diff --git a/README.md b/README.md index 45f7a66..453b024 100644 --- a/README.md +++ b/README.md @@ -35,10 +35,10 @@ - [Inference](#inference) - [Model Zoo](#model-zoo) - [Multi-turn Conversation](#multi-turn-conversation) -- [✅ TODO](#-todo) +- [TODO](#todo) - [Model License](#model-license) - [Statement](#statement) -- [🏫 Institutions](#-institutions) +- [Institutions](#institutions) ## OmniLMM-12B **OmniLMM-12B** is the most capable version. The model is built based on EVA02-5B and Zephyr-7B-β, connected with a perceiver resampler layer, and trained on multimodal data in a curriculum fashion. The model has three notable features: @@ -358,7 +358,7 @@ We can obtain the following results: ``` -## ✅ TODO +## TODO - [ ] Fine-tuning support - [ ] Local Web-UI deployment @@ -381,7 +381,7 @@ As LMMs, OmniLMMs generate contents by learning a large mount of multimodal corp We will not be liable for any problems arising from the use of OmniLMM open source models, including but not limited to data security issues, risk of public opinion, or any risks and problems arising from the misdirection, misuse, dissemination or misuse of the model. -## 🏫 Institutions +## Institutions This project is developed by the following institutions: diff --git a/README_zh.md b/README_zh.md index 0a39392..6837cc5 100644 --- a/README_zh.md +++ b/README_zh.md @@ -36,10 +36,10 @@ - [推理](#推理) - [模型库](#模型库) - [多轮对话](#多轮对话) -- [✅ 未来计划](#-未来计划) +- [未来计划](#未来计划) - [模型协议](#模型协议) - [声明](#声明) -- [🏫 机构](#-机构) +- [机构](#机构) @@ -196,9 +196,9 @@ **OmniLMM-3B**(即 MiniCPM-V)可以高效部署到终端设备。该模型基于 SigLip-400M 和 [MiniCPM-2.4B](https://github.com/OpenBMB/MiniCPM/)构建,通过perceiver resampler连接。OmniLMM-3B的特点包括: -- ⚡️ **高效率。** +- ⚡️ **高效部署。** - OmniLMM-3B 可以**高效部署在大多数 GPU 和个人电脑上**,包括**移动手机等终端设备**。在视觉编码方面,我们通过perceiver resampler将图像表示压缩为64个token,远远少于基于MLP架构的其他多模态大模型(通常大于 512 个 token)。这使得 OmniLMM-3B 在推理期间**存储占用更低并且速度更快**。 + OmniLMM-3B 可以**高效部署在大多数 GPU 和个人电脑上**,包括**移动手机等终端设备**。在视觉编码方面,我们通过perceiver resampler将图像表示压缩为64个token,远远少于基于MLP架构的其他多模态大模型(通常大于512个token)。这使得 OmniLMM-3B 在推理期间**存储占用更低并且速度更快**。 - 🔥 **优秀的性能。** @@ -300,21 +300,21 @@ ## 安装 -1. Clone this repository and navigate to the source folder +1. 克隆我们的仓库并跳转到相应目录 ```bash git clone https://github.com/OpenBMB/OmniLMM.git cd OmniLMM ``` -2. Create conda environment +1. 创建 conda 环境 ```Shell conda create -n OmniLMM python=3.10 -y conda activate OmniLMM ``` -3. Install dependencies +3. 安装依赖 ```shell pip install -r requirements.txt @@ -371,7 +371,7 @@ print(answer) ``` -## ✅ 未来计划 +## 未来计划 - [ ] 支持模型微调 - [ ] 本地用户图形界面部署 @@ -397,7 +397,7 @@ OmniLMM 模型权重对学术研究完全开放。 因此用户在使用 OmniLMM 生成的内容时,应自行负责对其进行评估和验证。如果由于使用 OmniLMM 开源模型而导致的任何问题,包括但不限于数据安全问题、公共舆论风险,或模型被误导、滥用、传播或不当利用所带来的任何风险和问题,我们将不承担任何责任。 -## 🏫 机构 +## 机构 本项目由以下机构共同开发: