import huggingface_hub from huggingface_hub import snapshot_download from ..smp import * from .video_base import VideoBaseDataset from .utils import build_judge, DEBUG_MESSAGE from ..utils import track_progress_rich import torchvision.transforms as T from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from decord import VideoReader, cpu import imageio import cv2 import zipfile import os import glob from moviepy.editor import VideoFileClip, ImageSequenceClip import moviepy.config_defaults from .utils.mvbench import * FAIL_MSG = 'Failed to obtain answer via API.' moviepy.config_defaults.LOGGER_LEVEL = logging.CRITICAL + 1 class MVBench(VideoBaseDataset): MD5 = 'ae2a2607e2f8618155709220c6e927a6' SYS = """Carefully watch the video and pay attention to the cause and sequence of events, \ the detail and movement of objects, and the action and pose of persons. \ Based on your observations, select the best option that accurately addresses the question. """ TYPE = 'MCQ' def __init__(self, dataset='MVBench', pack=False): self.type_data_list = { 'Action Sequence': ('action_sequence.json', 'your_data_path/star/Charades_v1_480/', 'video', True), # has start & end 'Action Prediction': ('action_prediction.json', 'your_data_path/star/Charades_v1_480/', 'video', True), # has start & end 'Action Antonym': ('action_antonym.json', 'your_data_path/ssv2_video/', 'video', False), 'Fine-grained Action': ('fine_grained_action.json', 'your_data_path/Moments_in_Time_Raw/videos/', 'video', False), 'Unexpected Action': ('unexpected_action.json', 'your_data_path/FunQA_test/test/', 'video', False), 'Object Existence': ('object_existence.json', 'your_data_path/clevrer/video_validation/', 'video', False), 'Object Interaction': ('object_interaction.json', 'your_data_path/star/Charades_v1_480/', 'video', True), # has start & end 'Object Shuffle': ('object_shuffle.json', 'your_data_path/perception/videos/', 'video', False), 'Moving Direction': ('moving_direction.json', 'your_data_path/clevrer/video_validation/', 'video', False), 'Action Localization': ('action_localization.json', 'your_data_path/sta/sta_video/', 'video', True), # has start & end 'Scene Transition': ('scene_transition.json', 'your_data_path/scene_qa/video/', 'video', False), 'Action Count': ('action_count.json', 'your_data_path/perception/videos/', 'video', False), 'Moving Count': ('moving_count.json', 'your_data_path/clevrer/video_validation/', 'video', False), 'Moving Attribute': ('moving_attribute.json', 'your_data_path/clevrer/video_validation/', 'video', False), 'State Change': ('state_change.json', 'your_data_path/perception/videos/', 'video', False), 'Fine-grained Pose': ('fine_grained_pose.json', 'your_data_path/nturgbd/', 'video', False), 'Character Order': ('character_order.json', 'your_data_path/perception/videos/', 'video', False), 'Egocentric Navigation': ('egocentric_navigation.json', 'your_data_path/vlnqa/', 'video', False), 'Episodic Reasoning': ('episodic_reasoning.json', 'your_data_path/tvqa/frames_fps3_hq/', 'frame', True), # has start & end, read frame 'Counterfactual Inference': ('counterfactual_inference.json', 'your_data_path/clevrer/video_validation/', 'video', False), } super().__init__(dataset=dataset, pack=pack) @classmethod def supported_datasets(cls): return ['MVBench'] def prepare_dataset(self, dataset_name='MVBench', repo_id='OpenGVLab/MVBench'): def check_integrity(pth): data_file = osp.join(pth, f'{dataset_name}.tsv') if not os.path.exists(data_file): return False if md5(data_file) != self.MD5: return False data = load(data_file) for idx, item in data.iterrows(): if not osp.exists(osp.join(pth, item['prefix'], item['video'])): return False return True cache_path = get_cache_path(repo_id, branch='main') if cache_path is not None and check_integrity(cache_path): dataset_path = cache_path else: def unzip_hf_zip(pth): pth = os.path.join(pth, 'video/') for filename in os.listdir(pth): if filename.endswith('.zip'): # 构建完整的文件路径 zip_path = os.path.join(pth, filename) # 解压 ZIP 文件 with zipfile.ZipFile(zip_path, 'r') as zip_ref: zip_ref.extractall(pth) def generate_tsv(pth): data_file = osp.join(pth, f'{dataset_name}.tsv') if os.path.exists(data_file) and md5(data_file) == self.MD5: return json_data_dir = os.path.join(dataset_path, 'json') self.data_list = [] for k, v in self.type_data_list.items(): with open(os.path.join(json_data_dir, v[0]), 'r') as f: json_data = json.load(f) for data in json_data: self.data_list.append({ 'task_type': k, 'prefix': v[1].replace('your_data_path', os.path.join(dataset_path, 'video')), 'data_type': v[2], 'bound': v[3], 'start': data['start'] if 'start' in data.keys() else None, 'end': data['end'] if 'end' in data.keys() else None, 'video': data['video'], 'question': data['question'], 'answer': data['answer'], 'candidates': data['candidates'] }) data_df = pd.DataFrame(self.data_list) data_df = data_df.assign(index=range(len(data_df))) data_df.to_csv(data_file, sep='\t', index=False) def move_files(pth): # special for mvbench src_folder = os.path.join(pth, 'video/data0613') for subdir in os.listdir(src_folder): subdir_path = os.path.join(src_folder, subdir) if os.path.isdir(subdir_path): for subsubdir in os.listdir(subdir_path): subsubdir_path = os.path.join(subdir_path, subsubdir) if os.path.isdir(subsubdir_path): for item in os.listdir(subsubdir_path): item_path = os.path.join(subsubdir_path, item) target_folder = os.path.join(pth, 'video', subdir, subsubdir, item) if not os.path.exists(target_folder): shutil.move(item_path, os.path.join(target_folder, item)) hf_token = os.environ.get('HUGGINGFACE_TOKEN') huggingface_hub.login(hf_token) dataset_path = snapshot_download(repo_id=repo_id, repo_type='dataset') move_files(dataset_path) unzip_hf_zip(dataset_path) generate_tsv(dataset_path) data_file = osp.join(dataset_path, f'{dataset_name}.tsv') self.decord_method = { 'video': self.read_video, 'gif': self.read_gif, 'frame': self.read_frame, } self.nframe = 8 self.resolution = 224 self.frame_fps = 3 # transform crop_size = self.resolution scale_size = self.resolution input_mean = [0.48145466, 0.4578275, 0.40821073] input_std = [0.26862954, 0.26130258, 0.27577711] self.transform = T.Compose([ GroupScale(int(scale_size), interpolation=InterpolationMode.BICUBIC), GroupCenterCrop(crop_size), Stack(), ToTorchFormatTensor(), GroupNormalize(input_mean, input_std) ]) return dict(root=dataset_path, data_file=data_file) def get_index(self, bound, fps, max_frame, first_idx=0): if bound: start, end = bound[0], bound[1] else: start, end = -100000, 100000 start_idx = max(first_idx, round(start * fps)) end_idx = min(round(end * fps), max_frame) seg_size = float(end_idx - start_idx) / self.num_segments frame_indices = np.array([ int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) for idx in range(self.num_segments) ]) return frame_indices def read_video(self, video_path, bound=None): vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) max_frame = len(vr) - 1 fps = float(vr.get_avg_fps()) images_group = list() frame_indices = self.get_index(bound, fps, max_frame, first_idx=0) for frame_index in frame_indices: img = Image.fromarray(vr[frame_index].asnumpy()) images_group.append(img) torch_imgs = self.transform(images_group) return torch_imgs def read_gif(self, video_path, bound=None, fps=25): gif = imageio.get_reader(video_path) max_frame = len(gif) - 1 images_group = list() frame_indices = self.get_index(bound, fps, max_frame, first_idx=0) for index, frame in enumerate(gif): if index in frame_indices: img = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB) img = Image.fromarray(img) images_group.append(img) torch_imgs = self.transform(images_group) return torch_imgs def read_frame(self, video_path, bound=None, fps=3): max_frame = len(os.listdir(video_path)) images_group = list() frame_indices = self.get_index(bound, fps, max_frame, first_idx=1) # frame_idx starts from 1 for frame_index in frame_indices: img = Image.open(os.path.join(video_path, f'{frame_index:05d}.jpg')) images_group.append(img) torch_imgs = self.transform(images_group) return torch_imgs def save_video_frames(self, imgs, video_name, frames): frame_paths = self.frame_paths(video_name, frames) flag = np.all([osp.exists(p) for p in frame_paths]) if not flag: block_size = imgs.size(0) // frames split_tensors = torch.split(imgs, block_size) to_pil = transforms.ToPILImage() images = [to_pil(arr) for arr in split_tensors] for im, pth in zip(images, frame_paths): if not osp.exists(pth): im.save(pth) return frame_paths def qa_template(self, data): question = f"Question: {data['question']}\n" question += 'Options:\n' answer = data['answer'] answer_idx = -1 for idx, c in enumerate(eval(data['candidates'])): question += f"({chr(ord('A') + idx)}) {c}\n" if c == answer: answer_idx = idx question = question.rstrip() answer = f"({chr(ord('A') + answer_idx)}) {answer}" return question, answer def load_into_video_and_process(self, line): video_path = os.path.join(line['prefix'], line['video']) if line['data_type'] in ['gif'] or os.path.splitext(video_path)[1] in ['.webm']: processed_video_path = video_path.replace(os.path.splitext(video_path)[1], '.mp4') if not os.path.exists(processed_video_path): # using MoviePy to transform GIF, webm into mp4 format gif_clip = VideoFileClip(video_path) gif_clip.write_videofile(processed_video_path, codec='libx264') gif_clip.close() elif line['data_type'] in ['frame']: input_images = os.path.join(video_path, '*.jpg') processed_video_path = f'{video_path}.mp4' if not os.path.exists(processed_video_path): # using MoviePy to transform images into mp4 image_files = sorted(glob.glob(input_images)) image_clip = ImageSequenceClip(image_files, fps=self.frame_fps) image_clip.write_videofile(processed_video_path, codec='libx264') image_clip.close() else: processed_video_path = video_path if line['bound']: base_name, suffix = os.path.splitext(processed_video_path) output_video_path = f'{base_name}_processed{suffix}' if not os.path.exists(output_video_path): video_clip = VideoFileClip(processed_video_path) clip = video_clip.subclip(line['start'], min(line['end'], video_clip.duration)) clip.write_videofile(output_video_path) clip.close() else: output_video_path = processed_video_path return output_video_path def build_prompt(self, line, num_frames, video_llm): if isinstance(line, int): assert line < len(self) line = self.data.iloc[line] question, answer = self.qa_template(line) message = [dict(type='text', value=self.SYS)] message.append(dict(type='text', value=question)) if video_llm: new_video_path = self.load_into_video_and_process(line) message.append(dict(type='video', value=new_video_path)) else: bound = None if line['bound']: bound = ( line['start'], line['end'], ) video_path = os.path.join(line['prefix'], line['video']) decord_method = self.decord_method[line['data_type']] self.num_segments = num_frames if num_frames > 0 else self.nframe torch_imgs = decord_method(video_path, bound) img_frame_paths = self.save_video_frames(torch_imgs, line['video'], self.num_segments) for im in img_frame_paths: message.append(dict(type='image', value=im)) message.append(dict(type='text', value='\nOnly give the best option.')) message.append(dict(type='text', value='Best option:(')) return message @classmethod def evaluate(self, eval_file, **judge_kwargs): assert eval_file.endswith('.xlsx'), 'data file should be an xlsx file' tmp_file = eval_file.replace('.xlsx', '_tmp.pkl') tgt_file = eval_file.replace('.xlsx', '_rating.json') score_file = eval_file.replace('.xlsx', '_score.xlsx') if not osp.exists(score_file): res = {} if not osp.exists(tmp_file) else load(tmp_file) res = {k: v for k, v in res.items() if FAIL_MSG not in v} data = load(eval_file) data_un = data[~pd.isna(data['prediction'])] for idx in data['index']: ans = data.loc[data['index'] == idx, 'answer'].values[0] pred = data.loc[data['index'] == idx, 'prediction'].values[0] options = eval(data.loc[data['index'] == idx, 'candidates'].values[0]) answer_idx = -1 for id, c in enumerate(options): if c == ans: answer_idx = id ans = f"({chr(ord('A') + answer_idx)}) {ans}" if FAIL_MSG in pred: data.loc[idx, 'score'] = -1 else: data.loc[idx, 'score'] = int(check_ans(pred, ans)) rejected = [x for x in data['score'] if x == -1] print( f'Among {len(data)} questions, failed to obtain prediction for {len(data) - len(data_un)} questions, ' f'failed to obtain the score for another {len(rejected)} questions. ' f'Those questions will be counted as -1 score in ALL rating, and will not be counted in VALID rating.' ) dump(data, score_file) rating = get_dimension_rating(score_file) dump(rating, tgt_file) return rating class MVBench_MP4(VideoBaseDataset): MP4_MD5 = '7b4608045347904c28c153015a7a2b6b' SYS = """Carefully watch the video and pay attention to the cause and sequence of events, \ the detail and movement of objects, and the action and pose of persons. \ Based on your observations, select the best option that accurately addresses the question. """ TYPE = 'MCQ' def __init__(self, dataset='MVBench_MP4', pack=False): super().__init__(dataset=dataset, pack=pack) @classmethod def supported_datasets(cls): return ['MVBench_MP4'] def prepare_dataset(self, dataset_name='MVBench_MP4', repo_id='OpenGVLab/MVBench'): def check_integrity(pth): data_file = osp.join(pth, f'{dataset_name}.tsv') if not os.path.exists(data_file): return False if md5(data_file) != self.MP4_MD5: return False data = load(data_file) for idx, item in data.iterrows(): if not osp.exists(osp.join(pth, item['prefix'], item['video'])): return False return True cache_path = get_cache_path(repo_id, branch='video') if cache_path is not None and check_integrity(cache_path): dataset_path = cache_path else: def generate_tsv(pth): data_file = osp.join(pth, f'{dataset_name}.tsv') if os.path.exists(data_file) and md5(data_file) == self.MD5: return json_data_path = os.path.join(dataset_path, 'test.json') json_data = load(json_data_path) root_data_dict = json_data['root'] self.data_list = [] for k, v in json_data['meta'].items(): for item in v: self.data_list.append({ 'task_type': k, 'prefix': root_data_dict[k], 'video': item['video'], 'question': item['question'], 'answer': item['answer'], 'candidates': item['candidates'] }) data_df = pd.DataFrame(self.data_list) data_df = data_df.assign(index=range(len(data_df))) data_df.to_csv(data_file, sep='\t', index=False) hf_token = os.environ.get('HUGGINGFACE_TOKEN') huggingface_hub.login(hf_token) dataset_path = snapshot_download(repo_id=repo_id, repo_type='dataset', revision='video') generate_tsv(dataset_path) data_file = osp.join(dataset_path, f'{dataset_name}.tsv') self.nframe = 8 self.resolution = 224 # transform crop_size = self.resolution scale_size = self.resolution input_mean = [0.48145466, 0.4578275, 0.40821073] input_std = [0.26862954, 0.26130258, 0.27577711] self.transform = T.Compose([ GroupScale(int(scale_size), interpolation=InterpolationMode.BICUBIC), GroupCenterCrop(crop_size), Stack(), ToTorchFormatTensor(), GroupNormalize(input_mean, input_std) ]) return dict(root=dataset_path, data_file=data_file) def qa_template(self, data): question = f"Question: {data['question']}\n" question += 'Options:\n' answer = data['answer'] answer_idx = -1 for idx, c in enumerate(eval(data['candidates'])): question += f"({chr(ord('A') + idx)}) {c}\n" if c == answer: answer_idx = idx question = question.rstrip() answer = f"({chr(ord('A') + answer_idx)}) {answer}" return question, answer def get_index(self, max_frame): seg_size = float(max_frame) / self.num_segments frame_indices = np.array([ int((seg_size / 2) + np.round(seg_size * idx)) for idx in range(self.num_segments) ]) return frame_indices def read_video(self, video_path, bound=None): vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) max_frame = len(vr) - 1 images_group = list() frame_indices = self.get_index(max_frame) for frame_index in frame_indices: img = Image.fromarray(vr[frame_index].asnumpy()) images_group.append(img) torch_imgs = self.transform(images_group) return torch_imgs def save_video_frames(self, imgs, video_name, frames): frame_paths = self.frame_paths(video_name, frames) flag = np.all([osp.exists(p) for p in frame_paths]) if not flag: block_size = imgs.size(0) // frames split_tensors = torch.split(imgs, block_size) to_pil = transforms.ToPILImage() images = [to_pil(arr) for arr in split_tensors] for im, pth in zip(images, frame_paths): if not osp.exists(pth): im.save(pth) return frame_paths def build_prompt(self, line, num_frames, video_llm): if isinstance(line, int): assert line < len(self) line = self.data.iloc[line] question, answer = self.qa_template(line) message = [dict(type='text', value=self.SYS)] message.append(dict(type='text', value=question)) video_path = os.path.join(self.data_root, line['prefix'], line['video']) if video_llm: message.append(dict(type='video', value=video_path)) else: video_path = os.path.join(self.data_root, line['prefix'], line['video']) self.num_segments = num_frames if num_frames > 0 else self.nframe torch_imgs = self.read_video(video_path) img_frame_paths = self.save_video_frames(torch_imgs, line['video'], self.num_segments) for im in img_frame_paths: message.append(dict(type='image', value=im)) message.append(dict(type='text', value='\nOnly give the best option.')) message.append(dict(type='text', value='Best option:(')) return message @classmethod def evaluate(self, eval_file, **judge_kwargs): assert eval_file.endswith('.xlsx'), 'data file should be an xlsx file' tmp_file = eval_file.replace('.xlsx', '_tmp.pkl') tgt_file = eval_file.replace('.xlsx', '_rating.json') score_file = eval_file.replace('.xlsx', '_score.xlsx') if not osp.exists(score_file): res = {} if not osp.exists(tmp_file) else load(tmp_file) res = {k: v for k, v in res.items() if FAIL_MSG not in v} data = load(eval_file) data_un = data[~pd.isna(data['prediction'])] for idx in data['index']: ans = data.loc[data['index'] == idx, 'answer'].values[0] pred = data.loc[data['index'] == idx, 'prediction'].values[0] options = eval(data.loc[data['index'] == idx, 'candidates'].values[0]) answer_idx = -1 for id, c in enumerate(options): if c == ans: answer_idx = id ans = f"({chr(ord('A') + answer_idx)}) {ans}" if FAIL_MSG in pred: data.loc[idx, 'score'] = -1 else: data.loc[idx, 'score'] = int(check_ans(pred, ans)) rejected = [x for x in data['score'] if x == -1] print( f'Among {len(data)} questions, failed to obtain prediction for {len(data) - len(data_un)} questions, ' f'failed to obtain the score for another {len(rejected)} questions. ' f'Those questions will be counted as -1 score in ALL rating, and will not be counted in VALID rating.' ) dump(data, score_file) rating = get_dimension_rating(score_file) dump(rating, tgt_file) return rating