mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-05 18:29:18 +08:00
Modify eval_mm for MiniCPM-o 2.6
This commit is contained in:
@@ -7,7 +7,9 @@ from transformers import AutoModel, AutoTokenizer
|
||||
|
||||
from .base import BaseModel
|
||||
from ..smp import *
|
||||
from ..dataset import DATASET_TYPE
|
||||
from ..dataset import DATASET_TYPE, DATASET_MODALITY
|
||||
|
||||
import re
|
||||
|
||||
|
||||
class MiniCPM_V(BaseModel):
|
||||
@@ -25,12 +27,13 @@ class MiniCPM_V(BaseModel):
|
||||
self.kwargs = kwargs
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True)
|
||||
torch.cuda.empty_cache()
|
||||
self.num_beams = 1 if self.model_path == 'openbmb/MiniCPM-V' else 3
|
||||
self.num_beams = 3
|
||||
|
||||
def use_custom_prompt(self, dataset):
|
||||
assert dataset is not None
|
||||
if listinstr(['MMMU'], dataset):
|
||||
return True
|
||||
if listinstr(['MMDU', 'MME-RealWorld', 'MME-RealWorld-CN'], dataset):
|
||||
# For Multi-Turn we don't have custom prompt
|
||||
return False
|
||||
return False
|
||||
|
||||
def build_prompt(self, line, dataset=None):
|
||||
@@ -103,7 +106,7 @@ class MiniCPM_Llama3_V(BaseModel):
|
||||
self.kwargs = kwargs
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True)
|
||||
torch.cuda.empty_cache()
|
||||
self.num_beams = 1 if self.model_path == 'openbmb/MiniCPM-V' else 3
|
||||
self.num_beams = 3
|
||||
self.options_system_prompt = ('Carefully read the following question and select the letter corresponding '
|
||||
'to the correct answer. Highlight the applicable choices without giving '
|
||||
'explanations.')
|
||||
@@ -258,7 +261,7 @@ class MiniCPM_V_2_6(BaseModel):
|
||||
INSTALL_REQ = False
|
||||
INTERLEAVE = True
|
||||
|
||||
def __init__(self, model_path='openbmb/MiniCPM-V', **kwargs):
|
||||
def __init__(self, model_path='openbmb/MiniCPM-V-2_6', **kwargs):
|
||||
random.seed(0)
|
||||
np.random.seed(0)
|
||||
torch.manual_seed(0)
|
||||
@@ -274,7 +277,7 @@ class MiniCPM_V_2_6(BaseModel):
|
||||
self.kwargs = kwargs
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True)
|
||||
torch.cuda.empty_cache()
|
||||
self.num_beams = 1 if self.model_path == 'openbmb/MiniCPM-V' else 3
|
||||
self.num_beams = 3
|
||||
|
||||
self.options_suffix_prompt = '''\nAnswer with the option's letter from the given choices directly.'''
|
||||
self.wo_options_system_prompt = 'Carefully read the following question Answer the question directly.'
|
||||
@@ -291,7 +294,7 @@ class MiniCPM_V_2_6(BaseModel):
|
||||
def use_custom_prompt(self, dataset=None):
|
||||
if dataset is None:
|
||||
return False
|
||||
if listinstr(['MCQ', 'VQA', 'Y/N'], DATASET_TYPE(dataset)):
|
||||
if DATASET_TYPE(dataset) in ['MCQ', 'VQA', 'Y/N']:
|
||||
return True
|
||||
return False
|
||||
|
||||
@@ -414,6 +417,15 @@ class MiniCPM_V_2_6(BaseModel):
|
||||
return msgs
|
||||
|
||||
def generate_inner(self, message, dataset=None):
|
||||
if DATASET_MODALITY(dataset) == 'VIDEO':
|
||||
max_slice_nums = 1
|
||||
use_image_id = False
|
||||
max_inp_length = 2048 * 10
|
||||
else:
|
||||
max_slice_nums = None
|
||||
use_image_id = True
|
||||
max_inp_length = 8192
|
||||
|
||||
max_new_tokens = 2048
|
||||
default_kwargs = dict(
|
||||
max_new_tokens=max_new_tokens,
|
||||
@@ -449,7 +461,9 @@ class MiniCPM_V_2_6(BaseModel):
|
||||
msgs=msgs,
|
||||
context=None,
|
||||
tokenizer=self.tokenizer,
|
||||
max_inp_length=8192,
|
||||
max_inp_length=max_inp_length,
|
||||
use_image_id=use_image_id,
|
||||
max_slice_nums=max_slice_nums,
|
||||
**default_kwargs
|
||||
)
|
||||
|
||||
@@ -457,3 +471,257 @@ class MiniCPM_V_2_6(BaseModel):
|
||||
res = res[0]
|
||||
|
||||
return res
|
||||
|
||||
|
||||
class MiniCPM_o_2_6(BaseModel):
|
||||
INSTALL_REQ = False
|
||||
INTERLEAVE = True
|
||||
|
||||
def __init__(self, model_path='openbmb/MiniCPM-o-2_6', **kwargs):
|
||||
random.seed(0)
|
||||
np.random.seed(0)
|
||||
torch.manual_seed(0)
|
||||
torch.cuda.manual_seed_all(0)
|
||||
|
||||
assert model_path is not None
|
||||
self.model_path = model_path
|
||||
print(f'load from path {self.model_path}')
|
||||
self.model = AutoModel.from_pretrained(
|
||||
self.model_path,
|
||||
trust_remote_code=True,
|
||||
attn_implementation='sdpa',
|
||||
torch_dtype=torch.bfloat16,
|
||||
init_vision=True,
|
||||
init_audio=False,
|
||||
init_tts=False
|
||||
)
|
||||
|
||||
self.model.eval().cuda()
|
||||
|
||||
self.kwargs = kwargs
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True)
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
num_beams = int(os.getenv("NUM_BEAMS", "3"))
|
||||
self.num_beams = 3 if self.model_path == 'openbmb/MiniCPM-o-2_6' else num_beams
|
||||
|
||||
repetition_penalty = float(os.getenv("PENALTY", "1.2"))
|
||||
self.repetition_penalty = repetition_penalty
|
||||
|
||||
self.options_suffix_prompt = '''\nAnswer with the option's letter from the given choices directly.'''
|
||||
self.wo_options_system_prompt = 'Carefully read the following question Answer the question directly.'
|
||||
self.detail_system_prompt = 'Answer this question in detail.'
|
||||
self.vqa_prompt = 'Answer the question using a single word or phrase.'
|
||||
|
||||
self.multi_choice_cot_prompt = ('''Carefully read the following multichoice question, solve it step '''
|
||||
'''by step and finally pick the option associated with the correct '''
|
||||
'''answer in the format of "Answer: selected option\n\n''')
|
||||
self.short_ans_cot_prompt = ('''Read the following question carefully, solve it step by step, and '''
|
||||
'''then output the final answer in the format of "Answer: single number '''
|
||||
'''or single word or phrase".\n\n''')
|
||||
|
||||
def use_custom_prompt(self, dataset=None):
|
||||
if dataset is None:
|
||||
return False
|
||||
if listinstr(['MCQ', 'VQA', 'Y/N'], DATASET_TYPE(dataset)):
|
||||
return True
|
||||
return False
|
||||
|
||||
def use_cot(self, dataset=None):
|
||||
if dataset is None:
|
||||
return False
|
||||
if listinstr(['MMMU', 'MathVista', 'OCRBench', 'ChartQA', 'MathVision', 'MathVerse_MINI_Vision_Only'], dataset):
|
||||
return True
|
||||
elif listinstr(['MMVet', 'MMBench', 'MMStar', 'HallusionBench', 'AI2D', 'RealWorldQA',
|
||||
'POPE', 'ScienceQA', 'TextVQA', 'DocVQA'], dataset):
|
||||
return False
|
||||
else:
|
||||
return False
|
||||
|
||||
def use_upsize(self, dataset=None):
|
||||
if dataset is None:
|
||||
return False
|
||||
if listinstr(['MathVista', 'MMBench_TEST_CN', 'MMStar', 'AI2D', 'OCRBench', 'DynaMath'], dataset):
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def build_prompt(self, line, dataset=None):
|
||||
if isinstance(line, int):
|
||||
line = self.data.iloc[line]
|
||||
|
||||
tgt_path = self.dump_image(line, dataset)
|
||||
system_prompt, prompt = '', ''
|
||||
|
||||
question = line['question']
|
||||
|
||||
if not self.use_cot(dataset):
|
||||
if DATASET_TYPE(dataset) == 'MCQ':
|
||||
options = {
|
||||
cand: line[cand]
|
||||
for cand in string.ascii_uppercase
|
||||
if cand in line and not pd.isna(line[cand])
|
||||
}
|
||||
options_prompt = 'Options:\n'
|
||||
for key, item in options.items():
|
||||
options_prompt += f'{key}. {item}\n'
|
||||
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
|
||||
if hint is not None:
|
||||
prompt += f'Hint: {hint}\n'
|
||||
prompt += f'Question: {question}\n'
|
||||
if len(options):
|
||||
prompt += options_prompt
|
||||
prompt += self.options_suffix_prompt
|
||||
else:
|
||||
system_prompt = self.wo_options_system_prompt
|
||||
|
||||
if 'MMMU' in dataset:
|
||||
if len(system_prompt) > 0:
|
||||
prompt = system_prompt + '\n' + prompt
|
||||
system_prompt = ''
|
||||
elif dataset is not None and listinstr(['HallusionBench'], dataset):
|
||||
question += ' Yes or No?'
|
||||
prompt = question
|
||||
elif dataset is not None and listinstr(['OCRBench'], dataset):
|
||||
system_prompt = self.vqa_prompt
|
||||
prompt = question
|
||||
elif DATASET_TYPE(dataset) == 'VQA':
|
||||
if listinstr(['LLaVABench'], dataset):
|
||||
system_prompt = ''
|
||||
elif listinstr(['MMVet'], dataset):
|
||||
system_prompt = self.detail_system_prompt
|
||||
else:
|
||||
system_prompt = self.vqa_prompt
|
||||
prompt = question
|
||||
else:
|
||||
prompt = question
|
||||
else:
|
||||
has_options = True
|
||||
if DATASET_TYPE(dataset) == 'MCQ':
|
||||
options = {
|
||||
cand: line[cand]
|
||||
for cand in string.ascii_uppercase
|
||||
if cand in line and not pd.isna(line[cand])
|
||||
}
|
||||
options_prompt = ''
|
||||
for key, item in options.items():
|
||||
options_prompt += f'{key}. {item}\n'
|
||||
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
|
||||
if hint is not None:
|
||||
prompt += f'Hint: {hint}\n'
|
||||
prompt += f'{question}\n'
|
||||
|
||||
if len(options):
|
||||
prompt += options_prompt
|
||||
else:
|
||||
has_options = False
|
||||
|
||||
if 'MMMU' in dataset:
|
||||
if len(system_prompt) > 0:
|
||||
prompt = system_prompt + '\n' + prompt
|
||||
system_prompt = ''
|
||||
else:
|
||||
prompt = question
|
||||
|
||||
if DATASET_TYPE(dataset) in ['MCQ', 'Y/N', 'VQA']:
|
||||
if DATASET_TYPE(dataset) == 'MCQ':
|
||||
if has_options:
|
||||
prompt = self.multi_choice_cot_prompt + prompt
|
||||
else:
|
||||
prompt = self.short_ans_cot_prompt + prompt
|
||||
elif DATASET_TYPE(dataset) == 'Y/N':
|
||||
prompt = self.short_ans_cot_prompt + prompt
|
||||
else:
|
||||
prompt = self.short_ans_cot_prompt + prompt
|
||||
|
||||
msgs = []
|
||||
if system_prompt:
|
||||
msgs.append(dict(type='text', value=system_prompt))
|
||||
if isinstance(tgt_path, list):
|
||||
msgs.extend([dict(type='image', value=p) for p in tgt_path])
|
||||
else:
|
||||
msgs = [dict(type='image', value=tgt_path)]
|
||||
msgs.append(dict(type='text', value=prompt))
|
||||
|
||||
return msgs
|
||||
|
||||
def extract_answer(self, res, dataset=None):
|
||||
if dataset is None:
|
||||
return res
|
||||
if self.use_cot(dataset):
|
||||
if DATASET_TYPE(dataset) == 'MCQ':
|
||||
pattern = r'Answer:\s*([A-Ia-i])(?![A-Za-z])'
|
||||
matches = re.findall(pattern, res, re.DOTALL)
|
||||
if matches:
|
||||
extracted_res = matches[-1].strip()
|
||||
else:
|
||||
extracted_res = res
|
||||
return extracted_res
|
||||
elif DATASET_TYPE(dataset) == 'VQA' and not listinstr(['OCRBench'], dataset):
|
||||
pattern = r'Answer:\s*(.*)\s*$'
|
||||
match = re.search(pattern, res, re.DOTALL)
|
||||
if match:
|
||||
extracted_res = match.group(1)
|
||||
else:
|
||||
extracted_res = res
|
||||
return extracted_res
|
||||
return res
|
||||
|
||||
def generate_inner(self, message, dataset=None):
|
||||
if DATASET_MODALITY(dataset) == 'VIDEO':
|
||||
max_slice_nums = 1
|
||||
use_image_id = False
|
||||
max_inp_length = 2048 * 10
|
||||
else:
|
||||
max_slice_nums = None
|
||||
use_image_id = True
|
||||
max_inp_length = 8192
|
||||
|
||||
max_new_tokens = 2048
|
||||
default_kwargs = dict(
|
||||
max_new_tokens=max_new_tokens,
|
||||
sampling=False,
|
||||
repetition_penalty=self.repetition_penalty,
|
||||
num_beams=self.num_beams,
|
||||
)
|
||||
default_kwargs.update(self.kwargs)
|
||||
|
||||
content = []
|
||||
|
||||
for x in message:
|
||||
if x['type'] == 'text':
|
||||
content.append(x['value'])
|
||||
elif x['type'] == 'image':
|
||||
image = Image.open(x['value']).convert('RGB')
|
||||
if not self.use_upsize(dataset):
|
||||
content.append(image)
|
||||
else:
|
||||
img_width, img_height = image.width, image.height
|
||||
if (img_width * img_height) >= (1344 * 1344):
|
||||
content.append(image)
|
||||
else:
|
||||
ratio = math.sqrt((1344 * 1344) / (img_width * img_height))
|
||||
max_img_width = int(img_width * ratio)
|
||||
new_img_width = random.randint(img_width, max_img_width)
|
||||
new_img_height = int(new_img_width / img_width * img_height)
|
||||
resized_image = image.resize((new_img_width, new_img_height))
|
||||
content.append(resized_image)
|
||||
msgs = [{'role': 'user', 'content': content}]
|
||||
|
||||
res = self.model.chat(
|
||||
image=None,
|
||||
msgs=msgs,
|
||||
context=None,
|
||||
tokenizer=self.tokenizer,
|
||||
max_inp_length=max_inp_length,
|
||||
use_image_id=use_image_id,
|
||||
max_slice_nums=max_slice_nums,
|
||||
**default_kwargs
|
||||
)
|
||||
|
||||
if isinstance(res, tuple) and len(res) > 0:
|
||||
res = res[0]
|
||||
|
||||
res = self.extract_answer(res, dataset)
|
||||
|
||||
return res
|
||||
|
||||
Reference in New Issue
Block a user