxs]
|
|
|
|
if hasattr(video, 'path'):
|
|
vr = VideoReader(video.path, ctx=cpu(0))
|
|
else:
|
|
vr = VideoReader(video.file.path, ctx=cpu(0))
|
|
sample_fps = round(vr.get_avg_fps() / 1) # FPS
|
|
frame_idx = [i for i in range(0, len(vr), sample_fps)]
|
|
if len(frame_idx)>MAX_NUM_FRAMES:
|
|
frame_idx = uniform_sample(frame_idx, MAX_NUM_FRAMES)
|
|
video = vr.get_batch(frame_idx).asnumpy()
|
|
video = [Image.fromarray(v.astype('uint8')) for v in video]
|
|
video = [encode_image(v) for v in video]
|
|
print('video frames:', len(video))
|
|
return video
|
|
|
|
|
|
def check_mm_type(mm_file):
|
|
if hasattr(mm_file, 'path'):
|
|
path = mm_file.path
|
|
else:
|
|
path = mm_file.file.path
|
|
if is_image(path):
|
|
return "image"
|
|
if is_video(path):
|
|
return "video"
|
|
return None
|
|
|
|
|
|
def encode_mm_file(mm_file):
|
|
if check_mm_type(mm_file) == 'image':
|
|
return [encode_image(mm_file)]
|
|
if check_mm_type(mm_file) == 'video':
|
|
return encode_video(mm_file)
|
|
return None
|
|
|
|
def make_text(text):
|
|
#return {"type": "text", "pairs": text} # # For remote call
|
|
return text
|
|
|
|
def encode_message(_question):
|
|
files = _question.files
|
|
question = _question.text
|
|
pattern = r"\[mm_media\]\d+\[/mm_media\]"
|
|
matches = re.split(pattern, question)
|
|
message = []
|
|
if len(matches) != len(files) + 1:
|
|
gr.Warning("Number of Images not match the placeholder in text, please refresh the page to restart!")
|
|
assert len(matches) == len(files) + 1
|
|
|
|
text = matches[0].strip()
|
|
if text:
|
|
message.append(make_text(text))
|
|
for i in range(len(files)):
|
|
message += encode_mm_file(files[i])
|
|
text = matches[i + 1].strip()
|
|
if text:
|
|
message.append(make_text(text))
|
|
return message
|
|
|
|
|
|
def check_has_videos(_question):
|
|
images_cnt = 0
|
|
videos_cnt = 0
|
|
for file in _question.files:
|
|
if check_mm_type(file) == "image":
|
|
images_cnt += 1
|
|
else:
|
|
videos_cnt += 1
|
|
return images_cnt, videos_cnt
|
|
|
|
|
|
def count_video_frames(_context):
|
|
num_frames = 0
|
|
for message in _context:
|
|
for item in message["content"]:
|
|
#if item["type"] == "image": # For remote call
|
|
if isinstance(item, Image.Image):
|
|
num_frames += 1
|
|
return num_frames
|
|
|
|
|
|
def respond(_question, _chat_bot, _app_cfg, params_form):
|
|
_context = _app_cfg['ctx'].copy()
|
|
_context.append({'role': 'user', 'content': encode_message(_question)})
|
|
|
|
images_cnt = _app_cfg['images_cnt']
|
|
videos_cnt = _app_cfg['videos_cnt']
|
|
files_cnts = check_has_videos(_question)
|
|
if files_cnts[1] + videos_cnt > 1 or (files_cnts[1] + videos_cnt == 1 and files_cnts[0] + images_cnt > 0):
|
|
gr.Warning("Only supports single video file input right now!")
|
|
return _question, _chat_bot, _app_cfg
|
|
|
|
if params_form == 'Beam Search':
|
|
params = {
|
|
'sampling': False,
|
|
'num_beams': 3,
|
|
'repetition_penalty': 1.2,
|
|
"max_new_tokens": 2048
|
|
}
|
|
else:
|
|
params = {
|
|
'sampling': True,
|
|
'top_p': 0.8,
|
|
'top_k': 100,
|
|
'temperature': 0.7,
|
|
'repetition_penalty': 1.05,
|
|
"max_new_tokens": 2048
|
|
}
|
|
|
|
if files_cnts[1] + videos_cnt > 0:
|
|
params["max_inp_length"] = 4352 # 4096+256
|
|
params["use_image_id"] = False
|
|
params["max_slice_nums"] = 1 if count_video_frames(_context) > 16 else 2
|
|
|
|
code, _answer, _, sts = chat("", _context, None, params)
|
|
|
|
images_cnt += files_cnts[0]
|
|
videos_cnt += files_cnts[1]
|
|
_context.append({"role": "assistant", "content": [make_text(_answer)]})
|
|
_chat_bot.append((_question, _answer))
|
|
if code == 0:
|
|
_app_cfg['ctx']=_context
|
|
_app_cfg['sts']=sts
|
|
_app_cfg['images_cnt'] = images_cnt
|
|
_app_cfg['videos_cnt'] = videos_cnt
|
|
|
|
upload_image_disabled = videos_cnt > 0
|
|
upload_video_disabled = videos_cnt > 0 or images_cnt > 0
|
|
return create_multimodal_input(upload_image_disabled, upload_video_disabled), _chat_bot, _app_cfg
|
|
|
|
|
|
def fewshot_add_demonstration(_image, _user_message, _assistant_message, _chat_bot, _app_cfg):
|
|
ctx = _app_cfg["ctx"]
|
|
message_item = []
|
|
if _image is not None:
|
|
image = Image.open(_image).convert("RGB")
|
|
ctx.append({"role": "user", "content": [encode_image(image), make_text(_user_message)]})
|
|
message_item.append({"text": "[mm_media]1[/mm_media]" + _user_message, "files": [_image]})
|
|
else:
|
|
if _user_message:
|
|
ctx.append({"role": "user", "content": [make_text(_user_message)]})
|
|
message_item.append({"text": _user_message, "files": []})
|
|
else:
|
|
message_item.append(None)
|
|
if _assistant_message:
|
|
ctx.append({"role": "assistant", "content": [make_text(_assistant_message)]})
|
|
message_item.append({"text": _assistant_message, "files": []})
|
|
else:
|
|
message_item.append(None)
|
|
|
|
_chat_bot.append(message_item)
|
|
return None, "", "", _chat_bot, _app_cfg
|
|
|
|
|
|
def fewshot_respond(_image, _user_message, _chat_bot, _app_cfg, params_form):
|
|
user_message_contents = []
|
|
_context = _app_cfg["ctx"].copy()
|
|
if _image:
|
|
image = Image.open(_image).convert("RGB")
|
|
user_message_contents += [encode_image(image)]
|
|
if _user_message:
|
|
user_message_contents += [make_text(_user_message)]
|
|
if user_message_contents:
|
|
_context.append({"role": "user", "content": user_message_contents})
|
|
|
|
if params_form == 'Beam Search':
|
|
params = {
|
|
'sampling': False,
|
|
'num_beams': 3,
|
|
'repetition_penalty': 1.2,
|
|
"max_new_tokens": 2048
|
|
}
|
|
else:
|
|
params = {
|
|
'sampling': True,
|
|
'top_p': 0.8,
|
|
'top_k': 100,
|
|
'temperature': 0.7,
|
|
'repetition_penalty': 1.05,
|
|
"max_new_tokens": 2048
|
|
}
|
|
|
|
code, _answer, _, sts = chat("", _context, None, params)
|
|
|
|
_context.append({"role": "assistant", "content": [make_text(_answer)]})
|
|
|
|
if _image:
|
|
_chat_bot.append([
|
|
{"text": "[mm_media]1[/mm_media]" + _user_message, "files": [_image]},
|
|
{"text": _answer, "files": []}
|
|
])
|
|
else:
|
|
_chat_bot.append([
|
|
{"text": _user_message, "files": [_image]},
|
|
{"text": _answer, "files": []}
|
|
])
|
|
if code == 0:
|
|
_app_cfg['ctx']=_context
|
|
_app_cfg['sts']=sts
|
|
return None, '', '', _chat_bot, _app_cfg
|
|
|
|
|
|
def regenerate_button_clicked(_question, _image, _user_message, _assistant_message, _chat_bot, _app_cfg, params_form):
|
|
if len(_chat_bot) <= 1 or not _chat_bot[-1][1]:
|
|
gr.Warning('No question for regeneration.')
|
|
return '', _image, _user_message, _assistant_message, _chat_bot, _app_cfg
|
|
if _app_cfg["chat_type"] == "Chat":
|
|
images_cnt = _app_cfg['images_cnt']
|
|
videos_cnt = _app_cfg['videos_cnt']
|
|
_question = _chat_bot[-1][0]
|
|
_chat_bot = _chat_bot[:-1]
|
|
_app_cfg['ctx'] = _app_cfg['ctx'][:-2]
|
|
files_cnts = check_has_videos(_question)
|
|
images_cnt -= files_cnts[0]
|
|
videos_cnt -= files_cnts[1]
|
|
_app_cfg['images_cnt'] = images_cnt
|
|
_app_cfg['videos_cnt'] = videos_cnt
|
|
upload_image_disabled = videos_cnt > 0
|
|
upload_video_disabled = videos_cnt > 0 or images_cnt > 0
|
|
_question, _chat_bot, _app_cfg = respond(_question, _chat_bot, _app_cfg, params_form)
|
|
return _question, _image, _user_message, _assistant_message, _chat_bot, _app_cfg
|
|
else:
|
|
last_message = _chat_bot[-1][0]
|
|
last_image = None
|
|
last_user_message = ''
|
|
if last_message.text:
|
|
last_user_message = last_message.text
|
|
if last_message.files:
|
|
last_image = last_message.files[0].file.path
|
|
_chat_bot = _chat_bot[:-1]
|
|
_app_cfg['ctx'] = _app_cfg['ctx'][:-2]
|
|
_image, _user_message, _assistant_message, _chat_bot, _app_cfg = fewshot_respond(last_image, last_user_message, _chat_bot, _app_cfg, params_form)
|
|
return _question, _image, _user_message, _assistant_message, _chat_bot, _app_cfg
|
|
|
|
|
|
def flushed():
|
|
return gr.update(interactive=True)
|
|
|
|
|
|
def clear(txt_message, chat_bot, app_session):
|
|
txt_message.files.clear()
|
|
txt_message.text = ''
|
|
chat_bot = copy.deepcopy(init_conversation)
|
|
app_session['sts'] = None
|
|
app_session['ctx'] = []
|
|
app_session['images_cnt'] = 0
|
|
app_session['videos_cnt'] = 0
|
|
return create_multimodal_input(), chat_bot, app_session, None, '', ''
|
|
|
|
|
|
def select_chat_type(_tab, _app_cfg):
|
|
_app_cfg["chat_type"] = _tab
|
|
return _app_cfg
|
|
|
|
|
|
init_conversation = [
|
|
[
|
|
None,
|
|
{
|
|
# The first message of bot closes the typewriter.
|
|
"text": "You can talk to me now",
|
|
"flushing": False
|
|
}
|
|
],
|
|
]
|
|
|
|
|
|
css = """
|
|
video { height: auto !important; }
|
|
.example label { font-size: 16px;}
|
|
"""
|
|
|
|
introduction = """
|
|
|
|
## Features:
|
|
1. Chat with single image
|
|
2. Chat with multiple images
|
|
3. Chat with video
|
|
4. In-context few-shot learning
|
|
|
|
Click `How to use` tab to see examples.
|
|
"""
|
|
|
|
|
|
with gr.Blocks(css=css) as demo:
|
|
with gr.Tab(model_name):
|
|
with gr.Row():
|
|
with gr.Column(scale=1, min_width=300):
|
|
gr.Markdown(value=introduction)
|
|
params_form = create_component(form_radio, comp='Radio')
|
|
regenerate = create_component({'value': 'Regenerate'}, comp='Button')
|
|
clear_button = create_component({'value': 'Clear History'}, comp='Button')
|
|
|
|
with gr.Column(scale=3, min_width=500):
|
|
app_session = gr.State({'sts':None,'ctx':[], 'images_cnt': 0, 'videos_cnt': 0, 'chat_type': 'Chat'})
|
|
chat_bot = mgr.Chatbot(label=f"Chat with {model_name}", value=copy.deepcopy(init_conversation), height=600, flushing=False, bubble_full_width=False)
|
|
|
|
with gr.Tab("Chat") as chat_tab:
|
|
txt_message = create_multimodal_input()
|
|
chat_tab_label = gr.Textbox(value="Chat", interactive=False, visible=False)
|
|
|
|
txt_message.submit(
|
|
respond,
|
|
[txt_message, chat_bot, app_session, params_form],
|
|
[txt_message, chat_bot, app_session]
|
|
)
|
|
|
|
with gr.Tab("Few Shot") as fewshot_tab:
|
|
fewshot_tab_label = gr.Textbox(value="Few Shot", interactive=False, visible=False)
|
|
with gr.Row():
|
|
with gr.Column(scale=1):
|
|
image_input = gr.Image(type="filepath", sources=["upload"])
|
|
with gr.Column(scale=3):
|
|
user_message = gr.Textbox(label="User")
|
|
assistant_message = gr.Textbox(label="Assistant")
|
|
with gr.Row():
|
|
add_demonstration_button = gr.Button("Add Example")
|
|
generate_button = gr.Button(value="Generate", variant="primary")
|
|
add_demonstration_button.click(
|
|
fewshot_add_demonstration,
|
|
[image_input, user_message, assistant_message, chat_bot, app_session],
|
|
[image_input, user_message, assistant_message, chat_bot, app_session]
|
|
)
|
|
generate_button.click(
|
|
fewshot_respond,
|
|
[image_input, user_message, chat_bot, app_session, params_form],
|
|
[image_input, user_message, assistant_message, chat_bot, app_session]
|
|
)
|
|
|
|
chat_tab.select(
|
|
select_chat_type,
|
|
[chat_tab_label, app_session],
|
|
[app_session]
|
|
)
|
|
chat_tab.select( # do clear
|
|
clear,
|
|
[txt_message, chat_bot, app_session],
|
|
[txt_message, chat_bot, app_session, image_input, user_message, assistant_message]
|
|
)
|
|
fewshot_tab.select(
|
|
select_chat_type,
|
|
[fewshot_tab_label, app_session],
|
|
[app_session]
|
|
)
|
|
fewshot_tab.select( # do clear
|
|
clear,
|
|
[txt_message, chat_bot, app_session],
|
|
[txt_message, chat_bot, app_session, image_input, user_message, assistant_message]
|
|
)
|
|
chat_bot.flushed(
|
|
flushed,
|
|
outputs=[txt_message]
|
|
)
|
|
regenerate.click(
|
|
regenerate_button_clicked,
|
|
[txt_message, image_input, user_message, assistant_message, chat_bot, app_session, params_form],
|
|
[txt_message, image_input, user_message, assistant_message, chat_bot, app_session]
|
|
)
|
|
clear_button.click(
|
|
clear,
|
|
[txt_message, chat_bot, app_session],
|
|
[txt_message, chat_bot, app_session, image_input, user_message, assistant_message]
|
|
)
|
|
|
|
with gr.Tab("How to use"):
|
|
with gr.Column():
|
|
with gr.Row():
|
|
image_example = gr.Image(value="http://thunlp.oss-cn-qingdao.aliyuncs.com/multi_modal/never_delete/m_bear2.gif", label='1. Chat with single or multiple images', interactive=False, width=400, elem_classes="example")
|
|
example2 = gr.Image(value="http://thunlp.oss-cn-qingdao.aliyuncs.com/multi_modal/never_delete/video2.gif", label='2. Chat with video', interactive=False, width=400, elem_classes="example")
|
|
example3 = gr.Image(value="http://thunlp.oss-cn-qingdao.aliyuncs.com/multi_modal/never_delete/fshot.gif", label='3. Few shot', interactive=False, width=400, elem_classes="example")
|
|
|
|
|
|
# launch
|
|
demo.launch(share=False, debug=True, show_api=False, server_port=8000, server_name="0.0.0.0")
|
|
|