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Abstract

Multimodal Large Language Models (MLLMs) are undergoing rapid progress and
represent the frontier of AI development. However, their training and inference
efficiency have emerged as a core bottleneck in making MLLMs more accessi-
ble and scalable. To address the challenges, we present MiniCPM-V 4.5, an 8B
parameter model designed for high efficiency and strong performance. We intro-
duce three core improvements in model architecture, data strategy and training
method: a unified 3D-Resampler model architecture for highly compact encod-
ing over images and videos, a unified learning paradigm for document knowledge
and text recognition without heavy data engineering, and a hybrid reinforcement
learning strategy for proficiency in both short and long reasoning modes. Compre-
hensive experimental results in OpenCompass evaluation show that MiniCPM-V
4.5 surpasses widely used proprietary models such as GPT-4o-latest, and signifi-
cantly larger open-source models such as Qwen2.5-VL 72B. Notably, the strong
performance is achieved with remarkable efficiency. For example, on the widely
adopted VideoMME benchmark, MiniCPM-V 4.5 achieves state-of-the-art per-
formance among models under 30B size, using just 46.7% GPU memory cost and
8.7% inference time of Qwen2.5-VL 7B.

1 Introduction

Multimodal Large Language Models (MLLMs) [1, 2, 3, 4, 5, 6, 7] are advancing rapidly the frontier
of artificial intelligence, enabling machines to understand and reason over different modalities such
as text and images. However, as MLLMs evolve, the cost of data engineering, training and inference
also increases heavily. Addressing this efficiency challenge is now a central focus of both research
and industry [6, 8, 9, 10, 11], essential for making capable MLLMs more accessible and scalable.

We decompose this efficiency problem into three core aspects: (1) Model Architecture. A primary
efficiency bottleneck in MLLMs comes from the large number of visual tokens for high-resolution
image encoding, which brings heavy computation overhead for visual encoders and LLM decoders.
The problem is even exacerbated in video understanding, where existing models can take thousands
of tokens to encode a short and low-resolution video, even when sampling at a low frame rate. For

∗Corresponding authors.

https://github.com/openbmb/MiniCPM-V
https://huggingface.co/openbmb/MiniCPM-V-4_5


example, processing a 6-second, 2-fps video at a resolution of just 448×448 requires 1,536 tokens
for Qwen2.5-VL [7], and 3,072 tokens for InternVL3 [9]. Such long visual token sequences lead
to prohibitive training and inference costs in GPU memory and computation speed. (2) Training
Data. As we quickly run out of new knowledge from traditional web page data, a new cornerstone
of modern MLLMs is harnessing high-quality multimodal knowledge from documents [1, 2], such
as scientific papers and textbooks. These documents are often stored as PDFs, containing multi-
disciplinary knowledge in various domains and organized in diverse layouts of interleaved texts,
images and tables. However, most methods depend on brittle external parsing tools to convert doc-
ument files into interleaved image-text sequences for training. These tools often fail in complex
layouts, leading to either errors in knowledge learning or heavy data engineering efforts to fix fail-
ure cases. (3) Training Methods. Reinforcement Learning (RL) has shown promise in improving
complex reasoning capabilities by enabling a step-by-step explicit thinking process before provid-
ing the final answer [12, 1]. However, this performance gain often comes at the expense of extreme
verbosity. Even for simple tasks such as identifying obvious objects, most existing thinking models
produce excessively long outputs, inducing poor efficiency in both training and inference.

To address the challenges, MiniCPM-V 4.5 introduces three key improvements in model architec-
ture, data strategy and training method: (1) Unified 3D-Resampler for Compact Image and Video
Encoding. Previous MiniCPM-V series models [6] exhibit high compression rates (e.g., 4× com-
pared with most MLLMs) for high-resolution images via 2D-Resamplers [5, 13]. To further address
the architectural inefficiency of video processing, we extend the 2D-Resampler to a 3D-Resampler
that jointly compresses spatial-temporal information for videos. This module can encode a 6-second,
2-fps, 448×448 resolution video into only 128 visual tokens, achieving a 12×-24× reduction in to-
ken cost compared to representative MLLMs [7, 9], enabling efficient high-frame-rate and long
video understanding, and unified encoding for images as well. (2) Unified Learning Paradigm
for Document Knowledge and OCR. We propose a learning paradigm that enables the model to
accurately acquire knowledge directly from document images, eliminating the need for fragile ex-
ternal parsers. By dynamically corrupting text regions in documents with varying noise levels and
asking the model to reconstruct the text, the model learns to adaptively and properly switch between
accurate text recognition (when text is roughly visible) and multimodal context-based knowledge
reasoning (when text is heavily corrupted). (3) Hybrid Strategy for Post-Training. Unlike prior
models that optimize for a single long reasoning mode [2, 1], we develop a hybrid RL post-training
strategy to support both short reasoning mode for efficient usage and long reasoning mode for com-
plex tasks. In RL training, we randomly alternate between two modes during the rollout process for
joint optimization. This approach not only enables flexible control over the short and long reasoning
modes but also allows for mutual performance enhancement. In experiments, we can achieve better
reasoning performance with fewer training samples for both modes.

Comprehensive experimental results in OpenCompass evaluation show that MiniCPM-V 4.5 out-
performs widely used proprietary models such as GPT-4o-latest [4], and significantly larger open-
source models such as Qwen2.5-VL 72B [7]. Notably, the strong performance is achieved with
remarkable efficiency. For example, powered by the efficient unified 3D-Resampler, MiniCPM-V
4.5 achieves equivalent performance on VideoMME [14] using only 9.9% of the inference time of
prior state-of-the-art MLLMs [1]. Based on the hybrid post-training strategy, MiniCPM-V 4.5 ex-
cels in both short and long reasoning modes, outperforming concurrent thinking models [3, 1] on
OpenCompass evaluation while using only 42.9%-68.2% inference time.

In summary, our contributions are as follows:

• We open-source MiniCPM-V 4.5, an efficient and strong MLLM that supports efficient high-
frame-rate and long video understanding, robust OCR and strong document parsing capabilities,
and controllable hybrid reasoning.

• We introduce three key improvements: a unified 3D-Resampler for efficient image and video
encoding, a unified paradigm for document knowledge and OCR learning, and a hybrid strategy
for post-training that enhances both performance and efficiency.

• Comprehensive experiments demonstrate the effectiveness of the proposed technical improve-
ments and the performance of MiniCPM-V 4.5.
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Figure 1: An overview of the MiniCPM-V 4.5 architecture. The model processes diverse visual
inputs, such as high-resolution images and high-frame-rate videos. After the image partitioning and
video packing processes, these inputs are encoded by a visual encoder and then fed into the unified
3D-Resampler. This module efficiently compresses both image and video features into a compact
token sequence (achieving up to 16× compression rate for images and an additional 6× for videos),
which is then processed by the LLM decoder. The decoder can generate responses in two distinct
styles: a concise, short reasoning mode or a step-by-step, long reasoning mode.

2 Approach

In this section, we describe the methodology of MiniCPM-V 4.5, including the model architecture
and the recipes for pre-training, SFT and RL.

2.1 Architecture

As shown in Figure 1, the architecture of MiniCPM-V 4.5 comprises three main modules: (1) A
lightweight visual encoder that flexibly handles high-resolution images with a special partitioning
strategy. (2) A unified 3D-Resampler that encodes images and videos into compact features, ex-
ploiting spatial-temporal redundancies in visual information. (3) An LLM decoder that understands
images, videos, text, and generates text outputs.

2.1.1 The Unified 3D-Resampler

To tackle the image and video encoding efficiency bottleneck in MLLMs [15, 16], we extend the 2D-
Resampler to a 3D-Resampler that jointly incorporate spatial-temporal information for compression.
In this way, we achieve an additional 6× temporal compression rate compared to the 2D-Resampler,
by leveraging the temporal redundancy of consecutive video frames.

Image Processing. To handle high-resolution images in any aspect ratio, we adopt the LLaVA-
UHD [13] image partitioning strategy. For each image, we estimate the ideal number of slices
from the input resolution and choose the partition whose per-slice resolution deviates least from
the visual encoder pretraining setting. We then use learnable queries augmented with 2D spatial
positional embeddings to produce a fixed-length sequence for each slice through cross-attention.
Most existing MLLMs [7, 9, 1] adopt MLP and pixel unshuffle operation for visual compression,
and typically require visual 256 tokens for encoding a 448×448 image. Leveraging the flexibility
of resampler architecture, by choosing a small number of query tokens, MiniCPM-V can achieve a
significantly higher compression rate for visual tokens (e.g., 64 tokens for a 448×448 image) while
maintaining good performance.

Video Processing. To handle the significant redundancy in video data, we employ a joint spatial-
temporal compression strategy for higher compression rates. For each video, we first split it into
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packages along the temporal dimension, where each package contains adjacent frames. Intuitively,
video frames within the same package typically share highly redundant visual information, which
can be identified and compressed when jointly modeled. To this end, we resample the frame fea-
tures from the visual encoder in each package into a fixed-length feature sequence through cross-
attention. We augment the learnable queries with both 2D spatial positional embedding, as used in
image encoding, and temporal positional embedding. The final video representation is obtained by
concatenating the token sequences from all packages. We sample at most 1080 frames per video
at a maximum frame rate of 10. During training, the package size and frame rate are randomly
augmented to improve robustness. This design also provides flexibility at inference time, allowing
these hyperparameters to be adjusted to meet the demands of diverse scenarios and devices.

Based on the 3D-Resampler, MiniCPM-V 4.5 can achieve 96× compression rate for video tokens,
where 6 448×448 video frames2 can be jointly compressed into 64 video tokens (normally 1,536-
3,072 tokens for most MLLMs). This means that the model can perceive significantly more video
frames without increasing the LLM inference cost, which brings strong high-frame-rate video un-
derstanding and long video understanding capabilities.

Training Efficiency. Thanks to the flexibility of the resampler mechanism (agnostic to input shape),
we can use the same 3D-Resampler for unified visual encoding over images and videos. This means
that image and visual encoding share the same architecture and weights, and therefore, we can
achieve the extension from 2D-Resampler to 3D-Resampler efficiently via a lightweight SFT stage.
Moreover, this also facilitates efficient knowledge transfer from images to videos. For example,
we observe reasonable video OCR capability in MiniCPM-V 4.5, although we did not specifically
collect such training data.

Takeaway
1. Joint spatial–temporal compression can enable higher visual compression rates.
2. A unified architecture can be more efficiently adapted with minimal additional training

and facilitates knowledge transfer from images to videos.

2.2 Pre-training

Our pre-training process aims to systematically build the model’s foundational capabilities through
a progressive, multi-stage strategy. This involves a carefully curated data composition and a novel
unified paradigm for document knowledge and OCR learning.

2.2.1 Pre-training Strategy

The pre-training comprises three progressive stages. Each stage strategically unfreezes different
model components and introduces increasingly complex data to optimize learning efficiency.

Stage 1. We begin with a warm-up stage, training only the resampler module while all other com-
ponents remain frozen. This stage uses image-caption data to establish an initial alignment between
visual and language modalities with minimal training cost.

Stage 2. We then unfreeze the vision encoder to enhance the perceptual foundation capability. This
stage consumes OCR-rich data and image-caption data. Since the data in this stage may lack the
fluency or quality required for language modeling, the LLM decoder remains frozen in this stage.

Stage 3. With the cross-modal bridge in place and the perceptual foundation set, the final stage
trains all model parameters end-to-end using our highest quality data, including text-only corpora,
image-text interleaved samples, videos and a curated subset from earlier stages. At this point, we
unfreeze the LLM decoder to fully exploit the knowledge and skills in data, encompassing multi-
image reasoning and temporal understanding. We adopt the Warmup-Stable-Decay learning rate
scheduler [17]. During the decay phase, we gradually add more high-quality instruction data and
knowledge-intensive data.

2Each frame costs 1024 token from the visual encoder.
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Figure 2: Unified paradigm for document knowledge and OCR learning via dynamic visual cor-
ruption. We create a spectrum of training tasks through varied corruption levels: low corruption
preserves readability to learn robust OCR, high corruption forces the model to perform contextual
inference, and moderate corruption requires integrated inference from visual clues and context.

2.2.2 Pre-training Data

Image Caption Data. We combine large-scale public datasets (LAION-2B [18], COYO [19], etc.)
with curated Chinese image-text pairs crawled from the web. We filter out low-resolution images
and remove irrelevant image-text pairs with CLIP [20]. To enrich alt-text descriptions, we employ
a Capsfusion-based [21] re-captioning process on a subset to generate fluent and factually complete
captions. In this way, we formulate the valuable world knowledge in raw captions into more fluent
natural language. We employ an MLLM to tag images with concept labels and ensure a balanced
distribution across languages and long-tail concepts.

Image-Text Interleaved Data. Sourced from Common Crawl [22], OmniCorpus [23] and MINT-
1T [24], image-text interleaved data is crucial for in-context learning and multi-image understanding
capabilities. We apply filtering to ensure quality, removing samples with broken images or imbal-
anced image-text ratios. We further use relevance filtering to ensure meaningful multimodal asso-
ciations, and employ knowledge density filtering to select a high-quality subset for the final decay
phase of pre-training.

OCR Data. We synthesize OCR data to enhance the basic text recognition capability during the
early pre-training stage. We render text on natural scenes with various combinations of color and
font following [25], and also render real-world HTML sources into images.

Document Data. We collect documents, including scientific papers, academic reports, textbooks,
etc., from the web. This data exhibits high knowledge density and contains visually complex layouts.

Video Caption Data. We aggregate several public datasets [26, 27, 28], and supplement them with
more detailed in-house video captions. This diverse collection supports the development of temporal
visual reasoning capabilities essential for video comprehension.

2.2.3 Unified Paradigm for Document Knowledge and OCR Learning

Documents, such as scientific papers and textbooks, are vital resources for learning diverse layouts
and acquiring multi-disciplinary knowledge in various domains. However, most MLLMs depend
on brittle external parsers to convert document PDFs into an interleaved image-text sequence for
training. Such a noisy and inefficient process often introduces structural errors or requires heavy
data engineering efforts to fix failure cases.

Another challenge for OCR learning is that, while stronger image augmentation can create more
diverse and harder samples need for robust OCR, over-augmentation can make the texts indistin-
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guishable. Forcing the model to produce the ground truth text from such indistinguishable visual
input typically leads to hallucination problems. Therefore, previously, we could only afford a small
and safe level of augmentation.

To overcome both challenges, we propose a unified training paradigm that learns directly from
document images, using their original text as ground truth. Our key insight is that the most important
difference between document knowledge acquisition and text recognition is the visibility of the
text in images. We unify both capabilities into a single learning objective: predicting original text
from corrupted document images. By dynamically corrupting text regions with varying corruption
levels, the model learns to adaptively and properly switch between precise text recognition (when
text is distinguishable) and multimodal context-based knowledge reasoning (when text is heavily
obscured or masked), as illustrated in Figure 2. This eliminates reliance on fragile parsers and
prevents hallucinations from over-augmented OCR data.

Specifically, for each document, we treat a subset of its text regions as training ground truth. We then
stochastically apply different levels of corruption to each region, creating different training tasks:

1. Low Corruption (Augmented OCR). When mild noise is applied to a text region, the texts are
still recognizable, and the model could effectively predict them via text recognition.

2. Moderate Corruption (Integrated Inference). When heavy noise is applied to the text region,
individual characters become highly ambiguous and unreliable for recognition. The model must
therefore learn to integrate the noisy visual cues from the corrupted region with the high-level
document context and its internal knowledge to reconstruct the original text.

3. High Corruption (Contextual Inference and Document Knowledge Learning). With the text
region completely masked out, the model cannot rely on character-level cues to predict the miss-
ing content. Consequently, the model is forced to infer the information only from the multimodal
context and its internal knowledge. This directly cultivates document-level understanding.

This unified approach yields a more efficient and resilient learning process. By learning directly
from the document image, we avoid building complex document parsing pipelines and prevent po-
tential noise introduced by fragile parsers. Furthermore, this paradigm allows us to fluidly combine
knowledge learning and OCR objectives within the same training batch, maximizing data utility and
producing a single, versatile model adept at a wide range of document understanding tasks.

Takeaway
1. Foundation skills can be built on imperfect heterogeneous data sources by selectively

freezing parameters.
2. Simple dynamic visual corruption on document image text can effectively unify knowl-

edge learning, robust OCR and contextual inference into a single learning objective.

2.3 Supervised Fine-tuning

The Supervised Fine-Tuning (SFT) stage aims to activate the model’s capability on a broad range of
tasks and prepares for reinforcement learning. Moreover, we extend the 2D-Resampler to a unified
3D-Resampler at this stage to enhance the compression efficiency of video data.

2.3.1 Supervised Fine-tuning Strategy

We first train the general interaction abilities, and then cultivate specialized skills for advanced
reasoning and temporal understanding.

Stage 1: General SFT. This stage aims to activate the broad knowledge acquired during pre-training
and align it with human instructions. By fine-tuning on a diverse mixture of high-quality instruction-
response data, the model develops proficiency in multimodal interaction. To prevent degradation of
text-only performance and improve training stability, we include 10% high-quality text-only data in
the training mixture.

Stage 2: Long-CoT & 3D-Resampler. Building on versatile foundations from the previous stage,
we then cultivate specialized skills to support long reasoning mode, high-frame-rate and long video

6



understanding. First, we introduce Long-CoT warm-up instructions into the SFT data. This en-
courages the model to perform an explicit step-by-step thinking process, incorporating cognitive
patterns such as reflection and backtracking, which are vital for the long reasoning mode. Second,
we enhance its temporal understanding by upgrading the architecture from 2D to 3D-Resampler and
introducing high-frame-rate and long video data. Due to the unified design, we find that such an
upgrade can be achieved efficiently with a small amount of high-quality video data.

2.3.2 Supervised Fine-tuning Data

STEM Data. To enhance STEM reasoning, we curate a dataset of high-school and undergraduate
level multidisciplinary problems from the web, covering physics, chemistry, biology, finance, com-
puter science, etc. To ensure the data quality, we implement a two-stage filtering process. First, we
only keep samples that exhibit high visual dependency (i.e., not solvable without image information).
Second, we perform a consistency check to validate the correctness of answers. For each remaining
sample, we collect a clean reasoning process via rejection sampling with a powerful MLLM.

Long-tail Knowledge Data. To address the long-tail problem where models often fail on less
common topics, we incorporate long-tail knowledge from Wikipedia [29] to synthesize high-quality
multimodal instruction-following data. Specifically, for each entity page, we construct multimodal
instructions and answers using strong MLLMs and keep samples with high visual dependency.

Long-CoT Data. Long-CoT data enables the model to acquire the necessary reasoning patterns for
the long reasoning mode. Our data comes from OpenThoughts [30] and an in-house pipeline. We
identify challenging prompts by filtering for those on which our early-stage models struggle. Our
pilot studies show that focusing on challenging problems is the key to developing robust reasoning
capabilities rather than memorizing trivial patterns. Each response then undergoes a multistage val-
idation: we verify its correctness, assess trustworthiness with claim-level factual verification using
RLAIF-V [31], and filter out meaningless repetition. Finally, validated responses are augmented
through rewriting to enhance diversity.

Takeaway
Filtering out easy prompts and focusing on challenging problems is crucial for effective
Long-CoT warm-up.

2.4 Reinforcement Learning

The RL stage aims to enhance reasoning performance, enable controllable reasoning modes, and
improve trustworthiness. To provide efficient general-domain rewards, we combine rule-verified
rewards for straightforward cases with general probability-based rewards from RLPR [32] for com-
plex answers and add a calibrated preference reward. A hybrid RL strategy is adopted to allow
flexible switch between short and long reasoning modes. We further integrate RLAIF-V [31] to
reduce hallucinations.

2.4.1 Reinforcement Learning Data

Our RL data contains high-quality samples that span four key domains. Each subset underwent a
rigorous, human-in-the-loop cleaning and deduplication process.

Mathematics. We collect multimodal math problems, which require the integration of visual per-
ception and logical reasoning, from academic sources [33, 34, 35]. We observe that many open-
source datasets contain severe label errors and adopt a thorough cleaning process to clean them.

Documents, Tables and Charts. To improve reasoning on perceptually complex scenarios, we
curate a diverse mix of real-world datasets [36, 37, 38, 39, 40] and synthetic datasets [41, 42, 43] to
improve the coverage of domains.

General Reasoning. To further improve general reasoning capabilities, we assemble a diverse
collection of problems covering logical and multi-disciplinary reasoning tasks from VisualWebIn-
struct [44] and additional web resources. These data exhibit a more complex reference answer style,
and many of the problems have more than one sub-question.
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Instruct Following. We incorporate text-only instructions from the Llama-Nemotron-Post-Training
Dataset [45] and the MulDimIF dataset [46]. We observe that the textual instruction-following
improvement generalizes well to multimodal instructions.

2.4.2 Reward Quality Control

The efficacy of RL is highly dependent on data quality. Thus, we implement meticulous quality
control processing, focusing on three distinct aspects:

Label Accuracy. Incorrect labels can introduce flawed supervision signals. For each dataset, we
maintain a small subset to inspect the label accuracy and conduct a human-in-the-loop cleaning
process to keep a high label accuracy.

Rewarding Accuracy. Verifying model-generated responses in general domains is a nontrivial chal-
lenge. Hand-crafted rules struggle to tackle the complexity of natural language. To address this, we
dynamically apply the most suitable validation method for each case. For straightforward answers
containing only a few tokens, we employ a rule-based verification system, achieving 98% reward ac-
curacy. For complex natural language answers where rules are brittle (e.g., those containing specific
units or longer phrasing), we use the more general probability-based rewards of RLPR [32].

Rewarding Coverage. To complement these accuracy-focused signals, we integrate a reward model
to provide a dense preference-aligned signal that guides the model towards higher-quality human-
like responses. We apply the reward model to only the final answer part for the long reasoning mode
to avoid the out-of-distribution problem.

2.4.3 Hybrid Reinforcement Learning

We adopt a controllable hybrid reasoning design for our model: a short reasoning mode for quick
answers and a long reasoning mode that generates explicit step-by-step thinking traces for complex
problems. Mode switching is controlled by prompts. Both behaviors are initialized during SFT and
then optimized jointly via hybrid RL, where rollouts randomly alternate between the two modes.

We apply GRPO [47] to optimize the model with these rollouts and remove the KL and entropy
loss to improve stability. This training schedule not only preserves the efficiency of short responses
while retaining complex reasoning capabilities, but also fosters cross-generalization, where reason-
ing capabilities learned in one mode can transfer to improve the other mode. Based on this hybrid
post-training design, MiniCPM-V 4.5 consumes only 70.5% of the training token costs of long rea-
soning only strategy to achieve better performance.

2.4.4 Reward Shaping

We design the reward shaping strategy to balance task capability, human preference and training
stability. The final reward signal is a weighted composite of four components: an accuracy reward
Racc, a format reward Rformat, a repetition penalty reward Rrep and a preference reward Rrm. The
preference reward is derived from an auxiliary RM trained with human preference data [48]. How-
ever, directly applying RMs in the long reasoning mode yields unsatisfactory results since standard
RMs struggle to evaluate the out-of-distribution long reasoning chains, leading to worse alignment
and training instability, which is also confirmed in our preliminary experiments.

To address this, we adopt a selective application strategy. The RM scores only the final answer
part of the response, completely bypassing the explicit thinking steps. This provides a stable, dense
reward signal that aligns with human preferences without incorrectly penalizing complex reasoning
paths. The final reward is calculated as follows.

R = Racc +Rformat +Rrep +
1

2
R̃rm. (1)

Here, R̃rm is the standardized preference reward score computed using Rrm−R̄rm
σ(Rrm)

, where R̄rm and
σ(Rrm) represent the average and standard deviation of raw reward scores of responses sampled
with the same prompt.
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2.4.5 RLAIF-V

Visual hallucinations remain a critical limitation for MLLMs, particularly in applications requiring
high reliability. To address this challenge, we integrate RLAIF-V [31] to make the responses more
factually grounded to the visual input through alignment from scalable AI feedback. Notably, we
extend this approach to video inputs, where hallucination problems are especially pronounced.

Response Sampling. We first sample multiple responses from the policy model under the same
generation condition. This strategy ensures focused evaluation of factual accuracy, avoiding distri-
butional mismatches between responses.

Feedback Collection. We begin by decomposing complex responses into verifiable atomic claims,
where each claim is independently validated. This transforms the complex long response evalua-
tion into simpler claim-level verification, addressing the inherent challenge of holistic assessment
and improving the precision of factual evaluation. Preference pairs are then constructed based on
aggregated claim verification scores, where responses containing fewer factual errors are preferred.

Preference Learning. The resulting preference dataset, encompassing both image and video, is
used to train the model with DPO [49]. This stage proves particularly effective for visual tasks
where factual accuracy is paramount, without compromising general performance.

Takeaway
1. Combining rule-based reward for simple responses and probability-based reward for

complex natural language responses enables a reliable reward system for diverse tasks.
2. Hybrid RL enables cross-mode generalization between long and short reasoning modes.

3 Experiments

In this section, we empirically evaluate the performance of MiniCPM-V 4.5, and the effectiveness
of the proposed methods.

3.1 Baselines and Benchmarks

We compare with various strong baseline models: (1) state-of-the-art open-source models, repre-
sented by Qwen2.5-VL 72B [7]; (2) strong models of comparable sizes, including InternVL3 [9]
(8B) and GLM-4.1V [1] (9B); and (3) frontier proprietary models such as GPT-4o-latest [4].

Our evaluation encompasses several key areas of multimodal capabilities:

STEM includes mathematics and science-oriented benchmarks such as MMMU [50], Math-
Vista [51], AI2D [52], MathVerse [53], LogicVista [54] and EMMA [55], designed to evaluate
logical reasoning, mathematical problem-solving and scientific understanding capabilities.

Document, OCR & Chart covers OCR-related tasks through OCRBench [56], ChartQA [57],
TextVQA [58], DocVQA [59], and OmniDocBench [60], testing ability to extract, interpret and
reason about textual information in various visual contexts, including documents and charts.

Hallucination evaluates model reliability through HallusionBench [61], ObjHalBench [62] and
MMHal-Bench [63], measuring the tendency to generate false or inconsistent information.

Multi-Image & Real-World & Instruction Following includes Mantis [64], MMT-Bench [65],
RealWorldQA [66] and MM-IFEval [67], assessing performance on complex scenarios involving
multiple images, real-world understanding and instruction following.

Video Understanding encompasses Video-MME [68], LVBench [69], MLVU [70],
LongVideoBench [71], MotionBench [72] and FavorBench [73], evaluating temporal reason-
ing and dynamic visual comprehension across various video tasks.

Comprehensive Multimodal Understanding includes benchmarks such as OpenCompass [74],
MMVet [75], MMStar [76], MME [77] and MMBench V1.1 [78], which assess general vision-
language comprehension across diverse task types. Within the OpenCompass average, we use the
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Task Benchmark MiniCPM-V 4.5 Qwen2.5-VL Qwen2.5-VL InternVL3 GLM-4.1V GPT-4o

Size 8B 7B 72B 8B 9B -

Mode hybrid non-thinking non-thinking non-thinking thinking non-thinking

Comprehensive
Multimodal

OpenCompass 77.0† 70.5 76.1 73.6 76.6 75.4‡

MMVet 75.5† 67.1 76.9 81.3 70.5† 76.9‡

MMStar 72.1† 63.9 70.5 68.2 72.9 70.2‡

MME 2500 2347 2483 2415 2466† 2318∗

MMBench V1.1 84.2† 82.6 87.8 81.7 85.3 86.0‡

STEM

MMMU 67.7† 58.6 68.2 62.7 68.0 72.9‡

MathVista 79.9† 68.2 74.2 71.6 80.7 71.6‡

AI2D 86.5 83.9 88.5 85.2 87.9 86.3‡

MathVerse MINI 58.8† 49.2 47.3 39.8 68.4 40.6

LogicVista 57.0† 44.1 55.7 44.1 60.4 52.8

EMMA 34.8† 28.6∗ - - 35.7† 32.4

Document,
OCR & Chart

OCRBench 89.0 86.4 88.2 88.0 84.2 82.2‡

ChartQA 87.4 87.3 89.5 86.6 87.1† 86.7

TextVQA 82.2 84.9 83.5 80.2 79.9† 85.6∗

DocVQA 94.7† 95.7 96.4 92.7 93.4† 93.0

OmniDocBench (EN) ↓ 0.175 0.316 0.214 0.335∗ 0.460∗ 0.233

OmniDocBench (ZH) ↓ 0.253 0.399 0.261 0.390∗ 0.573∗ 0.399

Hallucination

HallusionBench 61.2† 52.9 54.6 49.9 63.2 57.0‡

ObjHalBench (CHAIRs) ↓ 9.3† 13.7∗ 17.0∗ 11.3∗ 12.3∗ -

ObjHalBench (CHAIRi) ↓ 5.2† 7.7∗ 8.9∗ 6.5∗ 6.4∗ -

MMHal-Bench (Score) 5.0† 4.1∗ 4.2∗ 4.2∗ 4.6∗ -

MMHal-Bench (Rate)↓ 19.4† 31.6∗ 38.2∗ 24.3∗ 22.9∗ -

Multi-Image &
Real World &
Instruction Following

Mantis 82.5† 74.7∗ 81.1∗ 70.1 78.8† -

MMT-Bench 68.3 63.6 - 65.0 67.6 66.7∗

RealWorldQA 72.1† 68.5 75.7 70.8 70.7† 76.8∗

MM-IFEval 66.0 51.3∗ 73.8∗ 53.2∗ 58.4† 64.6

Video Understanding

Video-MME (w/o subs) 67.9 65.1 73.3 66.3 68.2 71.9

Video-MME (w/ subs) 73.5 71.6 79.1 68.9 73.6 77.2

LVBench 50.4 45.3 47.3 44.1∗ 44.0 48.9

MLVU (M-Avg) 75.1 70.2 74.6 71.4 72.5† -

LongVideoBench (val) 63.9 56.0 60.7 58.8 65.7 -

MotionBench 59.7 53.0 58.3 58.1 59.0 58.0

FavorBench 56.0 42.3 48.1 45.3 51.2† -

Table 1: Evaluation results across diverse vision-language benchmarks. The best performance is
marked in bold. ∗ We evaluate officially released checkpoints by ourselves. † Reasoning mode used,
where the average score of three runs is reported for robust evaluation. ‡ GPT-4o-latest evaluation
results from OpenCompass. Otherwise GPT-4o-1120 is used in evaluation, since GPT-4o-latest is
only accessible via Web API.

long reasoning mode for 5 benchmarks, including MMStar, MMVet, HallusionBench, MathVista
and MMMU.

3.2 Main Results

As shown in Table 1, MiniCPM-V 4.5 demonstrates strong performance across a wide range of
vision-language capabilities.

Comprehensive Capability. MiniCPM-V 4.5 achieves an average score of 77.0 on OpenCompass,
a comprehensive evaluation of 8 popular benchmarks. With only 8B parameters, it surpasses widely
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Model Size Avg Score ↑ Time ↓
GLM-4.1V-9B-thinking 10.3B 76.6 17.5h
MiMo-VL-7B-RL 8.3B 76.4 11.0h
MiniCPM-V 4.5 8.7B 77.0 7.5h

(a) OpenCompass results of thinking models

Model Size Score ↑ Time ↓ Mem ↓
Qwen2.5-VL-7B 8.3B 71.6 3.00h 60G
GLM-4.1V-9B-thinking 10.3B 73.6 2.63h 32G
MiniCPM-V 4.5 8.7B 73.5 0.26h 28G

(b) Video-MME results

Table 2: Inference efficiency on 8 A100 GPUs. Best results are marked in bold.

used proprietary models like GPT-4o-latest and strong open-source models like Qwen2.5-VL 72B
for vision-language capabilities.

Video Understanding. The model achieves strong performance on high-frame-rate and fine-grained
action dynamics video benchmarks such as MotionBench and FlavorBench. It also shows competi-
tive performance on long video understanding benchmarks such as VideoMME, LVBench, MLVLU,
LongVideoBench, etc.

OCR and Document Analysis. MiniCPM-V 4.5 achieves leading performance on OCRBench,
surpassing proprietary models such as GPT-4o-latest. It also achieves state-of-the-art performance
for PDF document parsing capability on OmniDocBench among general MLLMs.

Trustworthy Behavior. The model outperforms other models on hallucination benchmarks, includ-
ing ObjectHalBench and MMHal-Bench, since the RLAIF-V training stage specifically enhances
the level of trustworthiness.

3.3 Inference Efficiency

We evaluated the inference efficiency of MiniCPM-V 4.5 in a standard configuration of 8 A100
GPUs on both image understanding and video understanding tasks. As detailed in Table 2, our
model achieves competitive or superior performance while significantly reducing inference time
and GPU memory consumption compared to other leading models. On OpenCompass, MiniCPM-
V 4.5 not only achieves the highest average score among models under 30B, but also finishes the
evaluation using 42.9% of the time of GLM-4.1V. This efficiency is enabled by the model’s flexible
short and long reasoning modes. On VideoMME, the model demonstrates remarkable efficiency
gains. With a strong performance of 73.6, it also reduces the inference time by nearly 10× (from
2.63h to 0.26h) and uses the least memory of 28G. This improvement is primarily due to the efficient
3D-Resampler, which compresses videos jointly considering spatial and temporal dimensions.

3.4 Ablations

We ablate key design choices of MiniCPM-V 4.5 in this section.

Hybrid reasoning reinforcement learning
Training Evaluate with

Long Reasoning OpenCompass RL Training
Tokens

SFT Model ✓ 73.6 -

Long Reasoning Only ✓ 77.0 4.4B

Hybrid Reasoning ✗ 74.9 3.1B
✓ 77.1

Table 3: Ablation of hybrid reinforcement learning.
We report RL training token cost and performance
on OpenCompass.

helps improve overall performance and ef-
ficiency. We evaluate the hybrid RL strat-
egy that mixes samples from both long and
short reasoning modes during training. For
clear and fair comparison, we train from the
same SFT checkpoints and skip the RLAIF-
V stage. As shown in Table 3, we observe
that: (1) The hybrid strategy achieves the
best long reasoning performance, and outper-
forms the SFT baseline even when long reasoning disabled at evaluation. This demonstrates that the
hybrid setup effectively incentivizes capabilities of both modes. (2) Moreover, the hybrid strategy
consumes only 70.5% of the training token costs of the pure long reasoning setting to achieve better
performance. We hypothesize that this is because both modes share foundational perceptual and
cognitive skills, and the analytical depth cultivated by long reasoning could bolster short reasoning,
while the efficiency and directness learned from short reasoning refine the long reasoning process.

Probability-based reward complements rule-verification reward. In addition to rule-based re-
ward for easy-to-verify responses, MiniCPM-V 4.5 further incorporates the probability-based re-
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Figure 3: Ablation results of adding probability-based reward. We report OpenCompass scores,
response length and entropy on different training steps.

Method MMMU AI2D OCRBench
External Parser 49.0 74.9 576
Unified Learning 51.4 76.5 617

Table 4: Ablation of unified learning paradigm
for document knowledge and text recogni-
tion. We report results on knowledge-intensive,
document understanding, and text recognition
benchmarks.

Method w/ sub w/o sub tokens/frame
2D-Resampler 65.5 71.5 64.0
3D-Resampler 67.3 72.5 21.3

Table 5: Ablation of the 3D-Resampler. We re-
port scores on VideoMME. w/ sub: using sub-
titles during evaluation; w/o sub: remove subti-
tles during evaluation

ward from RLPR [32] to supply reward signals for general domains. As shown in Figure 3, combin-
ing both rule-based and probability-based rewards (VR + PR) consistently and substantially outper-
forms the rule-only approach, while also yielding stable training patterns with respect to response
length and entropy. This confirms that probability-based reward provides a meaningful learning
signal for the general reasoning data that rules struggle with, effectively complementing the limited
subset of simple data suitable for rule verification. The effectiveness becomes particularly evident
as the training steps scale where the robust reward signals across the full spectrum of multimodal
scenarios provide essential training guidance that pure rule-based verification cannot deliver.

Unified learning of document knowledge and text recognition improves both capabilities. We
run an ablation experiment for the proposed unified learning paradigm. Following the three stages
pre-training process in § 2.2, we train the model on 1M high-quality samples, 20% of which are
knowledge-intensive documents. Then we conduct a comparison against the baseline method after
the same SFT pipeline. As shown in Table 4, the unified approach outperforms the baseline on
both knowledge-intensive evaluations and text-recognition tasks. These gains indicate that learning
directly from document images mitigates the noise introduced by fragile external parsers.

3D-Resampler enables higher performance with lower token cost. We ablate the 3D-Resampler
to verify its effectiveness. To ensure a fair comparison against the 2D baseline, we fine-tuned the
model ckpt after the general SFT stage for 300 steps, isolating the resampler architecture as the
only variable. As demonstrated in Table 5, our 3D-Resampler achieves stronger performance, while
using only one-third of the visual tokens per frame required by the 2D baseline.

4 Conclusion

We introduce MiniCPM-V 4.5, an MLLM designed with high efficiency at both training and infer-
ence time via architecture, data and training recipe. With a unified 3D-Resampler, it achieves strong
performance on high-frame-rate and long video understanding with superior encoding efficiency.
Furthermore, the unified learning paradigm for document knowledge and text recognition allows the
model to directly learn from document images. This approach bypasses fragile parsers and signifi-
cantly reduces the data engineering complexity. Finally, the hybrid post-training strategy improves
both training and inference efficiency while also facilitating generalization between short and long
reasoning modes. Overall, MiniCPM-V 4.5 demonstrates a promising path toward addressing the
efficiency bottlenecks in MLLM development.
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A Implementation Details

Pre-training follows a WSD schedule [17] with a fixed learning rate of 5× 10−5 in the stable phase,
decaying to 1 × 10−5. SFT applies cosine decay from 1 × 10−5 to 1 × 10−6. The Long-CoT and
3D-Resampler stage continues from the SFT checkpoint, warming up to 5 × 10−6 and decaying to
1× 10−6.

For the RL stage, we adopt GRPO [79] without entropy loss or KL penalty. Each batch consists of
128 prompts with 8 responses each, and a max response length of 8192 tokens to support detailed
reasoning. Rollouts use a temperature of 1.0, with 50% of prompts assigned to long reasoning mode.
We use a fixed learning rate of 1×10−6 throughout RL. In the RLAIF-V [31] stage, we use a global
batch size of 256, learning rate of 1× 10−6, and β = 0.1 for 400 steps.

B Qualitative Cases

B.1 Comprehensive Instruction Following

Figure 4: A case of comprehensive real-world reasoning.
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Figure 5: A case of comprehensive real-world reasoning in Chinese.

Figure 6: A case of creative writing in Chinese.
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B.2 World Knowledge

Figure 7: A case of world knowledge understanding.

Figure 8: A case of world knowledge understanding in Chinese.
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B.3 OCR

Figure 9: A case of handwritten text recognition.

Figure 10: A case of handwritten text recognition in Chinese.
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Figure 11: A case of table content extraction.

B.4 Problem Solving

Figure 12: A case of chemistry problem solving in Chinese.
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Figure 13: A case of multi-image statistical problem solving.
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