update readme

This commit is contained in:
yiranyyu
2024-05-28 17:23:31 +08:00
parent dc516e8da4
commit ed713a7986
3 changed files with 3 additions and 3 deletions

View File

@@ -84,7 +84,7 @@
- 🌏 **Multilingual Support.** - 🌏 **Multilingual Support.**
Thanks to the strong multilingual capabilities of Llama 3 and the cross-lingual generalization technique from [VisCPM](https://github.com/OpenBMB/VisCPM), MiniCPM-Llama3-V 2.5 extends its bilingual (Chinese-English) multimodal capabilities to **over 30 languages including German, French, Spanish, Italian, Korean etc.** [All Supported Languages](./assets/minicpm-llama-v-2-5_languages.md). Thanks to the strong multilingual capabilities of Llama 3 and the cross-lingual generalization technique from [VisCPM](https://github.com/OpenBMB/VisCPM), MiniCPM-Llama3-V 2.5 extends its bilingual (Chinese-English) multimodal capabilities to **over 30 languages including German, French, Spanish, Italian, Korean etc.** [All Supported Languages](./assets/minicpm-llama-v-2-5_languages.md).
- 👍 **Easy Usage.** - 💫 **Easy Usage.**
In response to user demand, we have added the following convenient features: **[ollama](https://github.com/OpenBMB/ollama/tree/minicpm-v2.5/examples/minicpm-v2.5) support** for easy deployment and inference on local machines, 16 **gguf format** quantized [models](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf) for **[llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-v2.5/examples/minicpmv/README.md) inference**, **efficient [LoRA fine-tuning](https://github.com/OpenBMB/MiniCPM-V/tree/main/finetune#lora-finetuning)** with just 2 V100 GPUs, and [streaming output](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5#usage) with a simple parameter addition (stream=True). Additionally, we offer interactive demos via [Gradio](https://github.com/OpenBMB/MiniCPM-V/blob/main/web_demo_2.5.py) and [Streamlit](https://github.com/OpenBMB/MiniCPM-V/blob/main/web_demo_streamlit-2_5.py), enabling quick local WebUI setup, and online demon on [HuggingFace Spaces](https://huggingface.co/spaces/openbmb/MiniCPM-Llama3-V-2_5). In response to user demand, we have added the following convenient features: **[ollama](https://github.com/OpenBMB/ollama/tree/minicpm-v2.5/examples/minicpm-v2.5) support** for easy deployment and inference on local machines, 16 **gguf format** quantized [models](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf) for **[llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-v2.5/examples/minicpmv/README.md) inference**, **efficient [LoRA fine-tuning](https://github.com/OpenBMB/MiniCPM-V/tree/main/finetune#lora-finetuning)** with just 2 V100 GPUs, and [streaming output](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5#usage) with a simple parameter addition (stream=True). Additionally, we offer interactive demos via [Gradio](https://github.com/OpenBMB/MiniCPM-V/blob/main/web_demo_2.5.py) and [Streamlit](https://github.com/OpenBMB/MiniCPM-V/blob/main/web_demo_streamlit-2_5.py), enabling quick local WebUI setup, and online demon on [HuggingFace Spaces](https://huggingface.co/spaces/openbmb/MiniCPM-Llama3-V-2_5).
- 🚀 **Efficient Deployment.** - 🚀 **Efficient Deployment.**

View File

@@ -84,7 +84,7 @@
- 🌏 **Multilingual Support.** - 🌏 **Multilingual Support.**
Thanks to the strong multilingual capabilities of Llama 3 and the cross-lingual generalization technique from [VisCPM](https://github.com/OpenBMB/VisCPM), MiniCPM-Llama3-V 2.5 extends its bilingual (Chinese-English) multimodal capabilities to **over 30 languages including German, French, Spanish, Italian, Korean etc.** [All Supported Languages](./assets/minicpm-llama-v-2-5_languages.md). Thanks to the strong multilingual capabilities of Llama 3 and the cross-lingual generalization technique from [VisCPM](https://github.com/OpenBMB/VisCPM), MiniCPM-Llama3-V 2.5 extends its bilingual (Chinese-English) multimodal capabilities to **over 30 languages including German, French, Spanish, Italian, Korean etc.** [All Supported Languages](./assets/minicpm-llama-v-2-5_languages.md).
- 👍 **Easy Usage.** - 💫 **Easy Usage.**
In response to user demand, we have added the following convenient features: **[ollama](https://github.com/OpenBMB/ollama/tree/minicpm-v2.5/examples/minicpm-v2.5) support** for easy deployment and inference on local machines, 16 **gguf format** quantized [models](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf) for **[llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-v2.5/examples/minicpmv/README.md) inference**, **efficient [LoRA fine-tuning](https://github.com/OpenBMB/MiniCPM-V/tree/main/finetune#lora-finetuning)** with just 2 V100 GPUs, and [streaming output](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5#usage) with a simple parameter addition (stream=True). Additionally, we offer interactive demos via [Gradio](https://github.com/OpenBMB/MiniCPM-V/blob/main/web_demo_2.5.py) and [Streamlit](https://github.com/OpenBMB/MiniCPM-V/blob/main/web_demo_streamlit-2_5.py), enabling quick local WebUI setup, and online demon on [HuggingFace Spaces](https://huggingface.co/spaces/openbmb/MiniCPM-Llama3-V-2_5). In response to user demand, we have added the following convenient features: **[ollama](https://github.com/OpenBMB/ollama/tree/minicpm-v2.5/examples/minicpm-v2.5) support** for easy deployment and inference on local machines, 16 **gguf format** quantized [models](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf) for **[llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-v2.5/examples/minicpmv/README.md) inference**, **efficient [LoRA fine-tuning](https://github.com/OpenBMB/MiniCPM-V/tree/main/finetune#lora-finetuning)** with just 2 V100 GPUs, and [streaming output](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5#usage) with a simple parameter addition (stream=True). Additionally, we offer interactive demos via [Gradio](https://github.com/OpenBMB/MiniCPM-V/blob/main/web_demo_2.5.py) and [Streamlit](https://github.com/OpenBMB/MiniCPM-V/blob/main/web_demo_streamlit-2_5.py), enabling quick local WebUI setup, and online demon on [HuggingFace Spaces](https://huggingface.co/spaces/openbmb/MiniCPM-Llama3-V-2_5).
- 🚀 **Efficient Deployment.** - 🚀 **Efficient Deployment.**

View File

@@ -85,7 +85,7 @@
- 🌏 **多语言支持。** - 🌏 **多语言支持。**
得益于 Llama 3 强大的多语言能力和 VisCPM 的跨语言泛化技术MiniCPM-Llama3-V 2.5 在中英双语多模态能力的基础上,仅通过少量翻译的多模态数据的指令微调,高效泛化支持了**德语、法语、西班牙语、意大利语、韩语等 30+ 种语言**的多模态能力,并表现出了良好的多语言多模态对话性能。[查看所有支持语言](./assets/minicpm-llama-v-2-5_languages.md) 得益于 Llama 3 强大的多语言能力和 VisCPM 的跨语言泛化技术MiniCPM-Llama3-V 2.5 在中英双语多模态能力的基础上,仅通过少量翻译的多模态数据的指令微调,高效泛化支持了**德语、法语、西班牙语、意大利语、韩语等 30+ 种语言**的多模态能力,并表现出了良好的多语言多模态对话性能。[查看所有支持语言](./assets/minicpm-llama-v-2-5_languages.md)
- 👍 **易于使用。** - 💫 **易于使用。**
响应用户需求,我们提供了以下便捷功能:**[ollama](https://github.com/OpenBMB/ollama/tree/minicpm-v2.5/examples/minicpm-v2.5) 支持**,方便用户在本地机器上进行部署和推理;**[llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-v2.5/examples/minicpmv/README.md) 支持**,我们提供了 16 种版本的**gguf 格式**量化[模型](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf);高效微调,仅需 2 张 V100 即可进行 [LoRA 微调](https://github.com/OpenBMB/MiniCPM-V/tree/main/finetune#lora-finetuning),流式输出,传参 stream=True 即可轻松体验[流式输出](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5#usage)。 此外,我们支持 [Gradio](https://github.com/OpenBMB/MiniCPM-V/blob/main/web_demo_2.5.py) 和 [Streamlit](https://github.com/OpenBMB/MiniCPM-V/blob/main/web_demo_streamlit-2_5.py) 两种本地 WebUI demo 部署方案,也在 [HuggingFace Spaces](https://huggingface.co/spaces/openbmb/MiniCPM-Llama3-V-2_5) 提供了在线体验 demo。 响应用户需求,我们提供了以下便捷功能:**[ollama](https://github.com/OpenBMB/ollama/tree/minicpm-v2.5/examples/minicpm-v2.5) 支持**,方便用户在本地机器上进行部署和推理;**[llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-v2.5/examples/minicpmv/README.md) 支持**,我们提供了 16 种版本的**gguf 格式**量化[模型](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf);高效微调,仅需 2 张 V100 即可进行 [LoRA 微调](https://github.com/OpenBMB/MiniCPM-V/tree/main/finetune#lora-finetuning),流式输出,传参 stream=True 即可轻松体验[流式输出](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5#usage)。 此外,我们支持 [Gradio](https://github.com/OpenBMB/MiniCPM-V/blob/main/web_demo_2.5.py) 和 [Streamlit](https://github.com/OpenBMB/MiniCPM-V/blob/main/web_demo_streamlit-2_5.py) 两种本地 WebUI demo 部署方案,也在 [HuggingFace Spaces](https://huggingface.co/spaces/openbmb/MiniCPM-Llama3-V-2_5) 提供了在线体验 demo。
- 🚀 **高效部署。** - 🚀 **高效部署。**