## swift install ``` bash git clone https://github.com/modelscope/swift.git cd swift pip install -r requirements.txt pip install -e '.[llm]' ``` ## Swift infer ### quick start 1. run the bash code will download the model of MiniCPM-Llama3-V-2_5 and run the inference ``` shell CUDA_VISIBLE_DEVICES=0 swift infer --model_type minicpm-v-v2_5-chat ``` 2. you can also run the code with more arguments below to run the inference: ``` model_id_or_path # 可以写huggingface的模型id或者本地模型地址 infer_backend ['AUTO', 'vllm', 'pt'] # 后段推理,默认auto dtype ['bf16', 'fp16', 'fp32', 'AUTO'] # 计算精度 max_length # 最大长度 max_new_tokens: int = 2048 #最多生成多少token do_sample: bool = True # 是否采样 temperature: float = 0.3 # 生成时的温度系数 top_k: int = 20 top_p: float = 0.7 repetition_penalty: float = 1. num_beams: int = 1 stop_words: List[str] = None quant_method ['bnb', 'hqq', 'eetq', 'awq', 'gptq', 'aqlm'] # 模型的量化方式 quantization_bit [0, 1, 2, 3, 4, 8] 默认是0,代表不使用量化 ``` 3. example: ``` shell CUDA_VISIBLE_DEVICES=0,1 swift infer \ --model_type minicpm-v-v2_5-chat \ --model_id_or_path /root/ld/ld_model_pretrain/MiniCPM-Llama3-V-2_5 \ --dtype bf16 ``` ### python code with swift infer ```python import os os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' # 设置显卡数 from swift.llm import ( get_model_tokenizer, get_template, inference, ModelType, get_default_template_type, inference_stream ) # 导入必要模块 from swift.utils import seed_everything # 设置随机种子 import torch model_type = ModelType.minicpm_v_v2_5_chat template_type = get_default_template_type(model_type) # 获取模板类型,主要是用于特殊token的构造和图像的处理流程 print(f'template_type: {template_type}') model, tokenizer = get_model_tokenizer(model_type, torch.bfloat16, model_id_or_path='/root/ld/ld_model_pretrain/MiniCPM-Llama3-V-2_5', model_kwargs={'device_map': 'auto'}) # 加载模型,并设置模型类型,模型路径,模型参数,设备分配等,计算精度等等 model.generation_config.max_new_tokens = 256 template = get_template(template_type, tokenizer) # 根据模版类型构造模板 seed_everything(42) images = ['http://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/road.png'] # 图片地址 query = '距离各城市多远?' response, history = inference(model, template, query, images=images) # 推理获得结果 print(f'query: {query}') print(f'response: {response}') # 流式 query = '距离最远的城市是哪?' gen = inference_stream(model, template, query, history, images=images) # 调用流式输出接口 print_idx = 0 print(f'query: {query}\nresponse: ', end='') for response, history in gen: delta = response[print_idx:] print(delta, end='', flush=True) print_idx = len(response) print() print(f'history: {history}') ``` ## Swift train 1. make the train data like this: ```jsonl {"query": "这张图片描述了什么", "response": "这张图片有一个大熊猫", "images": ["local_image_path"]} {"query": "这张图片描述了什么", "response": "这张图片有一个大熊猫", "history": [], "images": ["image_path"]} {"query": "竹子好吃么", "response": "看大熊猫的样子挺好吃呢", "history": [["这张图有什么", "这张图片有大熊猫"], ["大熊猫在干嘛", "吃竹子"]], "images": ["image_url"]} ``` 2. lora turning: the lora target model are k and v weight in llm you should pay attention to the eval_steps, maybe you should set the eval_steps to a large value, like 200000,beacuase in the eval time , swift will return a memory bug so you should set the eval_steps to a very large value. ```shell # Experimental environment: A100 # 32GB GPU memory CUDA_VISIBLE_DEVICES=0 swift sft \ --model_type minicpm-v-v2_5-chat \ --dataset coco-en-2-mini \ ``` 3. all parameters finetune: when the argument of lora_target_modules is ALL, the model will finetune all the parameters. ```shell CUDA_VISIBLE_DEVICES=0,1 swift sft \ --model_type minicpm-v-v2_5-chat \ --dataset coco-en-2-mini \ --lora_target_modules ALL \ --eval_steps 200000 ``` ## lora merge and infer 1. load the lora weight to infer run the follow code: ```shell CUDA_VISIBLE_DEVICES=0 swift infer \ --ckpt_dir /your/lora/save/checkpoint ``` 2. merge the lora weight to the base model: the code will load and merge the lora weight to the base model, save the merge model to the lora save path and load the merge model to infer ```shell CUDA_VISIBLE_DEVICES=0 swift infer \ --ckpt_dir your/lora/save/checkpoint \ --merge_lora true ```