diff --git a/README.md b/README.md index e352647..f1c6f6f 100644 --- a/README.md +++ b/README.md @@ -1517,23 +1517,87 @@ MiniCPM-V 2.6 can run with ollama now! See [our fork of ollama](https://github.c
vLLM now officially supports MiniCPM-V 2.0, MiniCPM-Llama3-V 2.5 and MiniCPM-V 2.6, Click to see. -1. Clone the official vLLM: +1. Install vLLM: ```shell -git clone https://github.com/vllm-project/vllm.git +pip install vLLM ``` -2. Install vLLM: -```shell -cd vllm -pip install -e . -``` -3. Install timm: (optional, MiniCPM-V 2.0 need timm) +2. Install timm: (optional, MiniCPM-V 2.0 need timm) ```shell pip install timm==0.9.10 ``` -4. Run the example:(Attention: If you use model in local path, please update the model code to the latest version on Hugging Face.) -```shell -python examples/minicpmv_example.py +3. Run the example(for image): +```python +from transformers import AutoTokenizer +from PIL import Image +from vllm import LLM, SamplingParams + +MODEL_NAME = "openbmb/MiniCPM-V-2_6" +# Also available for previous models +# MODEL_NAME = "openbmb/MiniCPM-Llama3-V-2_5" +# MODEL_NAME = "HwwwH/MiniCPM-V-2" + +image = Image.open("xxx.png").convert("RGB") +tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) +llm = LLM( + model=MODEL_NAME, + trust_remote_code=True, + gpu_memory_utilization=1, + max_model_len=2048 +) + +messages = [{ + "role": + "user", + "content": + # Number of images + "(./)" + \ + "\nWhat is the content of this image?" +}] +prompt = tokenizer.apply_chat_template( + messages, + tokenize=False, + add_generation_prompt=True +) + +# Single Inference +inputs = { + "prompt": prompt, + "multi_modal_data": { + "image": image + # Multi images, the number of images should be equal to that of `(./)` + # "image": [image, image] + }, +} +# Batch Inference +# inputs = [{ +# "prompt": prompt, +# "multi_modal_data": { +# "image": image +# }, +# } for _ in 2] + + +# 2.6 +stop_tokens = ['<|im_end|>', '<|endoftext|>'] +stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens] +# 2.0 +# stop_token_ids = [tokenizer.eos_id] +# 2.5 +# stop_token_ids = [tokenizer.eos_id, tokenizer.eot_id] + +sampling_params = SamplingParams( + stop_token_ids=stop_token_ids, + use_beam_search=True, + temperature=0, + best_of=3, + max_tokens=64 +) + +outputs = llm.generate(inputs, sampling_params=sampling_params) + +print(outputs[0].outputs[0].text) ``` +4. click [here](https://modelbest.feishu.cn/wiki/C2BWw4ZP0iCDy7kkCPCcX2BHnOf?from=from_copylink) if you want to use it with *video*, or get more details about `vLLM`.
## Fine-tuning