Modify eval_mm for MiniCPM-o 2.6

This commit is contained in:
Poppy Xu
2025-01-21 15:34:54 +08:00
parent ec68cefc17
commit d8f382e157
82 changed files with 14279 additions and 843 deletions

View File

@@ -18,7 +18,7 @@ def parse_args():
# Only API model is accepted
def infer_data_api(work_dir, model_name, dataset, index_set=None, api_nproc=4, ignore_failed=False):
def infer_data_api(model, work_dir, model_name, dataset, index_set=None, api_nproc=4, ignore_failed=False):
rank, world_size = get_rank_and_world_size()
assert rank == 0 and world_size == 1
dataset_name = dataset.dataset_name
@@ -26,11 +26,24 @@ def infer_data_api(work_dir, model_name, dataset, index_set=None, api_nproc=4, i
if index_set is not None:
data = data[data['index'].isin(index_set)]
model = supported_VLM[model_name]() if isinstance(model_name, str) else model_name
model = supported_VLM[model_name]() if isinstance(model, str) else model
assert getattr(model, 'is_api', False)
if hasattr(model, 'set_dump_image'):
model.set_dump_image(dataset.dump_image)
lt, indices = len(data), list(data['index'])
structs = [dataset.build_prompt(data.iloc[i]) for i in range(lt)]
structs = []
for i in range(lt):
item = data.iloc[i]
if hasattr(model, 'use_custom_prompt') and model.use_custom_prompt(dataset_name):
assert hasattr(model, 'build_prompt')
struct = model.build_prompt(item, dataset=dataset_name)
else:
struct = dataset.build_prompt(item)
structs.append(struct)
# structs = [dataset.build_prompt(data.iloc[i]) for i in range(lt)]
out_file = f'{work_dir}/{model_name}_{dataset_name}_supp.pkl'
res = {}
@@ -55,7 +68,7 @@ def infer_data_api(work_dir, model_name, dataset, index_set=None, api_nproc=4, i
return res
def infer_data(model_name, work_dir, dataset, out_file, verbose=False, api_nproc=4):
def infer_data(model, model_name, work_dir, dataset, out_file, verbose=False, api_nproc=4):
dataset_name = dataset.dataset_name
prev_file = f'{work_dir}/{model_name}_{dataset_name}_PREV.pkl'
res = load(prev_file) if osp.exists(prev_file) else {}
@@ -83,12 +96,13 @@ def infer_data(model_name, work_dir, dataset, out_file, verbose=False, api_nproc
data = data[~data['index'].isin(res)]
lt = len(data)
model = supported_VLM[model_name]() if isinstance(model_name, str) else model_name
model = supported_VLM[model_name]() if isinstance(model, str) else model
is_api = getattr(model, 'is_api', False)
if is_api:
lt, indices = len(data), list(data['index'])
supp = infer_data_api(
model=model,
work_dir=work_dir,
model_name=model_name,
dataset=dataset,
@@ -99,7 +113,7 @@ def infer_data(model_name, work_dir, dataset, out_file, verbose=False, api_nproc
res.update(supp)
res = {k: res[k] for k in data_indices}
dump(res, out_file)
return model_name
return model
else:
model.set_dump_image(dataset.dump_image)
@@ -120,7 +134,7 @@ def infer_data(model_name, work_dir, dataset, out_file, verbose=False, api_nproc
print(response, flush=True)
res[idx] = response
if (i + 1) % 20 == 0:
if (i + 1) % 10 == 0:
dump(res, out_file)
res = {k: res[k] for k in data_indices}
@@ -149,7 +163,8 @@ def infer_data_job(model, work_dir, model_name, dataset, verbose=False, api_npro
out_file = tmpl.format(rank)
model = infer_data(
model, work_dir=work_dir, dataset=dataset, out_file=out_file, verbose=verbose, api_nproc=api_nproc)
model=model, work_dir=work_dir, model_name=model_name, dataset=dataset,
out_file=out_file, verbose=verbose, api_nproc=api_nproc)
if world_size > 1:
dist.barrier()
@@ -168,4 +183,6 @@ def infer_data_job(model, work_dir, model_name, dataset, verbose=False, api_npro
dump(data, result_file)
for i in range(world_size):
os.remove(tmpl.format(i))
if world_size > 1:
dist.barrier()
return model