mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-05 18:29:18 +08:00
Modify eval_mm for MiniCPM-o 2.6
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
from .gpt import OpenAIWrapper, GPT4V
|
||||
|
||||
__all__ = [
|
||||
'OpenAIWrapper', 'GPT4V'
|
||||
'OpenAIWrapper', 'GPT4V',
|
||||
]
|
||||
|
||||
@@ -3,7 +3,7 @@ import random as rd
|
||||
from abc import abstractmethod
|
||||
import os.path as osp
|
||||
import copy as cp
|
||||
from ..smp import get_logger, parse_file, concat_images_vlmeval
|
||||
from ..smp import get_logger, parse_file, concat_images_vlmeval, LMUDataRoot, md5, decode_base64_to_image_file
|
||||
|
||||
|
||||
class BaseAPI:
|
||||
@@ -143,7 +143,9 @@ class BaseAPI:
|
||||
while len(inputs):
|
||||
try:
|
||||
return self.generate_inner(inputs, **kwargs)
|
||||
except:
|
||||
except Exception as e:
|
||||
if self.verbose:
|
||||
self.logger.info(f'{type(e)}: {e}')
|
||||
inputs = inputs[1:]
|
||||
while len(inputs) and inputs[0]['role'] != 'user':
|
||||
inputs = inputs[1:]
|
||||
@@ -179,19 +181,38 @@ class BaseAPI:
|
||||
if not isinstance(log, str):
|
||||
try:
|
||||
log = log.text
|
||||
except:
|
||||
self.logger.warning(f'Failed to parse {log} as an http response. ')
|
||||
except Exception as e:
|
||||
self.logger.warning(f'Failed to parse {log} as an http response: {str(e)}. ')
|
||||
self.logger.info(f'RetCode: {ret_code}\nAnswer: {answer}\nLog: {log}')
|
||||
except Exception as err:
|
||||
if self.verbose:
|
||||
self.logger.error(f'An error occured during try {i}:')
|
||||
self.logger.error(err)
|
||||
self.logger.error(f'An error occured during try {i}: ')
|
||||
self.logger.error(f'{type(err)}: {err}')
|
||||
# delay before each retry
|
||||
T = rd.random() * self.wait * 2
|
||||
time.sleep(T)
|
||||
|
||||
return self.fail_msg if answer in ['', None] else answer
|
||||
|
||||
def preprocess_message_with_role(self, message):
|
||||
system_prompt = ''
|
||||
new_message = []
|
||||
|
||||
for data in message:
|
||||
assert isinstance(data, dict)
|
||||
role = data.pop('role', 'user')
|
||||
if role == 'system':
|
||||
system_prompt += data['value'] + '\n'
|
||||
else:
|
||||
new_message.append(data)
|
||||
|
||||
if system_prompt != '':
|
||||
if self.system_prompt is None:
|
||||
self.system_prompt = system_prompt
|
||||
else:
|
||||
self.system_prompt += '\n' + system_prompt
|
||||
return new_message
|
||||
|
||||
def generate(self, message, **kwargs1):
|
||||
"""The main function to generate the answer. Will call `generate_inner` with the preprocessed input messages.
|
||||
|
||||
@@ -201,6 +222,9 @@ class BaseAPI:
|
||||
Returns:
|
||||
str: The generated answer of the Failed Message if failed to obtain answer.
|
||||
"""
|
||||
if self.check_content(message) == 'listdict':
|
||||
message = self.preprocess_message_with_role(message)
|
||||
|
||||
assert self.check_content(message) in ['str', 'dict', 'liststr', 'listdict'], f'Invalid input type: {message}'
|
||||
message = self.preproc_content(message)
|
||||
assert message is not None and self.check_content(message) == 'listdict'
|
||||
@@ -227,13 +251,13 @@ class BaseAPI:
|
||||
if not isinstance(log, str):
|
||||
try:
|
||||
log = log.text
|
||||
except:
|
||||
self.logger.warning(f'Failed to parse {log} as an http response. ')
|
||||
except Exception as e:
|
||||
self.logger.warning(f'Failed to parse {log} as an http response: {str(e)}. ')
|
||||
self.logger.info(f'RetCode: {ret_code}\nAnswer: {answer}\nLog: {log}')
|
||||
except Exception as err:
|
||||
if self.verbose:
|
||||
self.logger.error(f'An error occured during try {i}:')
|
||||
self.logger.error(err)
|
||||
self.logger.error(f'An error occured during try {i}: ')
|
||||
self.logger.error(f'{type(err)}: {err}')
|
||||
# delay before each retry
|
||||
T = rd.random() * self.wait * 2
|
||||
time.sleep(T)
|
||||
|
||||
@@ -38,7 +38,7 @@ class OpenAIWrapper(BaseAPI):
|
||||
retry: int = 5,
|
||||
wait: int = 5,
|
||||
key: str = None,
|
||||
verbose: bool = True,
|
||||
verbose: bool = False,
|
||||
system_prompt: str = None,
|
||||
temperature: float = 0,
|
||||
timeout: int = 60,
|
||||
@@ -56,7 +56,7 @@ class OpenAIWrapper(BaseAPI):
|
||||
self.temperature = temperature
|
||||
self.use_azure = use_azure
|
||||
|
||||
if 'step-1v' in model:
|
||||
if 'step' in model:
|
||||
env_key = os.environ.get('STEPAI_API_KEY', '')
|
||||
if key is None:
|
||||
key = env_key
|
||||
@@ -64,6 +64,14 @@ class OpenAIWrapper(BaseAPI):
|
||||
env_key = os.environ.get('YI_API_KEY', '')
|
||||
if key is None:
|
||||
key = env_key
|
||||
elif 'internvl2-pro' in model:
|
||||
env_key = os.environ.get('InternVL2_PRO_KEY', '')
|
||||
if key is None:
|
||||
key = env_key
|
||||
elif 'abab' in model:
|
||||
env_key = os.environ.get('MiniMax_API_KEY', '')
|
||||
if key is None:
|
||||
key = env_key
|
||||
else:
|
||||
if use_azure:
|
||||
env_key = os.environ.get('AZURE_OPENAI_API_KEY', None)
|
||||
@@ -124,7 +132,7 @@ class OpenAIWrapper(BaseAPI):
|
||||
self.api_base = api_base
|
||||
else:
|
||||
self.logger.error('Unknown API Base. ')
|
||||
sys.exit(-1)
|
||||
raise NotImplementedError
|
||||
|
||||
self.logger.info(f'Using API Base: {self.api_base}; API Key: {self.key}')
|
||||
|
||||
@@ -169,19 +177,22 @@ class OpenAIWrapper(BaseAPI):
|
||||
temperature = kwargs.pop('temperature', self.temperature)
|
||||
max_tokens = kwargs.pop('max_tokens', self.max_tokens)
|
||||
|
||||
context_window = GPT_context_window(self.model)
|
||||
max_tokens = min(max_tokens, context_window - self.get_token_len(inputs))
|
||||
if 0 < max_tokens <= 100:
|
||||
self.logger.warning(
|
||||
'Less than 100 tokens left, '
|
||||
'may exceed the context window with some additional meta symbols. '
|
||||
)
|
||||
if max_tokens <= 0:
|
||||
return 0, self.fail_msg + 'Input string longer than context window. ', 'Length Exceeded. '
|
||||
# context_window = GPT_context_window(self.model)
|
||||
# new_max_tokens = min(max_tokens, context_window - self.get_token_len(inputs))
|
||||
# if 0 < new_max_tokens <= 100 and new_max_tokens < max_tokens:
|
||||
# self.logger.warning(
|
||||
# 'Less than 100 tokens left, '
|
||||
# 'may exceed the context window with some additional meta symbols. '
|
||||
# )
|
||||
# if new_max_tokens <= 0:
|
||||
# return 0, self.fail_msg + 'Input string longer than context window. ', 'Length Exceeded. '
|
||||
# max_tokens = new_max_tokens
|
||||
|
||||
# Will send request if use Azure, dk how to use openai client for it
|
||||
if self.use_azure:
|
||||
headers = {'Content-Type': 'application/json', 'api-key': self.key}
|
||||
elif 'internvl2-pro' in self.model:
|
||||
headers = {'Content-Type': 'application/json', 'Authorization': self.key}
|
||||
else:
|
||||
headers = {'Content-Type': 'application/json', 'Authorization': f'Bearer {self.key}'}
|
||||
payload = dict(
|
||||
@@ -200,8 +211,11 @@ class OpenAIWrapper(BaseAPI):
|
||||
try:
|
||||
resp_struct = json.loads(response.text)
|
||||
answer = resp_struct['choices'][0]['message']['content'].strip()
|
||||
except:
|
||||
pass
|
||||
except Exception as err:
|
||||
if self.verbose:
|
||||
self.logger.error(f'{type(err)}: {err}')
|
||||
self.logger.error(response.text if hasattr(response, 'text') else response)
|
||||
|
||||
return ret_code, answer, response
|
||||
|
||||
def get_image_token_len(self, img_path, detail='low'):
|
||||
@@ -228,8 +242,13 @@ class OpenAIWrapper(BaseAPI):
|
||||
import tiktoken
|
||||
try:
|
||||
enc = tiktoken.encoding_for_model(self.model)
|
||||
except:
|
||||
enc = tiktoken.encoding_for_model('gpt-4')
|
||||
except Exception as err:
|
||||
if 'gpt' in self.model.lower():
|
||||
if self.verbose:
|
||||
self.logger.warning(f'{type(err)}: {err}')
|
||||
enc = tiktoken.encoding_for_model('gpt-4')
|
||||
else:
|
||||
return 0
|
||||
assert isinstance(inputs, list)
|
||||
tot = 0
|
||||
for item in inputs:
|
||||
|
||||
Reference in New Issue
Block a user