mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-05 18:29:18 +08:00
460 lines
17 KiB
Python
460 lines
17 KiB
Python
import math
|
|
import torch
|
|
import random
|
|
import numpy as np
|
|
from PIL import Image
|
|
from transformers import AutoModel, AutoTokenizer
|
|
|
|
from .base import BaseModel
|
|
from ..smp import *
|
|
from ..dataset import DATASET_TYPE
|
|
|
|
|
|
class MiniCPM_V(BaseModel):
|
|
|
|
INSTALL_REQ = False
|
|
INTERLEAVE = False
|
|
|
|
def __init__(self, model_path='openbmb/MiniCPM-V', **kwargs):
|
|
assert model_path is not None
|
|
self.model_path = model_path
|
|
print(f'load from {self.model_path}')
|
|
self.model = AutoModel.from_pretrained(self.model_path, trust_remote_code=True)
|
|
self.model = self.model.to(dtype=torch.bfloat16)
|
|
self.model.eval().cuda()
|
|
self.kwargs = kwargs
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True)
|
|
torch.cuda.empty_cache()
|
|
self.num_beams = 1 if self.model_path == 'openbmb/MiniCPM-V' else 3
|
|
|
|
def use_custom_prompt(self, dataset):
|
|
assert dataset is not None
|
|
if listinstr(['MMMU'], dataset):
|
|
return True
|
|
return False
|
|
|
|
def build_prompt(self, line, dataset=None):
|
|
assert dataset is None or isinstance(dataset, str)
|
|
assert self.use_custom_prompt(dataset)
|
|
tgt_path = self.dump_image(line, dataset)
|
|
|
|
question = line['question']
|
|
options = {
|
|
cand: line[cand]
|
|
for cand in string.ascii_uppercase
|
|
if cand in line and not pd.isna(line[cand])
|
|
}
|
|
options_prompt = 'Options:\n'
|
|
for key, item in options.items():
|
|
options_prompt += f'{key}. {item}\n'
|
|
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
|
|
prompt = ''
|
|
if hint is not None:
|
|
prompt += f'Hint: {hint}\n'
|
|
prompt += f'{question}\n'
|
|
if len(options):
|
|
prompt += options_prompt
|
|
prompt = 'Study the image carefully and pick the option associated with the correct answer. \
|
|
Focus solely on selecting the option and avoid including any other content.\n' + prompt
|
|
message = [dict(type='text', value=prompt)]
|
|
message.extend([dict(type='image', value=p) for p in tgt_path])
|
|
|
|
return message
|
|
|
|
def generate_inner(self, message, dataset=None):
|
|
prompt, image_path = self.message_to_promptimg(message, dataset=dataset)
|
|
image = Image.open(image_path).convert('RGB')
|
|
msgs = [{'role': 'user', 'content': prompt}]
|
|
if DATASET_TYPE(dataset) == 'MCQ':
|
|
max_new_tokens = 20
|
|
elif DATASET_TYPE(dataset) == 'Y/N':
|
|
max_new_tokens = 100
|
|
else:
|
|
max_new_tokens = 1024
|
|
|
|
default_kwargs = dict(
|
|
max_new_tokens=max_new_tokens,
|
|
sampling=False,
|
|
num_beams=self.num_beams
|
|
)
|
|
default_kwargs.update(self.kwargs)
|
|
res, _, _ = self.model.chat(
|
|
image=image,
|
|
msgs=msgs,
|
|
context=None,
|
|
tokenizer=self.tokenizer,
|
|
**default_kwargs
|
|
)
|
|
return res
|
|
|
|
|
|
class MiniCPM_Llama3_V(BaseModel):
|
|
|
|
INSTALL_REQ = False
|
|
INTERLEAVE = True
|
|
|
|
def __init__(self, model_path='openbmb/MiniCPM-Llama3-V-2_5', **kwargs):
|
|
assert model_path is not None
|
|
self.model_path = model_path
|
|
print(f'load from {self.model_path}')
|
|
self.model = AutoModel.from_pretrained(self.model_path, trust_remote_code=True)
|
|
self.model = self.model.to(dtype=torch.float16)
|
|
self.model.eval().cuda()
|
|
self.kwargs = kwargs
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True)
|
|
torch.cuda.empty_cache()
|
|
self.num_beams = 1 if self.model_path == 'openbmb/MiniCPM-V' else 3
|
|
self.options_system_prompt = ('Carefully read the following question and select the letter corresponding '
|
|
'to the correct answer. Highlight the applicable choices without giving '
|
|
'explanations.')
|
|
self.wo_options_system_prompt = 'Carefully read the following question Answer the question directly.'
|
|
self.detail_system_prompt = 'Answer this question in detail.'
|
|
self.vqa_prompt = 'Answer the question using a single word or phrase.'
|
|
|
|
def use_custom_prompt(self, dataset):
|
|
if listinstr(['MCQ', 'VQA'], DATASET_TYPE(dataset)):
|
|
return True
|
|
elif dataset is not None and listinstr(['HallusionBench'], dataset):
|
|
return True
|
|
return False
|
|
|
|
def build_prompt(self, line, dataset=None):
|
|
if isinstance(line, int):
|
|
line = self.data.iloc[line]
|
|
|
|
tgt_path = self.dump_image(line, dataset)
|
|
system_prompt = ''
|
|
|
|
question = line['question']
|
|
if DATASET_TYPE(dataset) == 'MCQ':
|
|
options = {
|
|
cand: line[cand]
|
|
for cand in string.ascii_uppercase
|
|
if cand in line and not pd.isna(line[cand])
|
|
}
|
|
options_prompt = 'Options:\n'
|
|
for key, item in options.items():
|
|
options_prompt += f'{key}. {item}\n'
|
|
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
|
|
prompt = ''
|
|
if hint is not None:
|
|
prompt += f'Hint: {hint}\n'
|
|
prompt += f'Question: {question}\n'
|
|
if len(options):
|
|
prompt += options_prompt
|
|
system_prompt = self.options_system_prompt + '\nPlease just indicate your choice.'
|
|
else:
|
|
system_prompt = self.wo_options_system_prompt
|
|
if 'MMMU' in dataset: # Corner Case
|
|
prompt = system_prompt + '\n' + prompt
|
|
system_prompt = ''
|
|
elif dataset is not None and listinstr(['HallusionBench'], dataset):
|
|
question = line['question'] + ' Yes or No?'
|
|
prompt = question
|
|
elif dataset is not None and listinstr(['MME'], dataset):
|
|
question = line['question'] + ' Yes or No?'
|
|
prompt = question
|
|
elif dataset is not None and listinstr(['OCRBench'], dataset):
|
|
system_prompt = self.vqa_prompt
|
|
question = line['question']
|
|
prompt = question
|
|
elif DATASET_TYPE(dataset) == 'VQA':
|
|
if listinstr(['LLaVABench', 'MMLongBench_DOC'], dataset):
|
|
system_prompt = ''
|
|
prompt = question
|
|
elif listinstr(['MMVet'], dataset):
|
|
system_prompt = self.detail_system_prompt
|
|
prompt = question
|
|
else:
|
|
system_prompt = self.vqa_prompt
|
|
prompt = question
|
|
|
|
msgs = []
|
|
if system_prompt:
|
|
msgs.append(dict(type='text', value=system_prompt))
|
|
if isinstance(tgt_path, list):
|
|
msgs.extend([dict(type='image', value=p) for p in tgt_path])
|
|
else:
|
|
msgs = [dict(type='image', value=tgt_path)]
|
|
msgs.append(dict(type='text', value=prompt))
|
|
return msgs
|
|
|
|
def generate_inner(self, message, dataset=None):
|
|
if DATASET_TYPE(dataset) == 'MCQ':
|
|
max_new_tokens = 200
|
|
elif DATASET_TYPE(dataset) == 'Y/N':
|
|
max_new_tokens = 3
|
|
else:
|
|
max_new_tokens = 1024
|
|
|
|
default_kwargs = dict(
|
|
max_new_tokens=max_new_tokens,
|
|
sampling=False,
|
|
num_beams=self.num_beams,
|
|
)
|
|
default_kwargs.update(self.kwargs)
|
|
|
|
content = []
|
|
for x in message:
|
|
if x['type'] == 'text':
|
|
content.append(x['value'])
|
|
elif x['type'] == 'image':
|
|
image = Image.open(x['value']).convert('RGB')
|
|
content.append(image)
|
|
msgs = [{'role': 'user', 'content': content}]
|
|
|
|
res = self.model.chat(
|
|
msgs=msgs,
|
|
context=None,
|
|
image=None,
|
|
tokenizer=self.tokenizer,
|
|
**default_kwargs
|
|
)
|
|
|
|
if isinstance(res, tuple) and len(res) > 0:
|
|
res = res[0]
|
|
return res
|
|
|
|
def chat_inner(self, message, dataset=None):
|
|
max_new_tokens = 1024
|
|
|
|
default_kwargs = dict(
|
|
max_new_tokens=max_new_tokens,
|
|
sampling=False,
|
|
num_beams=self.num_beams,
|
|
)
|
|
default_kwargs.update(self.kwargs)
|
|
|
|
msgs = []
|
|
for msg in message:
|
|
content = []
|
|
if len(msg['content']) == 1 and msg['content'][0]['type'] == 'text':
|
|
msg_new = {'role': msg['role'], 'content': msg['content'][0]['value']}
|
|
msgs.append(msg_new)
|
|
continue
|
|
|
|
for x in msg['content']:
|
|
if x['type'] == 'text':
|
|
content.append(x['value'])
|
|
elif x['type'] == 'image':
|
|
image = Image.open(x['value']).convert('RGB')
|
|
content.append(image)
|
|
msg_new = {'role': msg['role'], 'content': content}
|
|
msgs.append(msg_new)
|
|
|
|
res = self.model.chat(
|
|
msgs=msgs,
|
|
context=None,
|
|
image=None,
|
|
tokenizer=self.tokenizer,
|
|
**default_kwargs)
|
|
|
|
if isinstance(res, tuple) and len(res) > 0:
|
|
res = res[0]
|
|
return res
|
|
|
|
|
|
class MiniCPM_V_2_6(BaseModel):
|
|
INSTALL_REQ = False
|
|
INTERLEAVE = True
|
|
|
|
def __init__(self, model_path='openbmb/MiniCPM-V', **kwargs):
|
|
random.seed(0)
|
|
np.random.seed(0)
|
|
torch.manual_seed(0)
|
|
torch.cuda.manual_seed_all(0)
|
|
|
|
assert model_path is not None
|
|
self.model_path = model_path
|
|
print(f'load from path {self.model_path}')
|
|
self.model = AutoModel.from_pretrained(self.model_path, trust_remote_code=True)
|
|
self.model = self.model.to(dtype=torch.bfloat16)
|
|
self.model.eval().cuda()
|
|
|
|
self.kwargs = kwargs
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True)
|
|
torch.cuda.empty_cache()
|
|
self.num_beams = 1 if self.model_path == 'openbmb/MiniCPM-V' else 3
|
|
|
|
self.options_suffix_prompt = '''\nAnswer with the option's letter from the given choices directly.'''
|
|
self.wo_options_system_prompt = 'Carefully read the following question Answer the question directly.'
|
|
self.detail_system_prompt = 'Answer this question in detail.'
|
|
self.vqa_prompt = 'Answer the question using a single word or phrase.'
|
|
|
|
self.multi_choice_cot_prompt = ('''Carefully read the following multichoice question, solve it step '''
|
|
'''by step and finally pick the option associated with the correct '''
|
|
'''answer in the format of "Answer: selected option\n\n''')
|
|
self.short_ans_cot_prompt = ('''Read the following question carefully, solve it step by step, and '''
|
|
'''then output the final answer in the format of "Answer: single number '''
|
|
'''or single word or phrase".\n\n''')
|
|
|
|
def use_custom_prompt(self, dataset=None):
|
|
if dataset is None:
|
|
return False
|
|
if listinstr(['MCQ', 'VQA', 'Y/N'], DATASET_TYPE(dataset)):
|
|
return True
|
|
return False
|
|
|
|
def use_cot(self, dataset=None):
|
|
if dataset is None:
|
|
return False
|
|
if listinstr(['MMMU', 'HallusionBench', 'OCRBench', 'ChartQA'], dataset):
|
|
return True
|
|
elif listinstr(['MathVista', 'MMVet', 'MMBench', 'MMStar', 'AI2D', 'RealWorldQA',
|
|
'POPE', 'ScienceQA', 'TextVQA', 'DocVQA'], dataset):
|
|
return False
|
|
else:
|
|
return False
|
|
|
|
def use_upsize(self, dataset=None):
|
|
if dataset is None:
|
|
return False
|
|
if listinstr(['MMVet', 'MMBench', 'MMStar', 'AI2D', 'OCRBench'], dataset):
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
def build_prompt(self, line, dataset=None):
|
|
if isinstance(line, int):
|
|
line = self.data.iloc[line]
|
|
|
|
tgt_path = self.dump_image(line, dataset)
|
|
system_prompt, prompt = '', ''
|
|
|
|
question = line['question']
|
|
|
|
if not self.use_cot(dataset):
|
|
if DATASET_TYPE(dataset) == 'MCQ':
|
|
options = {
|
|
cand: line[cand]
|
|
for cand in string.ascii_uppercase
|
|
if cand in line and not pd.isna(line[cand])
|
|
}
|
|
options_prompt = 'Options:\n'
|
|
for key, item in options.items():
|
|
options_prompt += f'{key}. {item}\n'
|
|
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
|
|
if hint is not None:
|
|
prompt += f'Hint: {hint}\n'
|
|
prompt += f'Question: {question}\n'
|
|
if len(options):
|
|
prompt += options_prompt
|
|
prompt += self.options_suffix_prompt
|
|
else:
|
|
system_prompt = self.wo_options_system_prompt
|
|
|
|
if 'MMMU' in dataset:
|
|
if len(system_prompt) > 0:
|
|
prompt = system_prompt + '\n' + prompt
|
|
system_prompt = ''
|
|
elif dataset is not None and listinstr(['HallusionBench'], dataset):
|
|
question += ' Yes or No?'
|
|
prompt = question
|
|
elif dataset is not None and listinstr(['OCRBench'], dataset):
|
|
system_prompt = self.vqa_prompt
|
|
prompt = question
|
|
elif DATASET_TYPE(dataset) == 'VQA':
|
|
if listinstr(['LLaVABench'], dataset):
|
|
system_prompt = ''
|
|
elif listinstr(['MMVet'], dataset):
|
|
system_prompt = self.detail_system_prompt
|
|
else:
|
|
system_prompt = self.vqa_prompt
|
|
prompt = question
|
|
else:
|
|
prompt = question
|
|
else:
|
|
has_options = True
|
|
if DATASET_TYPE(dataset) == 'MCQ':
|
|
options = {
|
|
cand: line[cand]
|
|
for cand in string.ascii_uppercase
|
|
if cand in line and not pd.isna(line[cand])
|
|
}
|
|
options_prompt = ''
|
|
for key, item in options.items():
|
|
options_prompt += f'{key}. {item}\n'
|
|
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
|
|
if hint is not None:
|
|
prompt += f'Hint: {hint}\n'
|
|
prompt += f'{question}\n'
|
|
|
|
if len(options):
|
|
prompt += options_prompt
|
|
else:
|
|
has_options = False
|
|
|
|
if 'MMMU' in dataset:
|
|
if len(system_prompt) > 0:
|
|
prompt = system_prompt + '\n' + prompt
|
|
system_prompt = ''
|
|
else:
|
|
prompt = question
|
|
|
|
if DATASET_TYPE(dataset) in ['MCQ', 'Y/N', 'VQA']:
|
|
if DATASET_TYPE(dataset) == 'MCQ':
|
|
if has_options:
|
|
prompt = self.multi_choice_cot_prompt + prompt
|
|
else:
|
|
prompt = self.short_ans_cot_prompt + prompt
|
|
elif DATASET_TYPE(dataset) == 'Y/N':
|
|
prompt = self.short_ans_cot_prompt + prompt
|
|
else:
|
|
prompt = self.short_ans_cot_prompt + prompt
|
|
|
|
msgs = []
|
|
if system_prompt:
|
|
msgs.append(dict(type='text', value=system_prompt))
|
|
if isinstance(tgt_path, list):
|
|
msgs.extend([dict(type='image', value=p) for p in tgt_path])
|
|
else:
|
|
msgs = [dict(type='image', value=tgt_path)]
|
|
msgs.append(dict(type='text', value=prompt))
|
|
|
|
return msgs
|
|
|
|
def generate_inner(self, message, dataset=None):
|
|
max_new_tokens = 2048
|
|
default_kwargs = dict(
|
|
max_new_tokens=max_new_tokens,
|
|
sampling=False,
|
|
num_beams=self.num_beams,
|
|
)
|
|
default_kwargs.update(self.kwargs)
|
|
|
|
content = []
|
|
|
|
for x in message:
|
|
if x['type'] == 'text':
|
|
content.append(x['value'])
|
|
elif x['type'] == 'image':
|
|
image = Image.open(x['value']).convert('RGB')
|
|
if not self.use_upsize(dataset):
|
|
content.append(image)
|
|
else:
|
|
img_width, img_height = image.width, image.height
|
|
if (img_width * img_height) >= (1344 * 1344):
|
|
content.append(image)
|
|
else:
|
|
ratio = math.sqrt((1344 * 1344) / (img_width * img_height))
|
|
max_img_width = int(img_width * ratio)
|
|
new_img_width = random.randint(img_width, max_img_width)
|
|
new_img_height = int(new_img_width / img_width * img_height)
|
|
resized_image = image.resize((new_img_width, new_img_height))
|
|
content.append(resized_image)
|
|
msgs = [{'role': 'user', 'content': content}]
|
|
|
|
res = self.model.chat(
|
|
image=None,
|
|
msgs=msgs,
|
|
context=None,
|
|
tokenizer=self.tokenizer,
|
|
max_inp_length=8192,
|
|
**default_kwargs
|
|
)
|
|
|
|
if isinstance(res, tuple) and len(res) > 0:
|
|
res = res[0]
|
|
|
|
return res
|