mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-05 02:09:20 +08:00
55 lines
1.5 KiB
Bash
55 lines
1.5 KiB
Bash
#!/bin/bash
|
|
|
|
GPUS_PER_NODE=8
|
|
NNODES=1
|
|
NODE_RANK=0
|
|
MASTER_ADDR=localhost
|
|
MASTER_PORT=6001
|
|
|
|
MODEL="path/to/minicpmv2"
|
|
# ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations.
|
|
# See the section for finetuning in README for more information.
|
|
DATA="path/to/trainging_data"
|
|
EVAL_DATA="path/to/test_data"
|
|
|
|
DISTRIBUTED_ARGS="
|
|
--nproc_per_node $GPUS_PER_NODE \
|
|
--nnodes $NNODES \
|
|
--node_rank $NODE_RANK \
|
|
--master_addr $MASTER_ADDR \
|
|
--master_port $MASTER_PORT
|
|
"
|
|
torchrun $DISTRIBUTED_ARGS finetune.py \
|
|
--model_name_or_path $MODEL \
|
|
--data_path $DATA \
|
|
--eval_data_path $EVAL_DATA \
|
|
--remove_unused_columns false \
|
|
--label_names "labels" \
|
|
--prediction_loss_only false \
|
|
--bf16 true \
|
|
--bf16_full_eval true \
|
|
--do_train \
|
|
--do_eval \
|
|
--model_max_length 2048 \
|
|
--max_steps 80000 \
|
|
--eval_steps 200 \
|
|
--output_dir output/output_minicpmv2 \
|
|
--logging_dir output/output_minicpmv2 \
|
|
--logging_strategy "steps" \
|
|
--per_device_train_batch_size 8 \
|
|
--per_device_eval_batch_size 1 \
|
|
--gradient_accumulation_steps 1 \
|
|
--evaluation_strategy "steps" \
|
|
--save_strategy "steps" \
|
|
--save_steps 1000 \
|
|
--save_total_limit 10 \
|
|
--learning_rate 5e-7 \
|
|
--weight_decay 0.1 \
|
|
--adam_beta2 0.95 \
|
|
--warmup_ratio 0.01 \
|
|
--lr_scheduler_type "cosine" \
|
|
--logging_steps 1 \
|
|
--gradient_checkpointing True \
|
|
--deepspeed ds_config_zero2.json \
|
|
--report_to "tensorboard" # wandb
|