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Figure 1: Moore’s Law for MLLM? Trends of MLLM development in terms of time (x-axis), model
size (y-axis), and performance (color). The red line shows the decreasing model sizes for achieving
GPT-4V level performance, while the blue line represents the growing end-side computation capacity.
This jointly shows that GPT-4V level MLLMs deployed on end devices are becoming increasingly
possible, unlocking a wider spectrum of real-world AI applications in the near future.

Abstract

The recent surge of Multimodal Large Language Models (MLLMs) has funda-
mentally reshaped the landscape of AI research and industry, shedding light on
a promising path toward the next AI milestone. However, significant challenges
remain preventing MLLMs from being practical in real-world applications. The
most notable challenge comes from the huge cost of running an MLLM with a mas-
sive number of parameters and extensive computation. As a result, most MLLMs
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need to be deployed on high-performing cloud servers, which greatly limits their
application scopes such as mobile, offline, energy-sensitive, and privacy-protective
scenarios. In this work, we present MiniCPM-V, a series of efficient MLLMs
deployable on end-side devices. By integrating the latest MLLM techniques in
architecture, pretraining and alignment, the latest MiniCPM-Llama3-V 2.5 has
several notable features: (1) Strong performance, outperforming GPT-4V-1106,
Gemini Pro and Claude 3 on OpenCompass, a comprehensive evaluation over 11
popular benchmarks, (2) strong OCR capability and 1.8M pixel high-resolution im-
age perception at any aspect ratio, (3) trustworthy behavior with low hallucination
rates, (4) multilingual support for 30+ languages, and (5) efficient deployment on
mobile phones. More importantly, MiniCPM-V can be viewed as a representative
example of a promising trend (Fig. 1): The model sizes for achieving usable (e.g.,
GPT-4V) level performance are rapidly decreasing, along with the fast growth of
end-side computation capacity. This jointly shows that GPT-4V level MLLMs
deployed on end devices are becoming increasingly possible, unlocking a wider
spectrum of real-world AI applications in the near future.

1 Introduction

The rapid development of Multimodal Large Language Models (MLLMs) [84, 2, 69, 63, 103, 23,
7, 41, 53, 77, 11] have brought an impressive surge in multimodal capabilities in understanding,
reasoning and interaction. This has not only fundamentally reshaped the landscape of AI research
and industry, but also shed light on a promising path towards the next AI milestone. However, current
MLLMs are still far from being practical in real-world applications. One of the most predominant
challenges is that current MLLMs typically entail a massive number of parameters and impose heavy
computational burdens. As a result, most MLLMs can only be deployed on high-performing cloud
servers, leading to significant energy consumption and carbon emissions. This limitation significantly
constrains the potential application scopes such as on mobile devices, energy-sensitive scenarios,
offline scenarios without stable network connections, and privacy/security protective scenarios for
both personal and industrial users.

In light of these limitations, there is a growing interest in exploring more efficient lightweight
MLLMs [1, 69, 84, 11] that can run on end-side devices. End-side scenarios encompass a broader
scope of equipment, including mobile phones, personal computers, vehicles and robotics, etc.,
which are ubiquitous in users’ daily lives and experiencing rapid advancements in computation
capacities. End-side MLLMs provide a promising solution towards more practical applications due
to their broader usage scope, better computation efficiency, more robust offline behaviors, and better
privacy/security protection.

However, developing capable end-side MLLMs is challenging due to significantly constrained
parameter and inference computation budgets. As a result, more careful architecture designs and
training recipes are required to fully unleash the potential of end-side MLLMs. In this work, we
present MiniCPM-V, a series of efficient MLLMs deployable on end-side devices. The philosophy
of MiniCPM-V is to achieve a good balance between performance and efficiency, a more important
objective in real-world applications. To date in 2024, we have unveiled three models: (1) In February,
we launched MiniCPM-V 1.0 2B, one of the first MLLMs designed for mobile phones. (2) In
April, MiniCPM-V 2.0 2B was introduced, outperforming strong larger MLLMs such as Qwen-VL
9B [7], CogVLM 17B [103], and Yi-VL 34B [109]. This iteration also introduces support for
high-resolution image input and exhibits promising OCR capabilities. (3) Most recently in May,
we released MiniCPM-Llama3-V 2.5 8B, which outperforms strong GPT-4V-1106, Gemini Pro
and Claude 3 on OpenCompass evaluation. Noteworthy features of this model include strong OCR
capability, high-resolution image perception, trustworthy behavior, multilingual support, and efficient
end-side deployment optimization.

More importantly, MiniCPM-V can be viewed as a representative example of a promising trend.
Fig. 1 summarizes the recent development of MLLMs [1, 69, 58] in terms of performance, parameters
and release time. We observe an interesting trend akin to Moore’s Law [104] indicated by the
red line: the sizes of models reaching the GPT-4V level performance are rapidly decreasing over
time. This phenomenon could perhaps be called the Moore’s Law of MLLMs. Simultaneously,
the computational capacity of end-side devices such as phones and personal computers is steadily
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increasing (qualitatively depicted by the blue line). The convergence of these two trends indicates
usable (e.g., GPT-4V level) MLLMs deployable on end-side devices are soon within reach, opening
up broader possibilities and benefiting more application scenarios in the near future. From a historical
perspective of human technology development, this trend can also be viewed as human pursuit
of miniaturization of state-of-the-art technologies, which have been repeatedly witnessed in other
science and technology fields. For example, in aerospace, the latest SpaceX Raptor 2 rocket engine
can achieve a strong thrust of 2,256 kN with a mass of 1.6 tons, whereas 20 years ago, the RD-0750
rocket engine could only achieve a thrust of 1,413 kN with a mass exceeding 4 tons [105].

MiniCPM-V Series Techniques. In this paper, we will take the latest MiniCPM-Llama3-V 2.5
as an example, and systematically introduce the notable features of MiniCPM-V series and the key
techniques behind them:

• Leading Performance. MiniCPM-Llama3-V 2.5 achieves better performance than GPT-4V-
1106, Gemini Pro and Claude 3 on OpenCompass collection, a comprehensive evaluation over
11 popular benchmarks. This is jointly contributed by its careful design in architecture, data and
training recipes, which we will detail in the following.

• Strong OCR Capability. MiniCPM-Llama3-V 2.5 outperforms GPT-4V, Gemini Pro and
Qwen-VL-Max on OCRBench. It also supports high-utility functions such as table-to-markdown
conversion and full OCR content transcribtion. These are largely attributed to the 1.8M pixel
high-resolution (e.g., 1344 × 1344) image perception technique across any aspect ratios [108].

• Trustworthy Behavior. Based on the RLAIF-V [113] and RLHF-V [112] techniques that align
MLLM behaviors from AI/human feedback, MiniCPM-Llama3-V 2.5 exhibits more trustworthy
behaviors, achieving lower hallucination rates than GPT-4V-1106 on Object HalBench.

• Multilingual Support. Inspired by the findings from VisCPM [41], the integration of multilin-
gual LLM significantly alleviates the heavy reliance on multimodal training data in low-resource
languages. Based on the foundation, a high-quality multilingual multimodal instruction tuning
helps MiniCPM-Llama3-V 2.5 generalize its multimodal capabilities to more than 30 languages.

• Efficient End-side Deployment. We systematically integrate a suite of end-side optimization
techniques, encompassing quantization, memory optimization, compilation optimization and
NPU acceleration, enabling efficient deployment on end-side devices.

We hope MiniCPM-V series can serve as an example for unveiling the potential of end-side MLLMs,
and help draw more attention to promote the research in this direction. Following Moore’s Law for
MLLM, we believe there will be increasingly powerful end-side MLLMs with reduced sizes, bringing
efficient, safe, and trustworthy AI services on devices soon.

The contribution of this work is summarized as follows: (1) We introduce and open-source MiniCPM-
V, a series of efficient end-side MLLMs achieving a good balance between performance and efficiency.
(2) We investigate key techniques driving MLLMs towards the performance-efficiency balance at
scale, unveiling the potential of these techniques. (3) We summarize the trend of MLLM development
in its Moore’s Law, and empirically instantiate the trend with representative examples of MiniCPM-V.

2 Related Works

Multimodal Large Language Models. The development of LLMs has significantly advanced
the progress in MLLMs. Flamingo [4] first proposes to connect a pre-trained visual encoder with
the Chinchilla 70B [40] LLM and demonstrate the MLLM’s zero-shot and few-shot ability across a
series visual language tasks. After the appearance of ChatGPT, many open-source models including
BLIP-2 [55], Kosmos-1 [43], MiniGPT-4 [122], LLaVA [63], and VPGTrans [118] are proposed.
Among them, most are built upon existing pre-trained LLMs like Llama [101] and Vicuna [121],
while Kosmos-1 tries to train the LLM from scratch. Later, researchers continue to extend the function
scope of MLLMs and improve the visual perception capabilities. Kosmos-2 [81], CogVLM [103],
Shikra [20], and NExT-Chat [117] further incorporate the localization capabilities to the MLLMs
with either pix2seq paradigm or connecting with detection/segmentation models. Qwen-VL-Chat [7],
Yi-VL [109], DeepSeek-VL [69], InternVL [23] and Intern-XComposer [31] pay more attention to
improving the models’ capability with different techniques like high-resolution input, more training
data, and better data ratio.
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How does it work?

Prompt

Whose work is this, what is its title, and what 
art style does it belong to?

Prompt

Can you list all of the items under pancakes?

Prompt

Title: Unesco announces its newest geoparks 
around the world

Date and Author: 9 April 2024

By Lynn Brown, Features correspondent

Image Caption: Unesco Geoparks represent a 
balance of unique geological features, cultural 
touchpoints and a focus on sustainability (Credit: 
Chris Karagelis)

Body Text: From dinosaur fossils in Brazil to the 
soaring meteors of Meteora, these 18 new geological 
sites highlight a particular region's natural, cultural 
and intangible heritage.

Travellers interested in deep dives into geology, 
culture and sustainability have several new 
destinations to place on their bucket list. Unesco just 
announced the designation of 18 new Global 
Geoparks, bringing the total to 213 sites representing 
48 countries around the world.

From crystal-clear karst lakes to an archipelago 
formed during the last ice age, these parks are more 
than just unique geological features; they also serve 
to highlight a particular region's natural, cultural and 
intangible heritage. Unesco Global Geoparks 
represent landscapes where internationally 
significant geological heritage intertwines with human 
history and supports rich biodiversity, explains 
António Abreu, director of the Division of Ecological 
Sciences at Unesco. "Each new geopark tells a 
unique story, using geology as its lens."

Here are five of the newest geoparks on Unesco's list:

MiniCPM-Llama3-V 2.5

| 模型名称 | 发布时间 | 发布机构 | 语言 | 参数规模 | Tokens规模 | 模型结构 | 是否
开源 |
| -------- | -------- | -------- | ---- | -------- | --------- | -------- | -------- |
| T5       | 2019-10  | Google   | 英 | 13B      |           | T5-style | √        |
| GPT-3    | 2020-05  | OpenAI   | 英 | 175B     | 300B      | GPT-style | ×        |
| LaMDA    | 2021-05  | Google   | 英 | 137B     | 2.8T      | GPT-style | ×        |
| Jurassic | 2021-08  | AI21     | 英 | 178B     | 300B      | GPT-style | ×        |
| MT-NLG   | 2021-10  | Microsoft, NVIDIA | 英 | 530B | 270B | GPT-style | ×    |
| ERNIE 3.0 | 2021-12  | Baidu    | 中 | 260B     | 300B      | Multi-task | ×        |
| Gopher   | 2021-12  | DeepMind | 英 | 280B     | 300B      | GPT-style | ×      |
| Chinchilla | 2022-04  | DeepMind | 英 | 70B      | 1.4T      | GPT-style | ×       |
| PaLM     | 2022-04  | Google   | 多语言 | 540B | 7.8/80B  | GPT-style | ×        |
| OPT      | 2022-05  | Meta     | 英 | 125M-175B | 180B      | GPT-style | √        |
| BLOOM    | 2022-07  | BigScience | 多语言 | 176B | 366B | GPT-style | √        |
| GLM-130B | 2022-08  | Tsinghua  | 中、英 | 130B | 400B | GLM-style | √        |
| LLaMA    | 2023-02  | Meta     | 多语言 | 7B-65B  | 1.4T      | GPT-style | √        |

MiniCPM-Llama3-V 2.5

The code is a C++ program that calculates the 
Fibonacci sequence. The fib function takes an 
integer n as input and returns the n-th Fibonacci 
number. It uses recursion to calculate the Fibonacci 
numbers, starting from the base case of n == 1 or n 
== 2, where the result is simply 1. For other values 
of n, the function calls itself recursively with n - 1 
and n - 2 as arguments to calculate the sum of the 
previous two Fibonacci numbers.
For example, if n is 5, the function would calculate 
the 5th Fibonacci number by calling itself with n - 1 
= 4 and n - 2 = 3. The function then returns the sum 
of the results of these recursive calls, which in this 
case would be the 4th Fibonacci number (3) plus 
the 3rd Fibonacci number (2), resulting in the 5th 
Fibonacci number (5).
The function uses a loop to iterate from i = 1 to n, 
printing each Fibonacci number as it is calculated. 
The loop continues until i reaches n + 1, at which 
point the loop ends and the function returns the 
final result.
This code demonstrates the use of recursion and 
loops in C++ programming to solve a mathematical 
problem.

MiniCPM-Llama3-V 2.5

The issues with this interior design include a lack of 
cohesion in color scheme, cluttered space, and 
mismatched furniture styles. To address these 
issues, one could start by selecting a unifying color 
palette to create a more harmonious environment. 
Additionally, decluttering and organizing the space 
can help create a more open and inviting 
atmosphere. Finally, replacing or reupholstering 
mismatched furniture with pieces that share a 
similar style can improve the overall aesthetic of 
the room.

MiniCPM-Llama3-V 2.5

The bar chart provides a visual representation of 
the popularity of GitHub accounts that have 4+ 
generation artificial intelligence repositories with at 
least 500 stars. The trends indicated by the chart 
suggest that there is a significant variation in the 
number of stars received by these accounts. The 
account with the longest bar, 'openai', has the 
highest number of stars, while 'run-llama' has the 
shortest bar, indicating it has the fewest stars 
among the listed accounts.
The data shows that 'openai' has significantly more 
stars than the other accounts, with its bar extending 
beyond the 25-star mark. This suggests that 
'openai' is the most popular among the listed 
accounts. Other accounts, such as'microsoft', 
'huggingface', and 'google-research', also have 
relatively long bars, indicating they are quite 
popular as well.
On the other hand, 'run-llama' has the shortest bar, 
indicating it has the fewest stars among the listed 
accounts. This could suggest that it is either a 
newer account or less well-known compared to the 
others.
Overall, the chart provides a snapshot of the 
popularity of these GitHub accounts based on the 
number of stars they have received, with 'openai' 
being the most popular and 'run-llama' being the 
least popular among the listed accounts.

MiniCPM-Llama3-V 2.5

Based on this picture, make a detailed meal 
plan for me.

Prompt

UltraEval appears to be a system or process 
designed to evaluate data, likely in the context of a 
scientific or research project. The flowchart outlines 
the steps involved in this process:
1.Data Preparation: This stage involves collecting 
and organizing raw data, which can come from 
official data sources such as GitHub or Hugging 
Face. These are represented by icons indicating 
their origin.
2.Evaluation Process: After the data is prepared, 
it undergoes an evaluation process that includes 
several steps:
· Prompt Input: This could involve providing 
prompts or instructions for the model.
· Model Deployment: Here, the model is likely 
trained or configured to perform evaluations based 
on the input.
· Local URL: This step may involve accessing or 
using a local URL, possibly for deploying the model 
or retrieving results.
· Post-process: This could refer to further 
processing of the model's output, such as cleaning, 
filtering, or formatting data.
3. Metric Calculation: Following the post-process, 
metrics are calculated to evaluate the performance 
of the model. This is indicated by a graph icon, 
suggesting quantitative analysis.
4. Score: The final stage is to determine the score, 
which is likely the outcome of the metric calculation. 
This score would reflect the model's performance 
or the quality of the data after evaluation.
5. Model Support: Throughout the process, there 
is support for various models, including vLLM/Torch, 
HF Model, and Custom Model. These models are 
likely used at different stages of the evaluation 
process.
In summary, UltraEval seems to be a structured 
approach to evaluating data using machine 
learning models, with a focus on performance 
metrics and customization options for different 
types of models.

MiniCPM-Llama3-V 2.5

To create a detailed meal plan based on the Asian 
Diet Pyramid, one would start with the base of the 
pyramid, which emphasizes daily physical activity 
as the foundation of a healthy lifestyle. Then, for 
each food group listed in descending order from the 
top to the bottom, an individual could plan meals 
that include the recommended items. For example, 
for the 'MEAT' group, one might have fish or 
chicken dishes for protein. The 'SWEETS' and 
'EGGS & POULTRY' groups suggest including 
eggs or poultry like chicken or turkey. The 'FISH & 
SHELLFISH' group could feature seafood such as 
salmon or shrimp. The 'SWEETS' group could 
include fruits like apples or bananas. The 
'VEGETABLE OILS' section suggests incorporating 
vegetable oils like olive or canola oil into cooking. 
The 'LEGUMES, SEEDS & NUTS' group might 
include beans, lentils, or nuts. The 'VEGETABLES' 
group is broad and could include a variety of 
vegetables such as broccoli, carrots, or bell 
peppers. Lastly, the 'RICE, NOODLES, BREADS, 
MILLET, CORN & OTHER WHOLE GRAINS' group 
would be the staple carbohydrates in meals. This 
meal plan should be tailored to an individual's 
dietary needs and preferences while following the 
principles outlined in the Asian Diet Pyramid.

MiniCPM-Llama3-V 2.5

The work is by Claude Monet, titled "Impression, 
Sunrise," and it belongs to the Impressionist art style. 
This style is characterized by small, thin, yet visible 
brush strokes, open composition, emphasis on 
accurate depiction of light in its changing qualities, 
ordinary subject matter, the inclusion of movement 
as a crucial element of human perception and 
experience, and unusual visual angles.

MiniCPM-Llama3-V 2.5

Certainly. The items listed under the "PANCAKES" 
section on the menu are:

Original Pancake; Oat Pancake with a Twist;
Cherry-Topped Pancakes; Yogurt Pancakes;
Banana-Spice Cakes; Red Velvet Pancake;
Pancakes with Apricots; Tropical Pancakes;
Crepes Suzette; Shortcut Apple Pancakes

Each item is priced at $10.

MiniCPM-Llama3-V 2.5

{“flight”: “ABC1285”, “boarding_time”: “10:20”,
“gate”: “15”, "seat": "11A"}

"flight" refers to the unique identifier for the flight.
"boarding_time" indicates when passengers are 
scheduled to board the flight.
"gate" is the specific location at an airport where 
passengers can board the aircraft.
"seat" is the assigned seating position for a 
passenger on the aircraft.

MiniCPM-Llama3-V 2.5

사진속음식은한식의대표적인음식인비빔밥이다. 
비빔밥은다양한야채, 고기, 달걀과같은재료를
섞어만든음식이다. 사진에서볼수있듯이
비빔밥은검은색의돌그릇에담겨있는데, 이
돌그릇은일반적으로비빔밥을담는데사용되는
전통적인그릇이다.

MiniCPM-Llama3-V 2.5

Please extract the "flight", "boarding time", 
"gate" and "seat" into json format. Then 
explain the meaning of each key.

Prompt

사진속음식을소개해주세요.

Prompt

Please identify the text in the picture.

Prompt

请将表格转成 markdown 格式

Prompt

What do you think are the issues with this 
interior design? Can you provide a detailed 
analysis of the flaws in this interior design 
and what suggestions would you propose to 
address these issues?

Prompt

Analyze this form, I want to know the trends 
and data

Prompt

Please explain the code detailly.

Prompt

Figure 2: Qualitative results of MiniCPM-Llama3-V 2.5 in reading text in images, converting tables
to markdown, performing complex reasoning, and multilingual interaction, etc. See here for the
screen recordings of MiniCPM-Llama3-V 2.5 running on mobile phones.
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Figure 3: Model architecture. (a) Overall structure presents the architecture of the model including
the visual encoder, shared compression layer, and LLM. (b) Adaptive visual encoding deals with
high-resolution inputs in various aspect ratios.

End-side Multimodal Large Language Models. The huge number of parameters of MLLMs
incurs prohibitively high computation costs in both training and deployment, greatly limiting the
widespread applications. Recently, there has been a trend of building smaller LLMs with fewer
parameters. The representative models are Phi [45], Gemma [8], MobileLLM [67], MiniCPM [42],
etc. The moderate size of these models makes them applicable on end-side devices such as personal
computers and even mobile phones. With optimized training strategies, end-side LLMs like MiniCPM
2B can achieve comparable performance with strong 7B models like Llama2-7B [102]. Similar trends
have also been witnessed in MLLMs. For example, Mini-Gemini [58] and PaliGemma [11] are built
based on Gemma 2B [8] and MobileVLM V2 is built based on MobileLlama [25]. However, the
fewer-parameter nature of end-side MLLMs presents significant challenges to building a capable
model. MiniCPM-V series aims to push forward the potential of end-side MLLMs by addressing the
key bottleneck problems through careful designs in architecture, training, inference and deployment.

3 Model Architecture

In this section, we present the model architecture of MiniCPM-V, outlining the overall structure
and the adaptive high-resolution visual encoding approach. The design philosophy of MiniCPM-V
series is to achieve a good balance between performance and efficiency, a more practical objective for
a broader scope of real-world applications, which is implemented in architecture design, training,
inference, and deployment.

3.1 Overall Structure

The model comprises three key modules: the visual encoder, compression layer, and LLM. The
input image is first encoded by a visual encoder, utilizing the adaptive visual encoding approach.
Specifically, we employ SigLIP SoViT-400m/14 [116] as the visual encoder. The visual tokens are
then compressed by the compression layer, which adopts a perceiver resampler structure with one
layer cross-attention. Finally, the compressed visual tokens, along with the text input, are fed into the
LLM for conditional text generation.
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3.2 Adaptive Visual Encoding

Recently, there has been growing consensus on the fundamental role of visual encoding in MLLM
performance [77, 69], especially for fine-grained capabilities such as OCR. For effectiveness, a good
visual encoding strategy should both respect the raw aspect ratio of the input and preserve sufficient
visual details (high resolution). For efficiency, the number of visual tokens from image encoding
should be moderate to be affordable on end-side devices. To this end, we take advantage of the
adaptive visual encoding method proposed by LLaVA-UHD [108].

Image Partition. To handle the high-resolution images with different aspect ratios, we divide
images into slices, where each slice better matches ViT’s pre-training setting in terms of resolution
and aspect ratio. Specifically, we first calculate the ideal number of slices based on the input image
size. Given an image with resolution (WI , HI) and a ViT pre-trained on images with resolution
(Wv, Hv), we calculate the ideal slice number N = ⌈WI×HI

Wv×Hv
⌉. Then, we choose the combination of

rows n and columns m from the set CN = {(m,n)|m× n = N,m ∈ N, n ∈ N}. A good partition
(m,n) should result in slices that match well with ViT’s pre-training setting. To achieve this, we use
a score function to evaluate each potential partition:

S(m,n) = −
∣∣∣∣log WI/m

HI/n
− log

Wv

Hv

∣∣∣∣ . (1)

We select the partition with the highest score from all possible candidates:
m∗, n∗ = argmax

(m,n)∈C̄
S(m,n), (2)

where C̄ is the possible (m,n) combinations with the product N . However, when N is a prime
number, the feasible solutions can be limited to (N, 1) and (1, N). Therefore, we additionally
introduce CN−1 and CN+1, and set C̄ = CN−1 ∪ CN ∪ CN+1. In practice, we set N < 10,
supporting 1.8 million pixels (e.g., 1344 × 1344 resolution) at most during encoding. Although
we can encompass more image slices for higher resolutions, we purposely impose this resolution
upper-bound, since it already well covers most real-world application scenarios, and the benefit of
further increasing encoding resolution is marginal considering the performance and overhead.

Slice Encoding. Although image partitioning can ensure a good match between the slices and the
ViT pre-training setting, each slice’s size is not precisely equal to (Wv, Hv). To feed the slices into
ViT, we first adjust each slice by resizing it proportionally so that the resultant area size matches ViT
pre-training area size Wv ×Hv . This adjustment helps prevent a significant gap between the number
of encoded patches and the ViT’s pre-training setting. Subsequently, we interpolate the ViT’s position
embeddings to adapt to the slice’s ratio. This involves reshaping the ViT’s 1D embedding P1 ∈ RQ×l

back to its 2D format P2 ∈ Rq×q×l, where the number of position embeddings Q = q × q. Then, we
interpolate P2 to fit the size of each slice via 2D interpolation. We also include the original image as
an additional slice to provide holistic information about the entire image.

Token Compression. After visual encoding, each slice is encoded into 1,024 tokens, where 10 slices
can yield over 10k tokens collectively. To manage this high token count, we employ a compression
module comprising of one-layer cross-attention and a moderate number of queries, with 2D positions
informed [7]. In practice, the visual tokens of each slice are compressed into 64 queries for MiniCPM
V1&2 and 96 tokens for MiniCPM-Llama3-V 2.5 through this layer. Compared with other MLLMs
with competitive performance, the significantly smaller number of visual tokens in MiniCPM-V series
enables superior efficiency in terms of GPU memory consumption, inference speed, first-token latency
and power consumption, making it more friendly to wider application scopes and communities.

Spatial Schema. To indicate each slice’s position relative to the whole image, inspired by [9], we
additionally introduce a spatial schema. We first wrap tokens of each slice by two special tokens
<slice> and <\slice>, and then employ a special token “\n” to separate slices from different rows.

4 Training

The model training consists of 3 phases: the pre-training phase, the supervised fine-tuning phase, and
the RLAIF-V phase. We will introduce the training recipe in the following sections.
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4.1 Pre-training

In this phase, we utilize large-scale image-text pairs for MLLM pre-training. The primary goal of
this phase is to align the visual modules (i.e., visual encoder and compression layer) with the input
space of the LLM and learn foundational multimodal knowledge. The pre-training phase is further
divided into 3 stages.

Stage-1. The role of stage-1 is to warm up the compression layer, primarily connecting the visual
encoder and LLMs. (1) Trainable Modules. We randomly initialize the compression layer and train
this module in stage-1, keeping other parameters frozen. The visual encoder’s resolution is set to
224×224, which is the same as the visual encoder’s pre-training setting. (2) Data. To warm up the
compression layer, we randomly select 200M data from the Image Captioning data in Table 1. Data
cleaning is performed to remove image-text pairs with poor correlation and ill-formatted text data,
ensuring the data quality.

Table 1: Pre-training data. The pre-training data consists of image captioning and OCR data in
English and Chinese. LAION-2B-OCR is generated by applying OCR tools to LAION-2B images.

Category Sources Size

Image Captioning
English

COCO [60], VG [51], CC3M [90], CC12M [17]
410M

LAION-COCO [87], COYO [15], LAION-2B [87]

Chinese
AIC [106], LAION-2B-Chinese [87], WuKong [35]

110M
Zero-Chinese [107], etc.

OCR+Knowledge
English

WIT [93], IDL [13], SynthText [37], SynthDoG-en [50]
39M

SynthDoG-zh [50], ArxivCap [56], etc.

Chinese WIT [93], LAION-2B-OCR 11M

Stage-2. After the warm-up training of the compression layer, the role of stage-2 is to extend the
input resolution of the pre-trained visual encoder. (1) Trainable Modules. In stage-2, we extend the
image resolution from 224×224 to 448×448. The whole visual encoder is trained, leaving other
parameters frozen. (2) Data. To extend the pre-trained resolution, we additionally select 200M data
from the Image Captioning data in Table 1.

Stage-3. After extending the primary input resolution of the visual encoder, we finally train the
visual modules using the adaptive visual encoding strategy, which can further accommodate high-
resolution inputs with any aspect ratio. (1) Trainable Modules. During the stage-3 training, both
the compression layer and the visual encoder are trained to adapt to the language model embedding
space. The LLM is kept frozen to avoid disruption from the relatively low-quality pre-training
data. (2) Data. Different from the previous stages with only image captioning data, during the high-
resolution pre-training stage, we additionally introduce OCR data to enhance the visual encoders’
OCR capability.

Caption Rewriting. Image-text pairs sourced from the Web [87, 15] can suffer from quality issues
in the caption data, including non-fluent content, grammatical errors, and duplicated words. Such
low-quality data can lead to unstable training dynamics. To address the issue, we introduce an
auxiliary model for low-quality caption rewriting. The rewriting model takes the raw caption as input
and is asked to convert it into a question-answer pair. The answer from this process is adopted as the
updated caption. In practice, we leverage GPT-4 [14] to annotate a small number of seed samples,
which are then used to fine-tune an LLM for the rewriting task.

Data Packing. Samples from different data sources usually have different lengths. The high
variance of sample lengths across batches will lead to inefficiency in memory usage and the risk of
out-of-memory (OOM) errors. To address the issue, we pack multiple samples into a single sequence
with a fixed length. By truncating the last sample in the sequence, we ensure uniformity in sequence
lengths, facilitating more consistent memory consumption and computational efficiency. Meanwhile,
we modify the position ids and attention masks to avoid interference between different samples. In
our experiments, the data packing strategy can bring 2~3 times acceleration in the pre-training phase.
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Table 2: SFT data for MiniCPM-V series. Part-1&2 data are concatenated sequentially in the SFT
phase. Part-1 focuses on bolstering basic recognition capabilities, while part-2 aims to enhance
advanced capabilities in generating detailed responses and following human instructions.

Category Sources Size

Part-1

Short Caption Flickr-30K [82], COCO [60] 560K

VQA
FM-IQA [34], VGQA [51], IconQA [70], GQA [44], VQAv2 [6]

1.4M
CLEVR [46], VizWiz [38], Visual7W [123], COCO-QA [85]

Knowledge OKVQA [73], A-OKVQA [88], KVQA [89], ScienceQA [71] 60K

Grounding RefCOCO [110] 570K

Reasoning COMVINT [32], VCR [115], NLVR [95], LRV [61] 135K

Math GeoQA [19], SMART-101 [24] 125K

OCR
DocVQA [75], TextVQA [92], OCR-VQA [78], ST-VQA [12], VisualMRC [97], DVQA [47]

1.7MFigureQA [48], ChartQA [74], DeepForm [96], TabFact [22], InfographicsVQA [76]
Kleister Charity [94], WikiTableQuestions [80], Real-CQA [3], AI2D [49], etc.

Chat FSVQA [91], Visual-Dialog [28] 780K

Part-2

Part-1 sample from Part-1 data 400K

OCR
DocVQA, TextVQA, OCR-VQA, VisualMRC, ChartQA, AI2D

690K
ArxivQA [57], LLaVAR [119], TextOCR-GPT4V [16], etc.

Instruct
SVIT [120], LLaVA-Instruct-150K [63], UniMM-Chat [111], ShareGPT4V [21]

1.9M
LVIS [36], ALLaVA [18]

Text-Only
Ultra-Chat [30], Alpaca [98], ShareGPT [121], BELLE [10]

-
OpenOrca [59], OpenHermes [99], In-House-MiniCPM-SFT

Multilingual Generalization. Multimodal capability across multiple languages is essential for
serving users from broader communities. Traditional solutions involve extensive multimodal data
collection and cleaning, and training for the target languages. Fortunately, recent findings from
VisCPM [41] have shown that the multimodal capabilities can be efficiently generalized across
languages via a strong multilingual LLM pivot. This solution largely alleviates the heavy reliance on
multimodal data in low-resource languages. In practice, we only pre-train our model on English and
Chinese multimodal data, and then perform a lightweight but high-quality multilingual supervised
fine-tuning to align to the target languages. Despite its simplicity, we find the resultant MiniCPM-
Llama3-V 2.5 can achieve good performance in over 30 languages as compared with significantly
larger MLLMs.

4.2 Supervised Fine-tuning

After learning foundational capabilities from pre-training, we perform supervised fine-tuning (SFT) on
high-quality visual question answering datasets to further learn knowledge and interaction capability
from human annotations.

Trainable Modules. Compared with the pre-training phase which mainly uses crawled data from
the Web, the SFT phase mainly utilizes high-quality datasets annotated by either human lablers or
strong models such as GPT-4. Therefore, we unlock all model parameters to better exploit the data
and learn rich knowledge during SFT phase.

Data. Recent works [42, 84] show that data near the end of training plays a more important role in
shaping the models’ capabilities and response styles. We categorize the SFT data into two parts. Part-1
focuses on bolstering the models’ basic recognition capabilities, while part-2 is tailored to enhance
their capabilities in generating detailed responses and following human instructions. Specifically,
part-1 data consists of the traditional QA/captioning datasets with relatively short response lengths,
which helps enhance the model’s basic recognition capabilities. In comparison, part-2 encompasses
datasets featuring long responses with complex interactions, either in text or multimodal context.
During SFT, these two parts of data are concatenated and sequentially fed into the model. For
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Figure 4: RLAIF-V framework for hallucination reduction. (1) Response generation produces
multiple responses for an instruction using the policy model. (2) Feedback collection evaluates the
correctness of each response in a divide-and-conquer fashion. (3) DPO optimizes the model on the
preference dataset.

MiniCPM-Llama3-V 2.5, we integrate 2M data from the recent Cauldron dataset [52] for multimodal
knowledge augmentation, and 90K multilingual data over 36 languages for boosting the multilingual
conversation capability.

4.3 RLAIF-V

MLLMs are typically prone to hallucination problems, generating responses that are not factually
grounded in the input image [112]. The issue greatly limits the wide application of MLLMs, especially
in high-stakes scenarios, such as autonomous driving and assistance for visually impaired groups. To
address the hallucination problem, we employ the recent RLAIF-V [113] approach (Fig. 4), where
the key is to obtain scalable high-quality feedback from open-source models for direct preference
optimization (DPO) [83].

Response Generation. The first step of RLAIF-V is to generate multiple responses for a given
instruction using the policy model. Specifically, given a model M waiting for alignment, we sample
10 responses Y = {y1, y2, · · · , yn} from M using sampling decoding with high temperatures. There
are several benefits of using the policy model M for response generation: (1) Feedback collection
and learning can better focus on trustworthiness, since different text styles from multiple MLLMs
are avoided. (2) Feedback learning is more efficient since preference is directly collected on the
distribution of the policy model.

Feedback Collection. Collecting high-quality feedback from open-source MLLMs can be chal-
lenging due to their typically weaker capabilities compared with proprietary models. To address the
issue, RLAIF-V uses a divide-and-conquer strategy for response scoring. Specifically, each response
yi is divided into atomic claims Ci = {c1, c2, · · · , cm} using Llama-3 8B, where the correctness of
atomic claims is much easier to evaluate. Then, we verify the claims by converting each claim to a
yes/no question and employing an open-source MLLM to score each claim. In practice, we adopt
OmniLMM 12B for MiniCPM-V 2.0 scoring and LLaVA-NeXT-Yi 34B for MiniCPM-Llama3-V 2.5
scoring. The final score si of the response yi is given by −nrej , where nrej is the number of invalid
atomic claims.

Direct Preference Optimization. After collecting the high-quality AI feedback, we perform
preference learning via DPO method. The DPO algorithm requires training on preference pairs,
where one sample yw is preferred to the other one yl. To compose the preference dataset, we randomly
sample pairs from each response set Y = {y1, y2, · · · , yn}, and determine (yw, yl) based on their
relative scores. Finally, we construct a preference dataset consisting of 6K preference pairs from 3K
unique images for preference learning.
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Figure 5: An overview of end-side deployment. Current end-side chips for computation acceleration
include CPU, GPU and NPU. We list their generality, (estimated) ideal and current performance, and
related deployment frameworks.

5 End-side Deployment

In this section, we investigate the deployment of MiniCPM-V on end-side devices. We first introduce
the challenges, and then present the basic and advanced practices for end-side deployment. Finally,
we analyze and discuss the evaluation results across different devices.

5.1 Challenges

End-side devices, such as smartphones and computers, often face resource limitations due to factors
like heat dissipation, size constraints, and power consumption. We identify several key challenges of
end-side deployment for MLLMs by comparing end-side devices with high-performance servers:

Memory Constraints. High-performance servers typically boast extensive memory capacities,
often exceeding 100GB or even 1TB. In contrast, the memory available on mobile phones typically
ranges from 12GB to 16GB, which can be insufficient for MLLM deployment.

CPU/GPU Speed Restriction. The overall processing speeds of CPUs in smartphones are notably
slower. For instance, the Snapdragon 8 Gen3 features 8 CPU cores 2, whereas high-performance
server like Intel Xeon Platinum 8580 has 60 CPU cores 3. Similarly, mobile phone GPUs are not as
powerful as server GPUs. For example, Qualcomm Adreno 750 only has 6 TFLOPS, while NVIDIA
4090 can reach 83 TFLOPS.

5.2 Basic Practice

To deploy the MLLM on end-side devices, we first employ quantization for reduced memory cost,
and empirically investigate the deployment results on different frameworks.

Quantization. Quantization is a widely used technique to reduce memory consumption. The main
idea of model quantization is to use a unified scaling factor to compress multiple weights into a
narrower range, followed by discretization. This process is mathematically represented as:

w′
i = round(

wi

s
),∀1 ≤ i ≤ n, (3)

where w′ denotes the quantized parameter and s signifies the calculated scale factor. The round
function discretizes the quantized value.

For MiniCPM-Llama3-V 2.5, the fp16 version model typically demands 16~17G memory. We opt for
the Q4_K_M mode 4-bit quantization strategy within GGML4 framework. This reduces the memory
requirement to around 5G, which is friendly to mobile phone usage.

2https://docs.qualcomm.com/bundle/publicresource/87-71408-1_REV_E_Snapdragon_8_
gen_3_Mobile_Platform_Product_Brief.pdf

3https://www.intel.com/content/www/us/en/products/sku/237250/
intel-xeon-platinum-8580-processor-300m-cache-2-00-ghz/specifications.html

4https://github.com/ggerganov/ggml
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Figure 6: Ablation study on the Xiaomi 14 Pro (Snapdragon 8 Gen 3). We show the influence
of different techniques on the (a) encoding latency and (b) decoding throughput. No opt.: non-
optimized, mem. opt.: memory usage optimization, comp. opt.: compilation optimization, config.
opt.: configuration optimization, NPU: NPU acceleration. Note that the encoding latency includes
both model loading time and encoding time, which differs from Fig. 5’s encoding time only.

Deployment Framework. Several frameworks have been proposed for end-side deployment.
Illustrated in Fig. 5, we make a thorough investigation of different frameworks for different chip
types including CPU, GPU, and NPU.

Given the ubiquity of CPU usage across devices, we prioritize this chip type and opt for the
llama.cpp [68] framework. Combining quantization and llama.cpp on Xiaomi 14 Pro (Snapdragon 8
Gen 3), the model achieves a text encoding latency of 64.2s and a text decoding speed of 1.3 tokens/s
(as depicted in Fig. 6), which is still far from acceptable for users.

5.3 Advanced Practice

To enhance user experience, we investigate a series of advanced techniques including memory usage
optimization, compilation optimization, configuration optimization, and NPU acceleration.

Memory Usage Optimization. Experimental results show that, without specific optimizations,
image processing can be the bottleneck of the inference speed due to limited memory resources on
mobile phones. To address the issue, we explore memory usage optimization strategies. Instead of
loading both ViT and LLM simultaneously into memory, we adopt a sequential loading approach.
Specifically, we first load ViT for visual encoding, followed by the LLM for visual and text token
encoding. By releasing the large amount of memory occupied by LLM, we can prevent frequent
paging (swapping in and out) during ViT encoding, thereby improving the program efficiency. This
optimization technique, as illustrated in Fig. 6 (a), results in a notable reduction of image processing
time from 45.2s to 31.5s.

Compilation Optimization. We find that directly compiling the models on the target devices can
significantly improve the encoding latency and the decoding throughput. This can be attributed to
better consistency between the compilation and target device instruction set architecture. As depicted
in Fig. 6, this optimization endeavor yields promising results. Encoding latency shows a notable
reduction from 50.5s to 17.0s, while decoding throughput experiences a significant boost from 1.3
tokens/s to 3.2 tokens/s.

Configuration Optimization. We observe that a single default configuration of the llama.cpp
framework may not be optimal for diverse end-side devices. To maximize the inference speed, we
devise an automatic parameter search algorithm that dynamically determines the most suitable config-
urations (e.g., computation allocation on different CPU cores). Through configuration optimization,
we can achieve good improvements. Specifically, decoding throughput surged from 3.2 tokens/s to an
impressive 8.2 tokens/s, surpassing the typical human reading speed.
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Figure 7: Results on different end-side devices. We show the (a) encoding latency and (b) decoding
throughput across different device types. Xiaomi 14 Pro is the only device with NPU.

NPU Acceleration. The above techniques are mostly tailored for CPU deployment. Another
promising avenue involves leveraging alternative chip types such as GPUs and NPUs. Despite the
potential of GPU, we find in our experiments that current frameworks for mobile phone GPU are not
optimized or compatible enough to exceed the results on CPU. As an alternative, we turn to NPUs
(Neural Processing Units), which represent a novel class of specialized hardware introduced in recent
years, specifically designed for accelerating AI applications. Some smartphones are already equipped
with NPUs, which are recognized as better suited for addressing computation bottlenecks.

In practice, we primarily leverage NPUs to accelerate visual encoding. Specifically, we replace the
backend framework of ViT to QNN, while retaining the llama.cpp backend for the LLM component.
For mobile phones equipped with Qualcomm NPUs, this optimization results in a notable reduction
in visual encoding time, decreasing from 3.7s to 1.3s, as illustrated in Fig. 6 (a).

5.4 Results.

Analysis. For a comprehensive assessment of MiniCPM-Llama3-V 2.5’s performance across
various end-side devices, we present test results on Xiaomi 14 Pro (Snapdragon 8 Gen 3), vivo
X00 Pro (Mediatek Dimensity 9300), and Macbook Pro (M1) in Fig. 7. Thanks to the deployment
optimization techniques, MiniCPM-Llama3-V 2.5 can operate efficiently on both mobile phones and
personal computers, delivering acceptable latency and throughput. For instance, leveraging NPU on
Xiaomi 14 Pro enables it to achieve a similar encoding speed as the Mac M1. Furthermore, nearly all
devices exhibit comparable or higher throughput compared with human reading speed.

Discussion. Upon analyzing Fig. 7, it becomes evident that the current computation bottleneck
primarily stems from LLM prefilling, which mainly involves encoding image and text tokens for
LLM inference. Promising research directions involve developing more efficient visual encoding
methods with fewer visual tokens, and better leveraging GPU/NPU acceleration for LLM encoding.
With increasing attention to end-side MLLMs and the rapid advancement of GPU/NPU acceleration
techniques, we believe that real-time interaction with end-side MLLMs can be reached soon.

6 Experiments

In this section, we perform a comprehensive evaluation of MiniCPM-V series.

6.1 MiniCPM-V Series

We have released 3 models in the MiniCPM-V series, including MiniCPM-V 1.0, MiniCPM-V 2.0,
and MiniCPM-Llama3-V 2.5. As shown in Table 3, MiniCPM-V 1.0 is trained with the pre-training
stage1&2 and SFT without using the adaptive visual encoding and RLAIF-V. For MiniCPM-V 2.0,
we include all of the training stages and the adaptive visual encoding strategy to further improve
performance. In MiniCPM-Llama3-V 2.5, Llama3-Instruct 8B is adopted as the base LLM.
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Table 3: The MiniCPM-V series, with key components and configurations. AR.: aspect ratio.

Model Base LLM Resolution AR. Pre-training SFT Alignment

MiniCPM-V 1.0 MiniCPM 2B 0.2M pixel (i.e., 448 × 448) Fixed stage-1&2 part1+2 No
MiniCPM-V 2.0 MiniCPM 2B 1.8M pixel (e.g., 1344 × 1344) Any stage-1&2&3 part1+2 RLHF-V
MiniCPM-Llama3-V 2.5 Llama3-Instruct 8B 1.8M pixel (e.g., 1344 × 1344) Any stage-1&2&3 part1+2 RLAIF-V

Table 4: Experimental results on general multimodal benchmarks. RW QA: RealWorldQA, Obj
HalBench (Res./Men.) : Object HalBench with response/mention-level hallucination rates, *: our
tested results with official checkpoints. The best open-source results are highlighted in bold.

Model Size Open- MME MMB MMB MMMU Math- LLaVA RW Obj HalBench
Compass test (en) test (cn) val Vista Bench QA (Res./Men.) ↓

Proprietary
GPT-4V (2023.11.06) - 63.5 1771.5 77.0 74.4 53.8 47.8 93.1 63.0 13.6 / 7.3*
Gemini Pro - 62.9 2148.9 73.6 74.3 48.9 45.8 79.9 60.4 -
Claude 3 Opus - 57.7 1586.8 63.3 59.2 54.9 45.8 73.9 48.4 -

Open-source
DeepSeek-VL-1.3B 1.7B 46.2 1531.6 66.4 62.9 33.8 29.4 51.1 49.7 16.7 / 9.6*
Mini-Gemini 2.2B - 1653.0 - - 31.7 - - - -
Yi-VL-6B 6.7B 48.9 1915.1 68.4 66.6 40.3 28.8 51.9 53.5 19.4 / 11.7*
Qwen-VL-Chat 9.6B 51.6 1860.0 61.8 56.3 37.0 33.8 67.7 49.3 43.8 / 20.0*
Yi-VL-34B 34B 52.2 2050.2 72.4 70.7 45.1 30.7 62.3 54.8 20.7 / 14.0*
Phi-3-vision-128k-instruct 4.2B - - - - 40.4 44.5 64.2* 58.8* -
XTuner-Llama-3-8B-v1.1 8.4B 53.3 1818.0 71.7 63.2 39.2 40.0 69.2 - -
CogVLM-Chat 17B 54.2 1736.6 65.8 55.9 37.3 34.7 73.9 60.3 26.4 / 12.6*
Bunny-Llama-3-8B 8.4B 54.3 1920.3 77.0 73.9 41.3 31.5 61.2 58.8 -
DeepSeek-VL-7B 7.3B 54.6 1765.4 73.8 71.4 38.3 36.8 77.8 54.2 11.4 / 6.5*
LLaVA-NeXT-Llama3-8B 8.4B - 1971.5 - - 41.7 - 80.1 60.0 -
Idefics2 8.0B 57.2 1847.6 75.7 68.6 45.2 52.2 49.1 60.7 -
Cambrian-8B 8.3B 58.8 1802.9 74.6 67.9 41.8 47.0 71.0 60.0 -
CogVLM2-19B-Chat 19B 62.3 1869.5 73.9 69.8 42.6 38.6 83.0 62.9 -
LLaVA-NeXT-Yi-34B 34B 62.7 2006.5 81.1 79.0 48.8 40.4 81.8 66.0 -
Cambrian-34B 34B 64.9 2049.9 80.4 79.2 50.4 50.3 82.0 67.1 -

MiniCPM-V 1.0 2.8B 47.5 1650.2 64.1 62.6 38.3 28.9 51.3 51.2 21.6 / 11.5
MiniCPM-V 2.0 2.8B 54.5 1808.6 69.1 66.5 38.2 38.7 69.2 55.8 14.5 / 7.8
MiniCPM-Llama3-V 2.5 8.5B 65.1 2024.6 77.2 74.2 45.8 54.3 86.7 63.5 10.3 / 5.0

6.2 Experiment Settings

Benchmarks. We perform a comprehensive evaluation on popular benchmarks covering visual
question answering, multimodal conversation, knowledge and reasoning, OCR, and hallucination.
(1) General benchmarks. We adopt OpenCompass [26] as the general evaluation indicator, which
is a comprehensive collection over 11 popular multimodal benchmarks, including MME [33], MM-
Bench [64], MMMU [114], MathVista [72], LLaVA Bench [63], etc. We also report the results
on RealWorldQA for real-world spatial understanding capabilities. (2) OCR benchmarks. We
adopt three widely used benchmarks for OCR capability evaluation, including including OCR-
Bench [65], TextVQA [92] and DocVQA [75]. (3) Hallucination benchmarks. We also include
Object HalBench [86, 112] to evaluate the trustworthiness of the models.

Baselines. We compare with strong baselines in different series: For open-source models, we
compare with strong models including Yi-VL-6B/34B [109], Qwen-VL-Chat [7], DeepSeek-VL-
7B [69], TextMonkey [66], CogVLM-Chat-17B [103], CogVLM2-Llama3-19B [103], Idefics2-
8B [53], Bunny-Llama-3-8B [39], XTuner-Llama-3-8B-v1.1 [27], LLaVA-NeXT-Llama-3-8B [54],
Cambrian-8B/34B [100], LLaVA-NeXT-Yi-34B [62], DeepSeek-VL-1.3B [69], MobileVLM V2 [25],
Mini-Gemini [58] and Phi-3-Vision-128k-instruct [1]. For proprietary models, we compare with
GPT-4V-1106 [2], Gemini-Pro [84] and Claude 3 Opus [5].

6.3 Experimental Results

Main Results on General Multimodal Benchmarks. From the experimental results in Table 4, we
have the following observations: (1) MiniCPM-Llama3-V 2.5 outperforms strong open-source models
by a notable margin. For instance, MiniCPM-Llama3-V 2.5 surpasses the recent strong Idefics2-8B
by 7.9 points on the OpenCompass benchmark, with similar model sizes. It also achieves better
results than significantly larger models such as Cambrian-34B, LLaVA-NeXT-Yi-34B, Yi-VL-34B

13



Table 5: Results on OCR benchmarks. *: our tested results with official checkpoints. The best results
are marked in bold.

Model Size OCRBench TextVQA val DocVQA test

Proprietary
Gemini Pro - 680 74.6 88.1
GPT-4V (2023.11.06) - 645 78.0 88.4

Open-source
Yi-VL-6B 6.7B 290 45.5* 17.1*
Yi-VL-34B 34B 290 43.4* 16.9*
Mini-Gemini 2.2B - 56.2 34.2*
MobileVLM V2 3.1B - 57.5 19.4*
DeepSeek-VL-1.3B 1.7B 413 58.4* 37.9*
Qwen-VL-Chat 9.6B 488 61.5 62.6
DeepSeek-VL-7B 7.3B 435 64.7* 47.0*
CogVLM-Chat 17.4B 590 70.4 33.3*
TextMonkey 9.7B 558 64.3 66.7
Idefics2 8.0B - 73.0 74.0
Phi-3-vision-128k-instruct 4.2B 639* 70.9 -

MiniCPM-V 1.0 2.8B 366 60.6 38.2
MiniCPM-V 2.0 2.8B 605 74.1 71.9
MiniCPM-Llama3-V 2.5 8.5B 725 76.6 84.8
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Figure 8: Experimental results on multilingual multimodal interaction. We translate LLaVA Bench
reference response into different languages, and adopt GPT-4-Turbo for evaluation. Here we randomly
select 15 languages for visualization.

and CogVLM2-Llama3-19B. (2) Compared with powerful proprietary models, such as GPT-4V-
1106 and Gemini Pro, MiniCPM-Llama3-V 2.5 achieves better performance on the OpenCompass
benchmark with significantly fewer parameters. In addition, MiniCPM-Llama3-V 2.5 also achieves
lower hallucination rates than GPT-4V-1106 on Object HalBench, indicating its trustworthiness for
real-world applications. (3) The smaller MiniCPM-V 2.0 with 2B parameters achieves significantly
better performance compared with other 2B~3B models, and is even comparable with Llama3-based
8B MLLMs such as Bunny-Llama-3-8B. In summary, the results show that MiniCPM-V series
achieves a good balance between performance and efficiency, making it more friendly for broader
communities and applications.

Results on OCR Benchmarks. MiniCPM-V models also show strong OCR capabilities, including
scene-text, document and screenshot understanding. As shown in Table 5, MiniCPM-Llama3-V 2.5
outperforms open-source MLLMs ranging 1.7B~34B on OCRBench, TextVQA, and DocVQA, and
even performs comparably to proprietary models such as GPT-4V-1106 and Gemini Pro.

Multilingual Multimodal Capability. Based on the multilingual multimodal generalization ap-
proach from VisCPM, MiniCPM-Llama3-V 2.5 extends its multimodal capability to over 30 lan-
guages. As shown in Fig. 8, MiniCPM-Llama3-V 2.5 can outperform Yi-VL 34B and Phi-3-vision-
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Table 6: The influence of RLAIF-V. The MLLM for the ablation is MiniCPM-Llama3-V 2.5.

Method Open- MME MMB MMB MMMU Math- LLaVA Object
Compass dev(en) dev(zh) val Vista Bench HalBench

w/o RLAIF-V 64.5 2039.8 77.7 73.5 46.2 54.1 85.4 86.9 / 93.6
w RLAIF-V 65.1 2024.6 77.2 74.2 45.8 54.3 86.7 89.7 / 95.0

Table 7: The influence of multilingual generalization. We use 90k multilingual data (< 0.5% SFT
data) for post SFT training, and show the performance changes below. ML: multilingual training.

Method French German Portuguese Spanish Czech Hungarian Japanese Korean Thai

w/o ML 46.4 22.8 53.0 29.0 26.5 20.6 13.8 13.7 14.4
w ML 72.7 76.5 83.8 73.9 71.6 70.9 88.0 67.9 61.9

128k-instruct on the multilingual LLaVA Bench. The promising multilingual multimodal capability
makes MiniCPM-Llama3-V 2.5 useful in serving larger groups with various languages.

Comparison with Other Llama-3 based Models. From experimental results in Table 4, we can
observe that: (1) MiniCPM-Llama3-V 2.5 outperforms other Llama-3 based models by a large
margin. For example, compared with the strong LLaVA-NeXT-Llama-3-8B, MiniCPM-Llama3-V
2.5 consistently achieves better results on all benchmarks. (2) Moreover, it is worth noting that
MiniCPM-Llama3-V 2.5 requires significantly less inference computation. For example, the visual
token number range of MiniCPM-Llama3-V 2.5 is (96, 960), which is lower than LLaVA-NeXT-
Llama-3-8B’s (1728, 2880). This can be important especially for real-world end-side applications in
terms of inference speed, first-token latency, memory usage, and power consumption.

6.4 Ablation Study

We perform an ablation study on components of MiniCPM-Llama3-V 2.5, including RLAIF-V and
multilingual training.

Influence of RLAIF-V. From the results in Table 6, we can observe that RLAIF-V effectively
reduces the hallucination rates of the base model on both response level and mention level. This
makes the model more trustworthy in behaviors. Importantly, the hallucination reduction does not
sacrifice the general capabilities. In contrast, RLAIF-V further improves the overall performance on
OpenCompass by 0.6 points on an average of 11 benchmarks.

Multilingual Generalization. We investigate the necessity and effectiveness of the multilingual
generalization technique. As shown in Table 8, we can see over 25 point improvement in all languages
when using less than 0.5% multilingual SFT data. The results show that the multilingual generalization
method can effectively improve multilingual capability with good data and computation efficiency. In
addition, we notice that the performance improvement is uneven across languages. We hypothesize
that the improvement extent might be related to multiple factors like the base LLM’s ability of the
given language. We leave more systematical exploration for future works.

6.5 Case Study

We provide a more intuitive understanding of MiniCPM-Llama3-V 2.5 capabilities in the case study.

OCR Capability. MiniCPM-Llama3-V 2.5 shows strong OCR capabilities in real-world scenarios.
Illustrated in Fig. 2, the model accurately transcribes English articles from screenshots into plain text,
converts tables containing both English and Chinese content into Markdown format, comprehends
code logic, and provides reasonable plans based on image content.

Any Aspect-ratio High-resolution Input. A standout feature of the MiniCPM-Llama3-V 2.5 is
its capability to handle high-resolution input with extreme aspect ratios. As depicted in Fig. 9, the
model well processes input with an aspect ratio of 10:1, accurately recognizing fine-grained article
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Please describe the content in the picture.

The image is a screenshot of an article from the BBC 
website, titled "What will we eat on the Moon? The food 
is literally out of this world." The article is authored by 
Laura Hall and was published 2 hours ago at the time of the 
screenshot. The main visual is a photograph of an astronaut, 
identified as Andreas Mogensen, who is smiling and 
holding a chocolate mousse on a spoon. He is wearing a 
blue shirt with the ESA (European Space Agency) logo and a 
name tag. The background of the photo shows the interior of 
a spacecraft or space station. The text of the article 
discusses the challenges of providing food in space, 
mentioning the ISS (International Space Station) and the 
Artemis program. It also touches on the nutritional aspects of 
food in space, the use of 3D printers for food production, 
and experiments with growing plants in microgravity. 
The article includes a quote from Luukanen about the 
challenges of food production in space and mentions the 
ISS's vegetable garden. The overall tone of the article is 
informative, with a focus on the technological and scientific 
aspects of space food.

MiniCPM-Llama3-V 2.5

* The colored underlines are for illustration purposes only and are not used as model input.

Figure 9: The example of MiniCPM-Llama3-V 2.5 for the input image with extreme aspect ratio.

Compose a detailed account of the image, encompassing its visual 
characteristics, like colors, shapes, textures, objects, and any 
human subjects, by paying careful attention to the specifics.

The image captures a vibrant street scene in Thailand. Dominating the frame is a blue and 
red tuk-tuk, a common mode of public transportation in the country. The tuk-tuk is parked 
on the side of the road, ready to ferry passengers to their destinations. Its bright colors 
contrast sharply with the more muted tones of the surrounding environment.

In the background, there's a building with a yellow roof, adding a warm hue to the scene. A 
sign in Thai script adorns the building, hinting at the local culture and language. The 
presence of the tuk-tuk and the Thai script suggests that this image was taken in a 
bustling urban area of Thailand.

The overall composition of the image, with the tuk-tuk in the foreground and the building in 
the background, creates a sense of depth and perspective. It's a snapshot of everyday life 
in Thailand, encapsulating the country's unique blend of tradition and modernity.

The image depicts a scene of a street with a prominent blue and red vehicle in the 
foreground. The vehicle appears to be a type of public transportation, resembling a 
modified truck with an open-air seating area and a roof. The sides of the vehicle display red 
horizontal stripes with a thin white line that runs along the length of the vehicle, while the 
lower portion is painted in a deep blue color. The front of the vehicle has a large windshield 
and two round headlights. The license plate is visible and has a combination of Thai 
script and numbers.
...
The sky is a clear blue, suggesting it is a bright and sunny day. The overall atmosphere of 
the image gives the impression of a quiet, peaceful street in a city or town, with the colorful 
vehicle adding a pop of color to the surroundings. There are no human subjects visible in 
the image, giving the scene a somewhat deserted feel.

MiniCPM-Llama3-V 2.5

GPT-4V

* The orange color denotes non-100% correct content. The red color denotes hallucination.

Figure 10: Comparison between MiniCPM-Llama3-V 2.5 and GPT-4V on hallucinations.

contents. Interestingly, the model can also interpret images within images, correctly describing the
central image as a man “smiling and holding a chocolate mousse."

Multilingual Multimodal Capability. Benefiting from the multilingual multimodal generalization
approach from VisCPM [41], MiniCPM-Llama3-V 2.5 exhibits multilingual proficiency, generalizing
across more than 30 languages. Fig. 11 showcases multimodal conversations in German, French,
Japanese, Korean, and Spanish, showing good knowledge of language-specific cultures.

Trustworthy Behavior. Based on RLAIF-V, MiniCPM-Llama3-V 2.5 ensures more trustworthy
responses with lower hallucination rates. As demonstrated in Fig. 10, the model’s responses exhibit
fewer hallucinations as compared with powerful GPT-4V, showing its promising reliability and
trustworthiness in real-world scenarios.
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7 Conclusion

Contributions. In this work, we introduce the MiniCPM-V series models as a primary exploration
into powerful end-side MLLMs. Thanks to techniques such as adaptive visual encoding, multilingual
generalization, and the RLAIF-V method, MiniCPM-Llama3-V 2.5 can achieve GPT-4V level
performance with significantly fewer parameters. With various end-side optimization techniques, this
model ensures an acceptable user experience on mobile phones.

Limitations. Despite promising performance, there remain several limitations with current
MiniCPM-V models. (1) Capability Depth. there is still plenty of room for improvement in enhancing
multimodal understanding capability and inference efficiency. (2) Capability Width. In addition to
image modality, it’s promising to expand MLLM capabilities to encompass other modalities, such as
video and audio, etc., where GPT-4o [79] and Google Astra [29] have given good examples.

In addition to MLLM capabilities, end-side deployment also presents unique challenges. The
inference speed and latency are still far from good enough and the model service can be limited by
the battery capacity. In addition, previous efforts on chips and deployment frameworks mainly target
CNNs and LSTMs, which can be sub-optimal for MLLMs. Tailored efforts to MLLMs can bring
ample room for improvement.

Future Works. Considering the current limitations and the promising future of end-side MLLMs,
we anticipate increasing efforts from both academia and industry in enhancing model capabilities
in terms of depth and width, and improving smartphone chips and deployment frameworks. We
believe that simultaneous advancements in model capability and end-side device capacity will lead to
end-side applications providing a satisfying user experience in the near future.
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Wo ist dieses Bild? Bitte beschreiben Sie dieses Bild im Detail.

Dieses Bild erfasst den majestätischen Mount Everest, den höchsten Gipfel der Welt. Der 
Gipfel ist in einem goldenen Licht getaucht, das von der untergehenden Sonne reflektiert 
wird, was einen kontrastreichen Anblick gegen den klaren blauen Himmel bildet. Der Gipfel 
selbst ist mit Schnee bedeckt, was seine Höhe und Pracht noch unterstreicht. Die 
umliegenden Berge sind in Schatten getaucht, was Tiefe in die Szene bringt. Das Bild 
wurde von einer niedrigen Perspektive aufgenommen, was dem Betrachter den Eindruck 
vermittelt, als stünde er direkt vor dem Gipfel. Diese Perspektive betont die 
beeindruckende Höhe des Mount Everest und seine dominante Präsenz in der Landschaft. 
Das Bild ist ein Zeugnis für die Schönheit und Macht der Natur.

MiniCPM-Llama3-V 2.5

Que font les gens sur la photo ?

Les personnes dans la photo semblent apprécier une performance de musique en plein air. 
La présence d'un homme jouant de la guitare suggère qu'il pourrait être un musicien qui 
joue pour le public dans un environnement urbain.

MiniCPM-Llama3-V 2.5

この画像はどのアニメから来たものですか?詳しく説明してください

この画像は日本の漫画家藤本弘が創作したキャラクター「ドラえもん」から来ています。ドラえ
もんは1980年代に始まり、多くの作品で人気を集めてきました。彼らは未来の猫で、時空旅行を
可能にする能力があります。彼らは通常、主人公の野沢直樹と彼の家族と一緒に、科学技術、冒
険、道徳の価値観のテーマに焦点を当てたストーリーを描いています。

MiniCPM-Llama3-V 2.5

사진  속  음식  만드는  법을  알려주세요 .

사진  속  음식은  전통적인  한국  음식인  비빔밥이다 . 비빔밥은  소스와  채소 , 고기 , 새우 , 해면 , 약이  
들어  있는  나무  접시에  담아  만든다 . 이  사진은  비빔밥을  준비하는  단계를  보여준다 . 접시에는  비
빔밥의  주요  성분인  다지 (고구마 , 무 , 피망 , 오이 ), 미역 , 소스를  포함한  비빔밥이  담겨  있다 . 접시  
위에  노른자  한  개가  놓여  있는데 , 이는  비빔밥에  노른자를  더하는  데  사용될  것이다 . 비빔밥은  일
반적으로  접시에  담아  먹지만 , 접시에서  접시로  옮기거나  접시에서  접시로  옮길  수도  있다 . 비빔밥
은  일반적으로  매운  소스와  함께  먹으며 , 매운  소스는  매운  고추 , 양념장 , 간장과  같은  여러  가지  
재료로  만들어진다 .
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por favor presenta este deporte

El deporte representado en la imagen es el toro, también conocido como tauromaquia. Es 
un espectáculo que se origina en España y otros países de habla hispana, que involucra a 
un torero o matador que enfrenta un toro en una arena rodeada por una valla. El torero 
utiliza una muleta, un pañuelo de cuero con una cinta de oro o plata, para manejar al toro. 
La indumentaria tradicional del torero, conocida como traje de luces, suele incluir un 
chaqueta con un patrón de flores doradas sobre fondo azul, calzones rojos, medias rojas y 
botas negras, todo lo cual se ve en la imagen. Este espectáculo ha sido objeto de debate 
sobre cuestiones éticas relacionadas con los animales y su tratamiento, y se celebra 
principalmente en festivales culturales, como la Feria de San Fermín en Pamplona, España.

MiniCPM-Llama3-V 2.5

Figure 11: Multilingual results of MiniCPM-Llama3-V 2.5. We select German, French, Japanese,
Korean and Spanish as examples for demonstration.
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Please explain in detail what this picture is about.

The image appears to be a screenshot from a news article about 
the bioluminescence of the Sea of Stars on the Maldives. The 
article discusses the unique phenomenon where bioluminescent 
plankton illuminate the water at night, creating a mesmerizing light 
show. The author of the article, Sarah Harvey, provides a personal 
account of her experience witnessing this natural spectacle for the 
first time.
The article also touches on the scientific aspects of the phenomenon, 
explaining that it is caused by a chemical reaction between plankton 
and seawater, and it's one of the most beautiful attractions in the 
Maldives. The author notes that while there are no specific places 
to see this bioluminescence, it can be found in various locations 
around the Maldives.
The image includes a photo of the Sea of Stars, which is described as 
one of the highest-rated attractions in the Maldives. It's also 
mentioned that the bioluminescence of the Sea of Stars is similar to 
that of the Milky Way, which adds to its allure.
The article concludes with a call to action, inviting readers to 
choose an island with minimal light pollution to fully experience 
the bioluminescence of the Sea of Stars. It also suggests visiting 
during the Southwest Monsoon season from April to June for the 
most exciting experiences.
Overall, the image is a promotional piece for the Sea of Stars, 
highlighting its natural beauty and the unique experience it offers to 
visitors.
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描述画面内容

这幅图片描绘了一个繁忙的城市街道场景。在前景中，有一家名为“动画咖
啡馆”(Animate Cafe) 的商店，它有一个蓝色的招牌。这家店位于一栋砖砌
建筑的前面，这栋建筑上装饰着各种广告牌和标志。在街道上，有几辆摩托
车和一辆汽车停着或行驶着，表明这是一个活跃的交通环境。可以看到几个
人，其中一些正在行走，而另一些则坐在摩托车上。在背景中，可以看到其
他商店的招牌，包括一家名为“诚忠不动产”的房地产公司，以及一家名为"
全家便利店”(FamilyMart) 的便利商店。这些商店的存在表明该地区可能是
一个商业和住宅混合区。总体而言，这幅图像捕捉到了一个充满活力的城市
环境，展示了各种商店、交通和行人，营造出一种繁忙的都市氛围。

MiniCPM-V 2.0

Provide an intricate description of the image, 
capturing its visual elements, including colors, 
shapes, textures, objects, and any people present.

The image captures a bustling scene at a gas station. Dominating the foreground is a white 
truck, its letters "TA" emblazoned on its side, parked under the shelter of a large, white 
canopy. The canopy, with its sleek lines, contrasts against the backdrop of the sky.
Behind the truck, several large semi-trucks are parked, their metallic bodies gleaming under 
the clear sky. Among these, a red truck stands out, adding a splash of color to the scene. 
The ground is marked with yellow lines, guiding the flow of vehicles and ensuring safety.
In the background, power lines stretch across the sky, a testament to the city's infrastructure. 
Trees dot the landscape, their green leaves adding a touch of nature to the urban setting. The 
entire scene is a harmonious blend of man-made structures and natural elements.

This image features a busy fuel station during daylight. The sky is clear, hinting at a sunny 
day, and the natural light casts soft shadows on the ground. In the forefront, there's a white 
pickup truck with red and purple stripes and a logo on the door, parked at an angle. It has a 
utilitarian design with a cargo bed filled with assorted items, including what appears to be a 
red toolbox.
Behind the pickup, under a large, flat-roofed shelter, multiple large trucks are parked in a row. 
Each truck has a different color scheme; one is predominantly blue, another is red, and a 
third has a white cab pulling a trailer with red and blue stripes. The shelter’s roof is 
supported by thin pillars, creating an open space that looks clean and functional. 
To the left, there are fuel pumps with bright red housings and white tops, contrasting with 
the duller colors of the concrete ground. Various safety and direction signs are visible, such 
as a 'No Smoking' sign and arrows for traffic flow. There's an absence of people in the 
scene, which, combined with the stationary vehicles, gives the image a static feel. The overall 
appearance is one of an ordinary, mundane moment in a commercial or industrial area, 
captured in a photograph.

MiniCPM-V 2.0

GPT-4V

* The colored underlines are for illustration purposes only and not used as model input.

*The colored boxes are for illustration purposes only and not used as model input.

* The huallucinated output is marked in red color..

Figure 12: Qualitative results of MiniCPM-V 2.0. (1) Case 1 shows a scene-text understanding
example on the street. (2) Case 2 shows an example of image understanding with an extreme aspect
ratio. (3) Case 3 compares MiniCPM-V 2.0 and GPT-4V on detail captioning. The hallucinated
outputs are marked in red color.
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Figure 13: Multilingual results. Comparison between MiniCPM-Llama3-V 2.5, Yi-VL 34B, and
Phi-3-vision-128k-instruct on more languages.
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