import functools import numpy as np import librosa import os import time import traceback from typing import List, NamedTuple, Optional class VadOptions(NamedTuple): """VAD options. Attributes: threshold: Speech threshold. Silero VAD outputs speech probabilities for each audio chunk, probabilities ABOVE this value are considered as SPEECH. It is better to tune this parameter for each dataset separately, but "lazy" 0.5 is pretty good for most datasets. min_speech_duration_ms: Final speech chunks shorter min_speech_duration_ms are thrown out. max_speech_duration_s: Maximum duration of speech chunks in seconds. Chunks longer than max_speech_duration_s will be split at the timestamp of the last silence that lasts more than 100ms (if any), to prevent aggressive cutting. Otherwise, they will be split aggressively just before max_speech_duration_s. min_silence_duration_ms: In the end of each speech chunk wait for min_silence_duration_ms before separating it window_size_samples: Audio chunks of window_size_samples size are fed to the silero VAD model. WARNING! Silero VAD models were trained using 512, 1024, 1536 samples for 16000 sample rate. Values other than these may affect model performance!! speech_pad_ms: Final speech chunks are padded by speech_pad_ms each side """ # threshold: float = 0.3 # rep 0.5 # min_speech_duration_ms: int = 250 # max_speech_duration_s: float = float("inf") # min_silence_duration_ms: int = 2000 # window_size_samples: int = 1024 # speech_pad_ms: int = 600 # rep 400 threshold: float = 0.7 # gw: 0.3 # rep 0.5 min_speech_duration_ms: int = 128 # original & gw: 250 max_speech_duration_s: float = float("inf") min_silence_duration_ms: int = 500 # original & gw: 2000 window_size_samples: int = 1024 speech_pad_ms: int = 30 # gw: 600 # rep 400 class SileroVADModel: def __init__(self, path): try: import onnxruntime except ImportError as e: raise RuntimeError( "Applying the VAD filter requires the onnxruntime package" ) from e opts = onnxruntime.SessionOptions() opts.inter_op_num_threads = 1 opts.intra_op_num_threads = 1 opts.log_severity_level = 4 self.session = onnxruntime.InferenceSession( path, providers=["CPUExecutionProvider"], sess_options=opts, ) def get_initial_state(self, batch_size: int): h = np.zeros((2, batch_size, 64), dtype=np.float32) c = np.zeros((2, batch_size, 64), dtype=np.float32) return h, c def __call__(self, x, state, sr: int): if len(x.shape) == 1: x = np.expand_dims(x, 0) if len(x.shape) > 2: raise ValueError( f"Too many dimensions for input audio chunk {len(x.shape)}" ) if sr / x.shape[1] > 31.25: raise ValueError("Input audio chunk is too short") h, c = state ort_inputs = { "input": x, #"state": np.concatenate((h, c), axis=0), "h": h, "c": c, "sr": np.array(sr, dtype="int64"), } out, h, c = self.session.run(None, ort_inputs) #out = self.session.run(None, ort_inputs) state = (h, c) return out, state @functools.lru_cache def get_vad_model(): """Returns the VAD model instance.""" path = os.path.join(os.path.dirname(__file__), "silero_vad.onnx") return SileroVADModel(path) def get_speech_timestamps( audio: np.ndarray, vad_options: Optional[VadOptions] = None, **kwargs, ) -> List[dict]: """This method is used for splitting long audios into speech chunks using silero VAD. Args: audio: One dimensional float array. vad_options: Options for VAD processing. kwargs: VAD options passed as keyword arguments for backward compatibility. Returns: List of dicts containing begin and end samples of each speech chunk. """ if vad_options is None: vad_options = VadOptions(**kwargs) threshold = vad_options.threshold min_speech_duration_ms = vad_options.min_speech_duration_ms max_speech_duration_s = vad_options.max_speech_duration_s min_silence_duration_ms = vad_options.min_silence_duration_ms window_size_samples = vad_options.window_size_samples speech_pad_ms = vad_options.speech_pad_ms if window_size_samples not in [512, 1024, 1536]: warnings.warn( "Unusual window_size_samples! Supported window_size_samples:\n" " - [512, 1024, 1536] for 16000 sampling_rate" ) sampling_rate = 16000 min_speech_samples = sampling_rate * min_speech_duration_ms / 1000 #如果间隔区间没这个长度就不会添加 speech_pad_samples = sampling_rate * speech_pad_ms / 1000 max_speech_samples = ( sampling_rate * max_speech_duration_s - window_size_samples - 2 * speech_pad_samples ) min_silence_samples = sampling_rate * min_silence_duration_ms / 1000 # 在每个silent需要等 min_silence_duration_ms 后才结束, min_silence_samples_at_max_speech = sampling_rate * 98 / 1000 # 0.098s # need to adjust? audio_length_samples = len(audio) # import pdb # pdb.set_trace() model = get_vad_model() state = model.get_initial_state(batch_size=1) speech_probs = [] #print("audio_length_samples ", audio_length_samples, ", window_size_samples ", window_size_samples) for current_start_sample in range(0, audio_length_samples, window_size_samples): chunk = audio[current_start_sample : current_start_sample + window_size_samples] if len(chunk) < window_size_samples: chunk = np.pad(chunk, (0, int(window_size_samples - len(chunk)))) speech_prob, state = model(chunk, state, sampling_rate) speech_probs.append(speech_prob) triggered = False speeches = [] current_speech = {} neg_threshold = threshold - 0.15 # to save potential segment end (and tolerate some silence) temp_end = 0 # to save potential segment limits in case of maximum segment size reached prev_end = next_start = 0 # 大概是一段音频找出其中连续部分,如果遇到silent的话会先记录temp_end,然后如果没超过最小silent长度遇到active的情况下会重置temp_end。silent片段会分别记录silent的起终,在超过长度的时候切开(不完全确定,但是inf的最大长也遇不到) for i, speech_prob in enumerate(speech_probs): if (speech_prob >= threshold) and temp_end: temp_end = 0 if next_start < prev_end: next_start = window_size_samples * i if (speech_prob >= threshold) and not triggered: triggered = True current_speech["start"] = window_size_samples * i continue if ( triggered and (window_size_samples * i) - current_speech["start"] > max_speech_samples ): if prev_end: current_speech["end"] = prev_end speeches.append(current_speech) current_speech = {} # previously reached silence (< neg_thres) and is still not speech (< thres) if next_start < prev_end: triggered = False else: current_speech["start"] = next_start prev_end = next_start = temp_end = 0 else: current_speech["end"] = window_size_samples * i speeches.append(current_speech) current_speech = {} prev_end = next_start = temp_end = 0 triggered = False continue if (speech_prob < neg_threshold) and triggered: if not temp_end: temp_end = window_size_samples * i # condition to avoid cutting in very short silence if (window_size_samples * i) - temp_end > min_silence_samples_at_max_speech: prev_end = temp_end if (window_size_samples * i) - temp_end < min_silence_samples: continue else: current_speech["end"] = temp_end if ( current_speech["end"] - current_speech["start"] ) > min_speech_samples: speeches.append(current_speech) current_speech = {} prev_end = next_start = temp_end = 0 triggered = False continue if ( current_speech and (audio_length_samples - current_speech["start"]) > min_speech_samples ): current_speech["end"] = audio_length_samples speeches.append(current_speech) # pad 多少ms,每个中间都会不足平分 for i, speech in enumerate(speeches): if i == 0: speech["start"] = int(max(0, speech["start"] - speech_pad_samples)) if i != len(speeches) - 1: silence_duration = speeches[i + 1]["start"] - speech["end"] if silence_duration < 2 * speech_pad_samples: speech["end"] += int(silence_duration // 2) speeches[i + 1]["start"] = int( max(0, speeches[i + 1]["start"] - silence_duration // 2) ) else: speech["end"] = int( min(audio_length_samples, speech["end"] + speech_pad_samples) ) speeches[i + 1]["start"] = int( max(0, speeches[i + 1]["start"] - speech_pad_samples) ) else: speech["end"] = int( min(audio_length_samples, speech["end"] + speech_pad_samples) ) return speeches def collect_chunks(audio: np.ndarray, chunks: List[dict]) -> np.ndarray: """Collects and concatenates audio chunks.""" if not chunks: return np.array([], dtype=np.float32) return np.concatenate([audio[chunk["start"] : chunk["end"]] for chunk in chunks]) def run_vad(ori_audio, sr, vad_options=None): _st = time.time() try: audio = np.frombuffer(ori_audio, dtype=np.int16) audio = audio.astype(np.float32) / 32768.0 sampling_rate = 16000 if sr != sampling_rate: audio = librosa.resample(audio, orig_sr=sr, target_sr=sampling_rate) # print('audio.encode.shape: {}'.format(audio.shape)) if vad_options is None: vad_options = VadOptions() # 确保传递给 get_speech_timestamps 的是 VadOptions 实例 speech_chunks = get_speech_timestamps(audio, vad_options=vad_options) # print(speech_chunks) audio = collect_chunks(audio, speech_chunks) # print(audio.shape) duration_after_vad = audio.shape[0] / sampling_rate # print('audio.decode.shape: {}'.format(audio.shape)) if sr != sampling_rate: # resample to original sampling rate vad_audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=sr) else: vad_audio = audio vad_audio = np.round(vad_audio * 32768.0).astype(np.int16) # 这个round会有一定的误差 vad_audio_bytes = vad_audio.tobytes() return duration_after_vad, vad_audio_bytes, round(time.time() - _st, 4) except Exception as e: msg = f"[asr vad error] audio_len: {len(ori_audio)/(sr*2):.3f} s, trace: {traceback.format_exc()}" print(msg) return -1, ori_audio, round(time.time() - _st, 4)