Files
MiniCPM-o/eval_mm/vlmevalkit/vlmeval/dataset/utils/naturalbench.py
2025-01-21 15:34:54 +08:00

146 lines
5.2 KiB
Python

import re
def extract_answer(output_string, task_type="yes_no"):
"""
Extracts the answer from the output string based on the task type.
Parameters:
output_string (str): The output string.
task_type (str): The type of task. Must be either "yes_no" or "multiple_choice".
Returns:
int:
1 if "yes" or "A"
0 if "no" or "B"
-1 if no relevant answer is found.
Raises a ValueError if an unsupported task_type is provided.
"""
def find_word_position(string, word):
pattern = r'\b' + re.escape(word) + r'\b'
match = re.search(pattern, string, re.IGNORECASE)
if match:
return match.start()
return -1
if task_type not in ["yes_no", "multiple_choice"]:
raise ValueError(f"Task type {task_type} not supported. Must be 'yes_no' or 'multiple_choice'.")
if task_type == "yes_no":
position_yes_and_a = find_word_position(output_string, "yes")
position_no_and_b = find_word_position(output_string, "no")
elif task_type == "multiple_choice":
position_yes_and_a = find_word_position(output_string, "A")
position_no_and_b = find_word_position(output_string, "B")
if position_yes_and_a == -1 and position_no_and_b == -1:
print(f"No answer found in the output string: {output_string}.")
return -1
elif position_yes_and_a != -1 and position_no_and_b != -1:
return 1 if position_yes_and_a < position_no_and_b else 0
else:
return 0 if position_yes_and_a == -1 else 1
def get_scores(scores):
"""
Calculate various scores based on the given results.
Args:
scores (dict or list): A dictionary or list containing results where each result can be:
- dict: {id: {"q0_i0": 1 or 0, "q0_i1": 1 or 0, "q1_i0": 1 or 0, "q1_i1": 1 or 0}, ...}
- list: [[q0_i0 (1 or 0), q0_i1 (1 or 0), q1_i0 (1 or 0), q1_i1 (1 or 0)], ...]
The keys "q0_i0", "q0_i1", "q1_i0", "q1_i1" represent combinations of questions and images:
- "q0_i0" means question_0 on image_0
- "q0_i1" means question_0 on image_1
- "q1_i0" means question_1 on image_0
- "q1_i1" means question_1 on image_1
Returns:
dict: A dictionary containing the calculated scores:
- 'Q_Acc': Average question score
- 'I_Acc': Average image score
- 'Acc': Average binary VQA score
- 'G_Acc': Average group score
"""
Q_Acc = 0.0
I_Acc = 0.0
Acc = 0.0
G_Acc = 0.0
num_samples = len(scores)
def calculate_image_score(result):
image_correct = 0
if isinstance(result, dict):
if result["q0_i0"] == 1.0 and result["q1_i0"] == 0.0:
image_correct += 1
if result["q1_i1"] == 1.0 and result["q0_i1"] == 0.0:
image_correct += 1
elif isinstance(result, list):
if result[0] == 1.0 and result[2] == 0.0:
image_correct += 1
if result[3] == 1.0 and result[1] == 0.0:
image_correct += 1
return image_correct
def calculate_question_score(result):
text_correct = 0
if isinstance(result, dict):
if result["q0_i0"] == 1.0 and result["q0_i1"] == 0.0:
text_correct += 1
if result["q1_i1"] == 1.0 and result["q1_i0"] == 0.0:
text_correct += 1
else:
if result[0] == 1.0 and result[1] == 0.0:
text_correct += 1
if result[3] == 1.0 and result[2] == 0.0:
text_correct += 1
return text_correct
def calculate_binary_score(result):
binary_score_correct = 0
if isinstance(result, dict):
binary_score_correct += 1 if result["q0_i0"] == 1.0 else 0
binary_score_correct += 1 if result["q0_i1"] == 0.0 else 0
binary_score_correct += 1 if result["q1_i0"] == 0.0 else 0
binary_score_correct += 1 if result["q1_i1"] == 1.0 else 0
else:
binary_score_correct += 1 if result[0] == 1.0 else 0
binary_score_correct += 1 if result[1] == 0.0 else 0
binary_score_correct += 1 if result[2] == 0.0 else 0
binary_score_correct += 1 if result[3] == 1.0 else 0
return binary_score_correct
def calculate_group(result):
group_correct = 0
if calculate_question_score(result) == 2 and calculate_image_score(result) == 2:
group_correct += 1
return group_correct
if isinstance(scores, dict):
for _, result in scores.items():
Q_Acc += calculate_question_score(result)
I_Acc += calculate_image_score(result)
Acc += calculate_binary_score(result)
G_Acc += calculate_group(result)
else:
for result in scores:
Q_Acc += calculate_question_score(result)
I_Acc += calculate_image_score(result)
Acc += calculate_binary_score(result)
G_Acc += calculate_group(result)
results = {
'Q_Acc': Q_Acc / float(num_samples * 2),
'I_Acc': I_Acc / float(num_samples * 2),
'Acc': Acc / float(num_samples * 4),
'G_Acc': G_Acc / num_samples
}
return results