mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-05 02:09:20 +08:00
Modify eval_mm for MiniCPM-o 2.6
This commit is contained in:
@@ -22,7 +22,7 @@ from eval_utils.vqa_evaluate import *
|
||||
def get_model(args):
|
||||
if args.model_name == '':
|
||||
raise Exception('Model name cannot be empty str!')
|
||||
from models.MiniCPM.minicpmv import MiniCPM_V, MiniCPM_V_2_6
|
||||
from models.MiniCPM.minicpmv import MiniCPM_V, MiniCPM_V_2_6, MiniCPM_o_2_6
|
||||
model_path = args.model_path
|
||||
ckpt = args.ckpt
|
||||
|
||||
@@ -30,6 +30,8 @@ def get_model(args):
|
||||
model = MiniCPM_V(model_path=model_path, ckpt=ckpt, device=args.device)
|
||||
elif args.model_name == 'minicpmv26':
|
||||
model = MiniCPM_V_2_6(model_path=model_path, ckpt=ckpt, device=args.device)
|
||||
elif args.model_name == 'minicpmo26':
|
||||
model = MiniCPM_o_2_6(model_path=model_path, ckpt=ckpt, device=args.device)
|
||||
else:
|
||||
raise Exception(f"Unexpected Moedel Name {args.model_name}!")
|
||||
|
||||
@@ -67,15 +69,16 @@ def main(args):
|
||||
dataset = docVQADataset(args.docVQA_image_dir, args.docVQA_ann_path)
|
||||
if max_sample_num is not None:
|
||||
dataset = torch.utils.data.Subset(dataset, range(max_sample_num))
|
||||
acc = evaluate_VQA(model, dataset, args.model_name, 'docVQA', time, batch_size=args.batchsize, generate_method=args.generate_method, answer_path=args.answer_path)
|
||||
acc = evaluate_VQA(model, dataset, args.model_name, 'docVQA', time, \
|
||||
batch_size=args.batchsize, generate_method=args.generate_method, answer_path=args.answer_path)
|
||||
result['docVQA'] = acc
|
||||
|
||||
if args.eval_docVQATest or args.eval_all:
|
||||
target_dataset = "docVQATest"
|
||||
dataset = docVQATESTDataset(args.docVQATest_image_dir, args.docVQATest_ann_path)
|
||||
if max_sample_num is not None:
|
||||
dataset = torch.utils.data.Subset(dataset, range(max_sample_num))
|
||||
acc = evaluate_VQA(model, dataset, args.model_name, target_dataset, time, batch_size=args.batchsize, generate_method=args.generate_method, answer_path=args.answer_path)
|
||||
acc = evaluate_VQA(model, dataset, args.model_name, 'docVQATest', time, \
|
||||
batch_size=args.batchsize, generate_method=args.generate_method, answer_path=args.answer_path)
|
||||
result['docVQATest'] = acc
|
||||
|
||||
if torch.distributed.is_initialized():
|
||||
|
||||
@@ -370,8 +370,6 @@ def evaluate_VQA(
|
||||
generate_method="interleave",
|
||||
answer_path='./answers',
|
||||
):
|
||||
print(f"answer path:{answer_path}")
|
||||
|
||||
sampler = None
|
||||
if torch.distributed.is_initialized():
|
||||
sampler=InferenceSampler(len(dataset))
|
||||
@@ -383,8 +381,6 @@ def evaluate_VQA(
|
||||
collate_fn=collate_fn_vqa
|
||||
)
|
||||
|
||||
now_rank = torch.distributed.get_rank()
|
||||
|
||||
answer_dir = os.path.join(answer_path, model_name, time)
|
||||
os.makedirs(answer_dir, exist_ok=True)
|
||||
|
||||
@@ -395,21 +391,15 @@ def evaluate_VQA(
|
||||
predictions = []
|
||||
|
||||
for batch in tqdm(dataloader, desc="Running inference"):
|
||||
image_paths, questions, gt_answers, ocr_tokens_list, question_ids, question_type = batch
|
||||
image_paths, questions, gt_answers, ocr_tokens_list, question_ids, question_type = batch
|
||||
|
||||
with torch.no_grad():
|
||||
if model_name != "minicpm":
|
||||
if model_name != "codellama":
|
||||
outputs = model.generate(images=image_paths, questions=questions, datasetname=dataset_name)
|
||||
else:
|
||||
outputs = model.generate()
|
||||
elif model_name == "minicpm":
|
||||
if generate_method == "old":
|
||||
outputs = model.generate(images=image_paths, questions=questions, datasetname=dataset_name)
|
||||
elif generate_method == "interleave":
|
||||
outputs = model.generate_with_interleaved(images=image_paths, questions=questions, datasetname=dataset_name)
|
||||
else:
|
||||
raise Exception(f"Wrong generate paradigm {generate_method}!")
|
||||
if generate_method == "old":
|
||||
outputs = model.generate(images=image_paths, questions=questions, datasetname=dataset_name)
|
||||
elif generate_method == "interleave":
|
||||
outputs = model.generate_with_interleaved(images=image_paths, questions=questions, datasetname=dataset_name)
|
||||
else:
|
||||
raise Exception(f"Wrong generate paradigm {generate_method}!")
|
||||
|
||||
for i in range(len(outputs)):
|
||||
answer_dict = {
|
||||
|
||||
@@ -33,14 +33,9 @@ class MiniCPM_V:
|
||||
|
||||
def generate(self, images, questions, datasetname):
|
||||
image = Image.open(images[0]).convert('RGB')
|
||||
try:
|
||||
max_new_tokens = max_token[datasetname]
|
||||
except:
|
||||
max_new_tokens = 1024
|
||||
if (datasetname == 'docVQA') or (datasetname == "docVQATest") :
|
||||
prompt = "Answer the question directly with single word." + "\n" + questions[0]
|
||||
elif (datasetname == 'textVQA') :
|
||||
prompt = "Answer the question directly with single word." + '\n'+ questions[0]
|
||||
max_new_tokens = max_token[datasetname]
|
||||
|
||||
prompt = "Answer the question directly with single word." + '\n' + questions[0]
|
||||
|
||||
msgs = [{'role': 'user', 'content': prompt}]
|
||||
default_kwargs = dict(
|
||||
@@ -59,10 +54,7 @@ class MiniCPM_V:
|
||||
return [res]
|
||||
|
||||
def generate_with_interleaved(self, images, questions, datasetname):
|
||||
try:
|
||||
max_new_tokens = max_token[datasetname]
|
||||
except:
|
||||
max_new_tokens = 1024
|
||||
max_new_tokens = max_token[datasetname]
|
||||
|
||||
prompt = "Answer the question directly with single word."
|
||||
|
||||
@@ -103,11 +95,10 @@ class MiniCPM_V:
|
||||
class MiniCPM_V_2_6:
|
||||
|
||||
def __init__(self, model_path, ckpt, device=None)->None:
|
||||
seed = 0
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
random.seed(0)
|
||||
np.random.seed(0)
|
||||
torch.manual_seed(0)
|
||||
torch.cuda.manual_seed_all(0)
|
||||
|
||||
self.model_path = model_path
|
||||
self.ckpt = ckpt
|
||||
@@ -125,14 +116,17 @@ class MiniCPM_V_2_6:
|
||||
|
||||
def generate(self, images, questions, datasetname):
|
||||
image = Image.open(images[0]).convert('RGB')
|
||||
try:
|
||||
max_new_tokens = max_token[datasetname]
|
||||
except:
|
||||
max_new_tokens = 1024
|
||||
if (datasetname == 'docVQA') or (datasetname == "docVQATest") :
|
||||
prompt = "Answer the question directly with single word." + "\n" + questions[0]
|
||||
elif (datasetname == 'textVQA') :
|
||||
prompt = "Answer the question directly with single word." + '\n'+ questions[0]
|
||||
img_width, img_height = image.width, image.height
|
||||
if (img_width * img_height) < (1344 * 1344):
|
||||
ratio = math.sqrt((1344 * 1344) / (img_width * img_height))
|
||||
max_img_width = int(img_width * ratio)
|
||||
new_img_width = random.randint(img_width, max_img_width)
|
||||
new_img_height = int(new_img_width / img_width * img_height)
|
||||
image = image.resize((new_img_width, new_img_height))
|
||||
|
||||
max_new_tokens = max_token[datasetname]
|
||||
|
||||
prompt = "Answer the question directly with single word." + '\n' + questions[0]
|
||||
|
||||
msgs = [{'role': 'user', 'content': prompt}]
|
||||
default_kwargs = dict(
|
||||
@@ -151,10 +145,7 @@ class MiniCPM_V_2_6:
|
||||
return [res]
|
||||
|
||||
def generate_with_interleaved(self, images, questions, datasetname):
|
||||
try:
|
||||
max_new_tokens = max_token[datasetname]
|
||||
except:
|
||||
max_new_tokens = 1024
|
||||
max_new_tokens = max_token[datasetname]
|
||||
|
||||
prompt = "Answer the question directly with single word."
|
||||
|
||||
@@ -197,5 +188,117 @@ class MiniCPM_V_2_6:
|
||||
|
||||
if isinstance(res, tuple) and len(res) > 0:
|
||||
res = res[0]
|
||||
print(f"Q: {content}, \nA: {res}")
|
||||
|
||||
return [res]
|
||||
|
||||
|
||||
class MiniCPM_o_2_6:
|
||||
|
||||
def __init__(self, model_path, ckpt, device=None)->None:
|
||||
random.seed(0)
|
||||
np.random.seed(0)
|
||||
torch.manual_seed(0)
|
||||
torch.cuda.manual_seed_all(0)
|
||||
|
||||
self.model_path = model_path
|
||||
self.ckpt = ckpt
|
||||
self.model = AutoModel.from_pretrained(
|
||||
self.model_path,
|
||||
trust_remote_code=True,
|
||||
attn_implementation='sdpa',
|
||||
torch_dtype=torch.bfloat16,
|
||||
init_vision=True,
|
||||
init_audio=False,
|
||||
init_tts=False
|
||||
)
|
||||
if self.ckpt is not None:
|
||||
self.ckpt = ckpt
|
||||
self.state_dict = torch.load(self.ckpt, map_location=torch.device('cpu'))
|
||||
self.model.load_state_dict(self.state_dict)
|
||||
|
||||
self.model = self.model.eval().to(device)
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True)
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def generate(self, images, questions, datasetname):
|
||||
image = Image.open(images[0]).convert('RGB')
|
||||
img_width, img_height = image.width, image.height
|
||||
if (img_width * img_height) < (1344 * 1344):
|
||||
ratio = math.sqrt((1344 * 1344) / (img_width * img_height))
|
||||
max_img_width = int(img_width * ratio)
|
||||
new_img_width = random.randint(img_width, max_img_width)
|
||||
new_img_height = int(new_img_width / img_width * img_height)
|
||||
image = image.resize((new_img_width, new_img_height))
|
||||
|
||||
max_new_tokens = max_token[datasetname]
|
||||
|
||||
prompt = "Answer the question directly with single word." + '\n' + questions[0]
|
||||
|
||||
msgs = [{'role': 'user', 'content': prompt}]
|
||||
default_kwargs = dict(
|
||||
max_new_tokens=max_new_tokens,
|
||||
sampling=False,
|
||||
num_beams=3,
|
||||
max_inp_length=8192,
|
||||
use_image_id=True,
|
||||
max_slice_nums=None
|
||||
)
|
||||
res = self.model.chat(
|
||||
image=image,
|
||||
msgs=msgs,
|
||||
context=None,
|
||||
tokenizer=self.tokenizer,
|
||||
**default_kwargs
|
||||
)
|
||||
|
||||
return [res]
|
||||
|
||||
def generate_with_interleaved(self, images, questions, datasetname):
|
||||
max_new_tokens = max_token[datasetname]
|
||||
|
||||
prompt = "Answer the question directly with single word."
|
||||
|
||||
default_kwargs = dict(
|
||||
max_new_tokens=max_new_tokens,
|
||||
sampling=False,
|
||||
num_beams=3,
|
||||
max_inp_length=8192,
|
||||
use_image_id=True,
|
||||
max_slice_nums=None
|
||||
)
|
||||
|
||||
content = []
|
||||
message = [
|
||||
{'type': 'text', 'value': prompt},
|
||||
{'type': 'image', 'value': images[0]},
|
||||
{'type': 'text', 'value': questions[0]}
|
||||
]
|
||||
for x in message:
|
||||
if x['type'] == 'text':
|
||||
content.append(x['value'])
|
||||
elif x['type'] == 'image':
|
||||
image = Image.open(x['value']).convert('RGB')
|
||||
img_width, img_height = image.width, image.height
|
||||
if (img_width * img_height) >= (1344 * 1344):
|
||||
content.append(image)
|
||||
else:
|
||||
ratio = math.sqrt((1344 * 1344) / (img_width * img_height))
|
||||
max_img_width = int(img_width * ratio)
|
||||
new_img_width = random.randint(img_width, max_img_width)
|
||||
new_img_height = int(new_img_width / img_width * img_height)
|
||||
resized_image = image.resize((new_img_width, new_img_height))
|
||||
content.append(resized_image)
|
||||
msgs = [{'role': 'user', 'content': content}]
|
||||
|
||||
res = self.model.chat(
|
||||
image=None,
|
||||
msgs=msgs,
|
||||
context=None,
|
||||
tokenizer=self.tokenizer,
|
||||
**default_kwargs
|
||||
)
|
||||
|
||||
if isinstance(res, tuple) and len(res) > 0:
|
||||
res = res[0]
|
||||
print(f"Q: {content}, \nA: {res}")
|
||||
return [res]
|
||||
@@ -26,7 +26,7 @@ pyyaml==6.0
|
||||
regex==2022.10.31
|
||||
tokenizers==0.13.2
|
||||
tqdm==4.64.1
|
||||
transformers
|
||||
transformers==4.44.2
|
||||
timm==0.6.13
|
||||
spacy==3.5.1
|
||||
webdataset==0.2.48
|
||||
|
||||
@@ -12,4 +12,4 @@ python -m torch.distributed.launch \
|
||||
--eval_textVQA \
|
||||
--eval_docVQA \
|
||||
--answer_path ./answers \
|
||||
--batchsize 1
|
||||
--batchsize 1
|
||||
|
||||
@@ -1,3 +1,3 @@
|
||||
python ./transform_docvqatest_for_submission.py \
|
||||
--input_file_path \
|
||||
--output_file_path
|
||||
--output_file_path
|
||||
|
||||
Reference in New Issue
Block a user