Merge pull request #543 from lihytotoro/main

Modify eval_mm for MiniCPM-V 2.6
This commit is contained in:
Cui Junbo
2024-09-01 00:51:28 +08:00
committed by GitHub
69 changed files with 8231 additions and 1818 deletions

View File

@@ -1,60 +1,59 @@
# Evaluation # Evaluation
## opencompass ## MiniCPM-V 2.6
### opencompass
First, enter the `vlmevalkit` directory and install all dependencies: First, enter the `vlmevalkit` directory and install all dependencies:
```bash ```bash
cd vlmevalkit cd vlmevalkit
pip install -r requirements.txt pip install --upgrade pip
pip install -e .
wget https://download.pytorch.org/whl/cu118/torch-2.2.0%2Bcu118-cp310-cp310-linux_x86_64.whl#sha256=4377e0a7fe8ff8ffc4f7c9c6130c1dcd3874050ae4fc28b7ff1d35234fbca423
wget https://download.pytorch.org/whl/cu118/torchvision-0.17.0%2Bcu118-cp310-cp310-linux_x86_64.whl#sha256=2e63d62e09d9b48b407d3e1b30eb8ae4e3abad6968e8d33093b60d0657542428
wget https://github.com/Dao-AILab/flash-attention/releases/download/v2.6.3/flash_attn-2.6.3+cu118torch2.2cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
pip install torch-2.2.0%2Bcu118-cp310-cp310-linux_x86_64.whl
pip install torchvision-0.17.0%2Bcu118-cp310-cp310-linux_x86_64.whl
pip install flash_attn-2.6.3+cu118torch2.2cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
``` ```
<br /> <br />
Then, run `script/run_inference.sh`, which receives three input parameters in sequence: `MODELNAME`, `DATALIST`, and `MODE`. `MODELNAME` represents the name of the model, `DATALIST` represents the datasets used for inference, and `MODE` represents evaluation mode: Then, run `scripts/run_inference.sh`, which receives three input parameters in sequence: `MODELNAME`, `DATALIST`, and `MODE`. `MODELNAME` represents the name of the model, `DATALIST` represents the datasets used for inference, and `MODE` represents evaluation mode:
```bash ```bash
chmod +x ./script/run_inference.sh chmod +x ./scripts/run_inference.sh
./script/run_inference.sh $MODELNAME $DATALIST $MODE ./scripts/run_inference.sh $MODELNAME $DATALIST $MODE
``` ```
<br /> <br />
The three available choices for `MODELNAME` are listed in `vlmeval/config.py`: The four available choices for `MODELNAME` are listed in `vlmeval/config.py`:
```bash ```bash
ungrouped = { minicpm_series = {
'MiniCPM-V': partial(MiniCPM_V, model_path='openbmb/MiniCPM-V'), 'MiniCPM-V': partial(MiniCPM_V, model_path='openbmb/MiniCPM-V'),
'MiniCPM-V-2': partial(MiniCPM_V, model_path='openbmb/MiniCPM-V-2'), 'MiniCPM-V-2': partial(MiniCPM_V, model_path='openbmb/MiniCPM-V-2'),
'MiniCPM-Llama3-V-2_5': partial(MiniCPM_Llama3_V, model_path='openbmb/MiniCPM-Llama3-V-2_5'), 'MiniCPM-Llama3-V-2_5': partial(MiniCPM_Llama3_V, model_path='openbmb/MiniCPM-Llama3-V-2_5'),
'MiniCPM-V-2_6': partial(MiniCPM_V_2_6, model_path='openbmb/MiniCPM-V-2_6'),
} }
``` ```
<br /> <br />
All available choices for `DATALIST` are listed in `vlmeval/utils/dataset_config.py`. While evaluating on a single dataset, call the dataset name directly without quotation marks; while evaluating on multiple datasets, separate the names of different datasets with spaces and add quotation marks at both ends: All available choices for `DATALIST` are listed in `vlmeval/utils/dataset_config.py`. Separate the names of different datasets with spaces and add quotation marks at both ends:
```bash ```bash
$DATALIST="POPE ScienceQA_TEST ChartQA_TEST" $DATALIST="MMMU_DEV_VAL MathVista_MINI MMVet MMBench_DEV_EN_V11 MMBench_DEV_CN_V11 MMStar HallusionBench AI2D_TEST"
``` ```
<br /> <br />
While scoring on each benchmark directly, set `MODE=all`. If only inference results are required, set `MODE=infer`. In order to reproduce the results in the table displayed on the homepage (columns between MME and RealWorldQA), you need to run the script according to the following settings: While scoring on each benchmark directly, set `MODE=all`. If only inference results are required, set `MODE=infer`. In order to reproduce the results in the table displayed on the homepage (columns between MME and HallusionBench), you need to run the script according to the following settings:
```bash ```bash
# run on all 7 datasets # without CoT
./script/run_inference.sh MiniCPM-Llama3-V-2_5 "MME MMBench_TEST_EN MMBench_TEST_CN MMMU_DEV_VAL MathVista_MINI LLaVABench RealWorldQA" all ./scripts/run_inference.sh MiniCPM-V-2_6 "MMMU_DEV_VAL MathVista_MINI MMVet MMBench_DEV_EN_V11 MMBench_DEV_CN_V11 MMStar HallusionBench AI2D_TEST" all
./scripts/run_inference.sh MiniCPM-V-2_6 MME all
# The following are instructions for running on a single dataset # with CoT
# MME # While running the CoT version of MME, you need to modify the 'use_cot' function in vlmeval/vlm/minicpm_v.py and add MME to the branch that returns True.
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MME all ./scripts/run_inference/sh MiniCPM-V-2_6 "MMMU_DEV_VAL MMVet MMStar HallusionBench OCRBench" all
# MMBench_TEST_EN ./scripts/run_inference.sh MiniCPM-V-2_6 MME all
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MMBench_TEST_EN all
# MMBench_TEST_CN
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MMBench_TEST_CN all
# MMMU_DEV_VAL
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MMMU_DEV_VAL all
# MathVista_MINI
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MathVista_MINI all
# LLaVABench
./script/run_inference.sh MiniCPM-Llama3-V-2_5 LLaVABench all
# RealWorldQA
./script/run_inference.sh MiniCPM-Llama3-V-2_5 RealWorldQA all
``` ```
<br /> <br />
## vqadataset ### vqadataset
First, enter the `vqaeval` directory and install all dependencies. Then, create `downloads` subdirectory to store the downloaded dataset for all tasks: First, enter the `vqaeval` directory and install all dependencies. Then, create `downloads` subdirectory to store the downloaded dataset for all tasks:
```bash ```bash
cd vqaeval cd vqaeval
@@ -112,7 +111,8 @@ chmod +x ./shell/run_inference.sh
``` ```
<br /> <br />
All optional parameters are listed in `eval_utils/getargs.py`. The meanings of some major parameters are listed as follows: All optional parameters are listed in `eval_utils/getargs.py`. The meanings of some major parameters are listed as follows.
For `MiniCPM-V-2_6`, set `model_name` to `minicpmv26`:
```bash ```bash
# path to images and their corresponding questions # path to images and their corresponding questions
# TextVQA # TextVQA
@@ -175,3 +175,188 @@ For the DocVQATest task, in order to upload the inference results to the [offici
chmod +x ./shell/run_transform.sh chmod +x ./shell/run_transform.sh
./shell/run_transform.sh ./shell/run_transform.sh
``` ```
<br />
## MiniCPM-Llama3-V-2_5
<details>
<summary>Expand</summary>
### opencompass
First, enter the `vlmevalkit` directory and install all dependencies:
```bash
cd vlmevalkit
pip install -r requirements.txt
```
<br />
Then, run `scripts/run_inference.sh`, which receives three input parameters in sequence: `MODELNAME`, `DATALIST`, and `MODE`. `MODELNAME` represents the name of the model, `DATALIST` represents the datasets used for inference, and `MODE` represents evaluation mode:
```bash
chmod +x ./scripts/run_inference.sh
./scripts/run_inference.sh $MODELNAME $DATALIST $MODE
```
<br />
The three available choices for `MODELNAME` are listed in `vlmeval/config.py`:
```bash
ungrouped = {
'MiniCPM-V':partial(MiniCPM_V, model_path='openbmb/MiniCPM-V'),
'MiniCPM-V-2':partial(MiniCPM_V, model_path='openbmb/MiniCPM-V-2'),
'MiniCPM-Llama3-V-2_5':partial(MiniCPM_Llama3_V, model_path='openbmb/MiniCPM-Llama3-V-2_5'),
}
```
<br />
All available choices for `DATALIST` are listed in `vlmeval/utils/dataset_config.py`. While evaluating on a single dataset, call the dataset name directly without quotation marks; while evaluating on multiple datasets, separate the names of different datasets with spaces and add quotation marks at both ends:
```bash
$DATALIST="POPE ScienceQA_TEST ChartQA_TEST"
```
<br />
While scoring on each benchmark directly, set `MODE=all`. If only inference results are required, set `MODE=infer`. In order to reproduce the results in the table displayed on the homepage (columns between MME and RealWorldQA), you need to run the script according to the following settings:
```bash
# run on all 7 datasets
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 "MME MMBench_TEST_EN MMBench_TEST_CN MMMU_DEV_VAL MathVista_MINI LLaVABench RealWorldQA" all
# The following are instructions for running on a single dataset
# MME
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MME all
# MMBench_TEST_EN
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MMBench_TEST_EN all
# MMBench_TEST_CN
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MMBench_TEST_CN all
# MMMU_DEV_VAL
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MMMU_DEV_VAL all
# MathVista_MINI
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MathVista_MINI all
# LLaVABench
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 LLaVABench all
# RealWorldQA
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 RealWorldQA all
```
<br />
### vqadataset
First, enter the `vqaeval` directory and install all dependencies. Then, create `downloads` subdirectory to store the downloaded dataset for all tasks:
```bash
cd vqaeval
pip install -r requirements.txt
mkdir downloads
```
<br />
Download the datasets from the following links and place it in the specified directories:
###### TextVQA
```bash
cd downloads
mkdir TextVQA && cd TextVQA
wget https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip
unzip train_val_images.zip && rm train_val_images.zip
mv train_val_images/train_images . && rm -rf train_val_images
wget https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_0.5.1_val.json
cd ../..
```
###### DocVQA / DocVQATest
```bash
cd downloads
mkdir DocVQA && cd DocVQA && mkdir spdocvqa_images
# Download Images and Annotations from Task 1 - Single Page Document Visual Question Answering at https://rrc.cvc.uab.es/?ch=17&com=downloads
# Move the spdocvqa_images.tar.gz and spdocvqa_qas.zip to DocVQA directory
tar -zxvf spdocvqa_images.tar.gz -C spdocvqa_images && rm spdocvqa_images.tar.gz
unzip spdocvqa_qas.zip && rm spdocvqa_qas.zip
cp spdocvqa_qas/val_v1.0_withQT.json . && cp spdocvqa_qas/test_v1.0.json . && rm -rf spdocvqa_qas
cd ../..
```
<br />
The `downloads` directory should be organized according to the following structure:
```bash
downloads
├── TextVQA
│ ├── train_images
│ │ ├── ...
│ ├── TextVQA_0.5.1_val.json
├── DocVQA
│ ├── spdocvqa_images
│ │ ├── ...
│ ├── val_v1.0_withQT.json
│ ├── test_v1.0.json
```
<br />
Modify the parameters in `shell/run_inference.sh` and run inference:
```bash
chmod +x ./shell/run_inference.sh
./shell/run_inference.sh
```
<br />
All optional parameters are listed in `eval_utils/getargs.py`. The meanings of some major parameters are listed as follows.
For `MiniCPM-Llama3-V-2_5`, set `model_name` to `minicpmv`:
```bash
# path to images and their corresponding questions
# TextVQA
--textVQA_image_dir
--textVQA_ann_path
# DocVQA
--docVQA_image_dir
--docVQA_ann_path
# DocVQATest
--docVQATest_image_dir
--docVQATest_ann_path
# whether to eval on certain task
--eval_textVQA
--eval_docVQA
--eval_docVQATest
--eval_all
# model name and model path
--model_name
--model_path
# load model from ckpt
--ckpt
# the way the model processes input data, "interleave" represents interleaved image-text form, while "old" represents non-interleaved.
--generate_method
--batchsize
# path to save the outputs
--answer_path
```
<br />
While evaluating on different tasks, parameters need to be set as follows:
###### TextVQA
```bash
--eval_textVQA
--textVQA_image_dir ./downloads/TextVQA/train_images
--textVQA_ann_path ./downloads/TextVQA/TextVQA_0.5.1_val.json
```
###### DocVQA
```bash
--eval_docVQA
--docVQA_image_dir ./downloads/DocVQA/spdocvqa_images
--docVQA_ann_path ./downloads/DocVQA/val_v1.0_withQT.json
```
###### DocVQATest
```bash
--eval_docVQATest
--docVQATest_image_dir ./downloads/DocVQA/spdocvqa_images
--docVQATest_ann_path ./downloads/DocVQA/test_v1.0.json
```
<br />
For the DocVQATest task, in order to upload the inference results to the [official website](https://rrc.cvc.uab.es/?ch=17) for evaluation, run `shell/run_transform.sh` for format transformation after inference. `input_file_path` represents the path to the original output json, `output_file_path` represents the path to the transformed json:
```bash
chmod +x ./shell/run_transform.sh
./shell/run_transform.sh
```
</details>

View File

@@ -1,61 +1,60 @@
# Evaluation # Evaluation
## opencompass ## MiniCPM-V 2.6
### opencompass
首先,进入 `vlmevalkit` 目录下,安装必要的依赖: 首先,进入 `vlmevalkit` 目录下,安装必要的依赖:
```bash ```bash
cd vlmevalkit cd vlmevalkit
pip install -r requirements.txt pip install --upgrade pip
pip install -e .
wget https://download.pytorch.org/whl/cu118/torch-2.2.0%2Bcu118-cp310-cp310-linux_x86_64.whl#sha256=4377e0a7fe8ff8ffc4f7c9c6130c1dcd3874050ae4fc28b7ff1d35234fbca423
wget https://download.pytorch.org/whl/cu118/torchvision-0.17.0%2Bcu118-cp310-cp310-linux_x86_64.whl#sha256=2e63d62e09d9b48b407d3e1b30eb8ae4e3abad6968e8d33093b60d0657542428
wget https://github.com/Dao-AILab/flash-attention/releases/download/v2.6.3/flash_attn-2.6.3+cu118torch2.2cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
pip install torch-2.2.0%2Bcu118-cp310-cp310-linux_x86_64.whl
pip install torchvision-0.17.0%2Bcu118-cp310-cp310-linux_x86_64.whl
pip install flash_attn-2.6.3+cu118torch2.2cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
rm *.whl
``` ```
<br /> <br />
然后,运行 `script/run_inference.sh`,该脚本依次接收三个输入参数:`MODELNAME`, `DATALIST`, `MODE``MODELNAME` 为模型名称,`DATALIST` 为目标数据集,`MODE` 为评测模式。 然后,运行 `scripts/run_inference.sh`,该脚本依次接收三个输入参数:`MODELNAME`, `DATALIST`, `MODE``MODELNAME` 为模型名称,`DATALIST` 为目标数据集,`MODE` 为评测模式。
```bash ```bash
chmod +x ./script/run_inference.sh chmod +x ./scripts/run_inference.sh
./script/run_inference.sh $MODELNAME $DATALIST $MODE ./scripts/run_inference.sh $MODELNAME $DATALIST $MODE
``` ```
<br /> <br />
`MODELNAME`种选择,位于 `vlmeval/config.py` 中: `MODELNAME`种选择,位于 `vlmeval/config.py` 中:
```bash ```bash
ungrouped = { minicpm_series = {
'MiniCPM-V': partial(MiniCPM_V, model_path='openbmb/MiniCPM-V'), 'MiniCPM-V': partial(MiniCPM_V, model_path='openbmb/MiniCPM-V'),
'MiniCPM-V-2': partial(MiniCPM_V, model_path='openbmb/MiniCPM-V-2'), 'MiniCPM-V-2': partial(MiniCPM_V, model_path='openbmb/MiniCPM-V-2'),
'MiniCPM-Llama3-V-2_5': partial(MiniCPM_Llama3_V, model_path='openbmb/MiniCPM-Llama3-V-2_5'), 'MiniCPM-Llama3-V-2_5': partial(MiniCPM_Llama3_V, model_path='openbmb/MiniCPM-Llama3-V-2_5'),
'MiniCPM-V-2_6': partial(MiniCPM_V_2_6, model_path='openbmb/MiniCPM-V-2_6'),
} }
``` ```
<br /> <br />
可选的所有 `DATALIST` 位于 `vlmeval/utils/dataset_config.py`,评测单个数据集时,直接调用数据集名称,不加引号;评测多个数据集时,将不同数据集名称以空格隔开,两端加引号: 可选的所有 `DATALIST` 位于 `vlmeval/utils/dataset_config.py`将不同数据集名称以空格隔开,两端加引号:
```bash ```bash
$DATALIST="POPE ScienceQA_TEST ChartQA_TEST" $DATALIST="MMMU_DEV_VAL MathVista_MINI MMVet MMBench_DEV_EN_V11 MMBench_DEV_CN_V11 MMStar HallusionBench AI2D_TEST"
``` ```
<br /> <br />
直接对各 benchmark 进行评分时,设置 `MODE=all`。如果仅需要推理结果,则设置 `MODE=infer` 直接对各 benchmark 进行评分时,设置 `MODE=all`。如果仅需要推理结果,则设置 `MODE=infer`
为了复现出首页展示的表格中的各项结果MME 到 RealWorldQA 之间的列),需要按照如下设置运行: 为了复现出首页展示的表格中的各项结果MME 到 HallusionBench 之间的列),需要按照如下设置运行:
```bash ```bash
# 一次性运行 7 个数据集 # without CoT
./script/run_inference.sh MiniCPM-Llama3-V-2_5 "MME MMBench_TEST_EN MMBench_TEST_CN MMMU_DEV_VAL MathVista_MINI LLaVABench RealWorldQA" all ./scripts/run_inference.sh MiniCPM-V-2_6 "MMMU_DEV_VAL MathVista_MINI MMVet MMBench_DEV_EN_V11 MMBench_DEV_CN_V11 MMStar HallusionBench AI2D_TEST" all
./scripts/run_inference.sh MiniCPM-V-2_6 MME all
# 以下是单独运行 1 个数据集的指令 # with CoT运行 CoT 版本的 MME 时,需要改写 vlmeval/vlm/minicpm_v.py 中的 'use_cot' 函数,将 MME 添加到 return True 的分支中
# MME ./scripts/run_inference/sh MiniCPM-V-2_6 "MMMU_DEV_VAL MMVet MMStar HallusionBench OCRBench" all
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MME all ./scripts/run_inference.sh MiniCPM-V-2_6 MME all
# MMBench_TEST_EN
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MMBench_TEST_EN all
# MMBench_TEST_CN
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MMBench_TEST_CN all
# MMMU_DEV_VAL
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MMMU_DEV_VAL all
# MathVista_MINI
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MathVista_MINI all
# LLaVABench
./script/run_inference.sh MiniCPM-Llama3-V-2_5 LLaVABench all
# RealWorldQA
./script/run_inference.sh MiniCPM-Llama3-V-2_5 RealWorldQA all
``` ```
<br /> <br />
## vqadataset ### vqadataset
首先,进入 `vqaeval` 目录下,安装必要的依赖,并创建 `downloads` 子目录,用于存储下载的数据集: 首先,进入 `vqaeval` 目录下,安装必要的依赖,并创建 `downloads` 子目录,用于存储下载的数据集:
```bash ```bash
cd vqaeval cd vqaeval
@@ -112,7 +111,8 @@ chmod +x ./shell/run_inference.sh
``` ```
<br /> <br />
可以传入的参数位于 `eval_utils/getargs.py` 中,各主要参数的含义如下 可以传入的参数位于 `eval_utils/getargs.py` 中,各主要参数的含义如下
对于 `MiniCPM-V-2_6`,需要将 `model_name`设置为 `minicpmv26`
```bash ```bash
# 指定 TextVQA 评测所有图片和问题的路径 # 指定 TextVQA 评测所有图片和问题的路径
--textVQA_image_dir --textVQA_image_dir
@@ -173,3 +173,186 @@ chmod +x ./shell/run_inference.sh
chmod +x ./shell/run_transform.sh chmod +x ./shell/run_transform.sh
./shell/run_transform.sh ./shell/run_transform.sh
``` ```
<br />
## MiniCPM-Llama3-V-2_5
<details>
<summary>展开</summary>
### opencompass
首先,进入 `vlmevalkit` 目录下,安装必要的依赖:
```bash
cd vlmevalkit
pip install -r requirements.txt
```
<br />
然后,运行 `scripts/run_inference.sh`,该脚本依次接收三个输入参数:`MODELNAME`, `DATALIST`, `MODE``MODELNAME` 为模型名称,`DATALIST` 为目标数据集,`MODE` 为评测模式。
```bash
chmod +x ./scripts/run_inference.sh
./scripts/run_inference.sh $MODELNAME $DATALIST $MODE
```
<br />
`MODELNAME` 有三种选择,位于 `vlmeval/config.py` 中:
```bash
ungrouped = {
'MiniCPM-V':partial(MiniCPM_V, model_path='openbmb/MiniCPM-V'),
'MiniCPM-V-2':partial(MiniCPM_V, model_path='openbmb/MiniCPM-V-2'),
'MiniCPM-Llama3-V-2_5':partial(MiniCPM_Llama3_V, model_path='openbmb/MiniCPM-Llama3-V-2_5'),
}
```
<br />
可选的所有 `DATALIST` 位于 `vlmeval/utils/dataset_config.py` 中,评测单个数据集时,直接调用数据集名称,不加引号;评测多个数据集时,将不同数据集名称以空格隔开,两端加引号:
```bash
$DATALIST="POPE ScienceQA_TEST ChartQA_TEST"
```
<br />
直接对各 benchmark 进行评分时,设置 `MODE=all`。如果仅需要推理结果,则设置 `MODE=infer`
为了复现出首页展示的表格中的各项结果MME 到 RealWorldQA 之间的列),需要按照如下设置运行:
```bash
# 一次性运行 7 个数据集
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 "MME MMBench_TEST_EN MMBench_TEST_CN MMMU_DEV_VAL MathVista_MINI LLaVABench RealWorldQA" all
# 以下是单独运行 1 个数据集的指令
# MME
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MME all
# MMBench_TEST_EN
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MMBench_TEST_EN all
# MMBench_TEST_CN
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MMBench_TEST_CN all
# MMMU_DEV_VAL
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MMMU_DEV_VAL all
# MathVista_MINI
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MathVista_MINI all
# LLaVABench
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 LLaVABench all
# RealWorldQA
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 RealWorldQA all
```
<br />
### vqadataset
首先,进入 `vqaeval` 目录下,安装必要的依赖,并创建 `downloads` 子目录,用于存储下载的数据集:
```bash
cd vqaeval
pip install -r requirements.txt
mkdir downloads
```
<br />
然后,从下列各地址下载数据集并置于指定目录下:
###### TextVQA
```bash
cd downloads
mkdir TextVQA && cd TextVQA
wget https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip
unzip train_val_images.zip && rm train_val_images.zip
mv train_val_images/train_images . && rm -rf train_val_images
wget https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_0.5.1_val.json
cd ../..
```
###### DocVQA / DocVQATest
```bash
cd downloads
mkdir DocVQA && cd DocVQA && mkdir spdocvqa_images
# 在 https://rrc.cvc.uab.es/?ch=17&com=downloads 下载 Task 1 - Single Page Document Visual Question Answering 下的 Images 和 Annotations
# 将下载得到的 spdocvqa_images.tar.gz 以及 spdocvqa_qas.zip 置于 DocVQA 目录下
tar -zxvf spdocvqa_images.tar.gz -C spdocvqa_images && rm spdocvqa_images.tar.gz
unzip spdocvqa_qas.zip && rm spdocvqa_qas.zip
cp spdocvqa_qas/val_v1.0_withQT.json . && cp spdocvqa_qas/test_v1.0.json . && rm -rf spdocvqa_qas
cd ../..
```
<br />
`downloads` 目录应当按照下列结构组织:
```bash
downloads
├── TextVQA
│ ├── train_images
│ │ ├── ...
│ ├── TextVQA_0.5.1_val.json
├── DocVQA
│ ├── spdocvqa_images
│ │ ├── ...
│ ├── val_v1.0_withQT.json
│ ├── test_v1.0.json
```
<br />
准备好相应的数据集之后,修改 `shell/run_inference.sh` 的参数,运行推理:
```bash
chmod +x ./shell/run_inference.sh
./shell/run_inference.sh
```
<br />
可以传入的参数位于 `eval_utils/getargs.py` 中,各主要参数的含义如下。
对于 `MiniCPM-Llama3-V-2_5`,需要将 `model_name` 设置为 `minicpmv`
```bash
# 指定 TextVQA 评测所有图片和问题的路径
--textVQA_image_dir
--textVQA_ann_path
# 指定 DocVQA 评测所有图片和问题的路径
--docVQA_image_dir
--docVQA_ann_path
# 指定 DocVQATest 评测所有图片和问题的路径
--docVQATest_image_dir
--docVQATest_ann_path
# 决定是否评测某个任务eval_all 设置为 True 表示所有任务都评测
--eval_textVQA
--eval_docVQA
--eval_docVQATest
--eval_all
# 模型名称、模型路径(从指定路径加载模型)
--model_name
--model_path
# 从 checkpoint 加载模型
--ckpt
# 模型处理输入数据的方式interleave 表示图文交错式old 表示非交错式
--generate_method
# 推理时的批处理规模,建议推理时设置为 1
--batchsize
# 输出内容保存的路径
--answer_path
```
<br />
评测三个任务需要设置的参数如下:
###### TextVQA
```bash
--eval_textVQA
--textVQA_image_dir ./downloads/TextVQA/train_images
--textVQA_ann_path ./downloads/TextVQA/TextVQA_0.5.1_val.json
```
###### DocVQA
```bash
--eval_docVQA
--docVQA_image_dir ./downloads/DocVQA/spdocvqa_images
--docVQA_ann_path ./downloads/DocVQA/val_v1.0_withQT.json
```
###### DocVQATest
```bash
--eval_docVQATest
--docVQATest_image_dir ./downloads/DocVQA/spdocvqa_images
--docVQATest_ann_path ./downloads/DocVQA/test_v1.0.json
```
<br />
对于 DocVQATest 任务,为了将推理结果上传到[官方网站](https://rrc.cvc.uab.es/?ch=17)进行评测,还需要运行 `shell/run_transform.sh` 进行格式转换。其中,`input_file_path` 对应原始输出的 json 的路径,`output_file_path` 为自定义的转换后的 json 的路径:
```bash
chmod +x ./shell/run_transform.sh
./shell/run_transform.sh
```
</details>

View File

@@ -1,33 +1,30 @@
einops decord
gradio==4.15.0 gradio
huggingface_hub huggingface_hub
imageio
matplotlib matplotlib
moviepy
numpy>=1.23.4 numpy>=1.23.4
omegaconf omegaconf
openai==1.3.5 openai==1.3.5
opencv-python>=4.4.0.46 opencv-python>=4.4.0.46
openpyxl openpyxl
pandas>=1.5.3 pandas
peft
pillow pillow
portalocker portalocker
protobuf
pycocoevalcap
python-dotenv python-dotenv
requests requests
rich rich
seaborn
sentencepiece sentencepiece
setuptools
sty sty
tabulate tabulate
tiktoken tiktoken
timeout-decorator timeout-decorator
torch>=2.0.1
tqdm tqdm
transformers
typing_extensions==4.7.1 typing_extensions==4.7.1
validators validators
visual_genome
xlsxwriter xlsxwriter
Pillow==10.1.0
sentencepiece==0.1.99
transformers==4.40.0
torch==1.13.1
torchvision

View File

@@ -0,0 +1,11 @@
docutils==0.18.1
modelindex
myst-parser
-e git+https://github.com/open-compass/pytorch_sphinx_theme.git#egg=pytorch_sphinx_theme
sphinx==6.1.3
sphinx-copybutton
sphinx-design
sphinx-notfound-page
sphinx-tabs
sphinxcontrib-jquery
tabulate

View File

@@ -1,23 +1,39 @@
import torch import torch
import torch.distributed as dist import torch.distributed as dist
from vlmeval.smp import *
from vlmeval.evaluate import *
from vlmeval.inference import infer_data_job
from vlmeval.config import supported_VLM from vlmeval.config import supported_VLM
from vlmeval.utils import dataset_URLs, DATASET_TYPE, abbr2full, MMMU_result_transfer from vlmeval.dataset import build_dataset
from vlmeval.inference import infer_data_job
from vlmeval.inference_video import infer_data_job_video
from vlmeval.inference_mt import infer_data_job_mt
from vlmeval.smp import *
from vlmeval.utils.result_transfer import MMMU_result_transfer, MMTBench_result_transfer
def parse_args(): def parse_args():
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
# Essential Args
parser.add_argument('--data', type=str, nargs='+', required=True) parser.add_argument('--data', type=str, nargs='+', required=True)
parser.add_argument('--model', type=str, nargs='+', required=True) parser.add_argument('--model', type=str, nargs='+', required=True)
parser.add_argument('--work-dir', type=str, default='.', help='select the output directory') # Args that only apply to Video Dataset
parser.add_argument('--nframe', type=int, default=8)
parser.add_argument('--pack', action='store_true')
parser.add_argument('--use-subtitle', action='store_true')
# Work Dir
parser.add_argument('--work-dir', type=str, default='./outputs', help='select the output directory')
# Infer + Eval or Infer Only
parser.add_argument('--mode', type=str, default='all', choices=['all', 'infer']) parser.add_argument('--mode', type=str, default='all', choices=['all', 'infer'])
# API Kwargs, Apply to API VLMs and Judge API LLMs
parser.add_argument('--nproc', type=int, default=4, help='Parallel API calling') parser.add_argument('--nproc', type=int, default=4, help='Parallel API calling')
parser.add_argument('--retry', type=int, default=None, help='retry numbers for API VLMs') parser.add_argument('--retry', type=int, default=None, help='retry numbers for API VLMs')
# Explicitly Set the Judge Model
parser.add_argument('--judge', type=str, default=None) parser.add_argument('--judge', type=str, default=None)
parser.add_argument('--ignore', action='store_true', help='Ignore failed indices. ') # Logging Utils
parser.add_argument('--verbose', action='store_true') parser.add_argument('--verbose', action='store_true')
# Configuration for Resume
# Ignore: will not rerun failed VLM inference
parser.add_argument('--ignore', action='store_true', help='Ignore failed indices. ')
# Rerun: will remove all evaluation temp files
parser.add_argument('--rerun', action='store_true') parser.add_argument('--rerun', action='store_true')
args = parser.parse_args() args = parser.parse_args()
return args return args
@@ -51,53 +67,83 @@ def main():
os.makedirs(pred_root, exist_ok=True) os.makedirs(pred_root, exist_ok=True)
for _, dataset_name in enumerate(args.data): for _, dataset_name in enumerate(args.data):
custom_flag = False dataset_kwargs = {}
if dataset_name in ['MMLongBench_DOC', 'DUDE', 'DUDE_MINI', 'SLIDEVQA', 'SLIDEVQA_MINI']:
dataset_kwargs['model'] = model_name
if dataset_name == 'MMBench-Video':
dataset_kwargs['pack'] = args.pack
if dataset_name == 'Video-MME':
dataset_kwargs['use_subtitle'] = args.use_subtitle
if dataset_name not in dataset_URLs: # If distributed, first build the dataset on the main process for doing preparation works
dataset_name = abbr2full(dataset_name) if world_size > 1:
dataset = build_dataset(dataset_name, **dataset_kwargs) if rank == 0 else None
if dataset_name not in dataset_URLs: dist.barrier()
logger.warning(f'Dataset {dataset_name} is not officially supported. ') dataset_list = [dataset]
file_path = osp.join(LMUDataRoot(), f'{dataset_name}.tsv') dist.broadcast_object_list(dataset_list, src=0)
if not osp.exists(file_path): dataset = dataset_list[0]
logger.error(f'Cannot find the local dataset {dataset_name}. ')
continue
else: else:
custom_flag = True dataset = build_dataset(dataset_name, **dataset_kwargs)
if dataset is None:
logger.error(f'Dataset {dataset_name} is not valid, will be skipped. ')
continue
result_file = f'{pred_root}/{model_name}_{dataset_name}.xlsx' result_file = f'{pred_root}/{model_name}_{dataset_name}.xlsx'
if dataset_name in ['MMBench-Video']:
packstr = 'pack' if args.pack else 'nopack'
result_file = f'{pred_root}/{model_name}_{dataset_name}_{args.nframe}frame_{packstr}.xlsx'
elif dataset.MODALITY == 'VIDEO':
if args.pack:
logger.info(f'{dataset_name} not support Pack Mode, directly change to unpack')
args.pack = False
packstr = 'pack' if args.pack else 'nopack'
result_file = f'{pred_root}/{model_name}_{dataset_name}_{args.nframe}frame_{packstr}.xlsx'
if dataset_name in ['Video-MME']:
subtitlestr = 'subs' if args.use_subtitle else 'nosubs'
result_file = result_file.replace('.xlsx', f'_{subtitlestr}.xlsx')
if dataset.TYPE == 'MT':
result_file = result_file.replace('.xlsx', '.tsv')
if osp.exists(result_file) and args.rerun: if osp.exists(result_file) and args.rerun:
os.system(f'rm {pred_root}/{model_name}_{dataset_name}_*') for keyword in ['openai', 'gpt', 'auxmatch']:
os.system(f'rm {pred_root}/{model_name}_{dataset_name}_{keyword}*')
if model is None: if model is None:
model = model_name # which is only a name model = model_name # which is only a name
# Perform the Inference
if dataset.MODALITY == 'VIDEO':
model = infer_data_job_video(
model,
work_dir=pred_root,
model_name=model_name,
dataset=dataset,
nframe=args.nframe,
pack=args.pack,
verbose=args.verbose,
subtitle=args.use_subtitle,
api_nproc=args.nproc)
elif dataset.TYPE == 'MT':
model = infer_data_job_mt(
model,
work_dir=pred_root,
model_name=model_name,
dataset=dataset,
verbose=args.verbose,
api_nproc=args.nproc,
ignore_failed=args.ignore)
else:
model = infer_data_job( model = infer_data_job(
model, model,
work_dir=pred_root, work_dir=pred_root,
model_name=model_name, model_name=model_name,
dataset_name=dataset_name, dataset=dataset,
verbose=args.verbose, verbose=args.verbose,
api_nproc=args.nproc, api_nproc=args.nproc,
ignore_failed=args.ignore) ignore_failed=args.ignore)
if rank == 0: # Set the judge kwargs first before evaluation or dumping
if dataset_name in ['MMMU_TEST']:
result_json = MMMU_result_transfer(result_file)
logger.info(f'Transfer MMMU_TEST result to json for official evaluation, json file saved in {result_json}') # noqa: E501
continue
if dataset_name in [
'MMBench_TEST_CN', 'MMBench_TEST_EN', 'MMBench', 'MMBench_CN'
'MMBench_TEST_CN_V11', 'MMBench_TEST_EN_V11', 'MMBench_V11', 'MMBench_CN_V11'
]:
if not MMBenchOfficialServer(dataset_name):
logger.error(
f'Can not evaluate {dataset_name} on non-official servers, '
'will skip the evaluation. '
)
continue
judge_kwargs = { judge_kwargs = {
'nproc': args.nproc, 'nproc': args.nproc,
'verbose': args.verbose, 'verbose': args.verbose,
@@ -107,41 +153,69 @@ def main():
if args.judge is not None: if args.judge is not None:
judge_kwargs['model'] = args.judge judge_kwargs['model'] = args.judge
else: else:
if DATASET_TYPE(dataset_name) in ['multi-choice', 'Y/N']: if dataset.TYPE in ['MCQ', 'Y/N']:
judge_kwargs['model'] = 'chatgpt-0613' judge_kwargs['model'] = 'chatgpt-0125'
elif listinstr(['MMVet', 'MathVista', 'LLaVABench'], dataset_name): elif listinstr(['MMVet', 'MathVista', 'LLaVABench', 'MMBench-Video', 'MathVision'], dataset_name):
judge_kwargs['model'] = 'gpt-4-turbo' judge_kwargs['model'] = 'gpt-4-turbo'
elif listinstr(['MMLongBench', 'MMDU', 'DUDE', 'DUDE_MINI', 'SLIDEVQA', 'SLIDEVQA_MINI'], dataset_name):
judge_kwargs['model'] = 'gpt-4o'
if 'OPENAI_API_KEY_JUDGE' in os.environ and len(os.environ['OPENAI_API_KEY_JUDGE']): if 'OPENAI_API_KEY_JUDGE' in os.environ and len(os.environ['OPENAI_API_KEY_JUDGE']):
judge_kwargs['key'] = os.environ['OPENAI_API_KEY_JUDGE'] judge_kwargs['key'] = os.environ['OPENAI_API_KEY_JUDGE']
if 'OPENAI_API_BASE_JUDGE' in os.environ and len(os.environ['OPENAI_API_BASE_JUDGE']): if 'OPENAI_API_BASE_JUDGE' in os.environ and len(os.environ['OPENAI_API_BASE_JUDGE']):
judge_kwargs['api_base'] = os.environ['OPENAI_API_BASE_JUDGE'] judge_kwargs['api_base'] = os.environ['OPENAI_API_BASE_JUDGE']
if rank == 0:
if dataset_name in ['MMMU_TEST']:
result_json = MMMU_result_transfer(result_file)
logger.info(f'Transfer MMMU_TEST result to json for official evaluation, '
f'json file saved in {result_json}') # noqa: E501
continue
elif 'MMT-Bench_ALL' in dataset_name:
submission_file = MMTBench_result_transfer(result_file, **judge_kwargs)
logger.info(f'Extract options from prediction of MMT-Bench FULL split for official evaluation '
f'(https://eval.ai/web/challenges/challenge-page/2328/overview), '
f'submission file saved in {submission_file}') # noqa: E501
continue
elif 'MLLMGuard_DS' in dataset_name:
logger.info('The evaluation of MLLMGuard_DS is not supported yet. ') # noqa: E501
continue
elif 'AesBench_TEST' == dataset_name:
logger.info(f'The results are saved in {result_file}. '
f'Please send it to the AesBench Team via huangyipo@hotmail.com.') # noqa: E501
continue
if dataset_name in [
'MMBench_TEST_CN', 'MMBench_TEST_EN', 'MMBench', 'MMBench_CN',
'MMBench_TEST_CN_V11', 'MMBench_TEST_EN_V11', 'MMBench_V11', 'MMBench_CN_V11'
]:
if not MMBenchOfficialServer(dataset_name):
logger.error(
f'Can not evaluate {dataset_name} on non-official servers, '
'will skip the evaluation. '
)
continue
eval_proxy = os.environ.get('EVAL_PROXY', None)
old_proxy = os.environ.get('HTTP_PROXY', '')
if rank == 0 and args.mode == 'all': if rank == 0 and args.mode == 'all':
if DATASET_TYPE(dataset_name) == 'multi-choice': if eval_proxy is not None:
dataset_name = 'default' if custom_flag else dataset_name proxy_set(eval_proxy)
multiple_choice_eval(
result_file, eval_results = dataset.evaluate(result_file, **judge_kwargs)
dataset=dataset_name, if eval_results is not None:
**judge_kwargs) assert isinstance(eval_results, dict) or isinstance(eval_results, pd.DataFrame)
elif DATASET_TYPE(dataset_name) == 'Y/N': logger.info(f'The evaluation of model {model_name} x dataset {dataset_name} has finished! ')
YOrN_eval( logger.info('Evaluation Results:')
result_file, if isinstance(eval_results, dict):
dataset=dataset_name, logger.info('\n' + json.dumps(eval_results, indent=4))
**judge_kwargs) elif isinstance(eval_results, pd.DataFrame):
elif DATASET_TYPE(dataset_name) == 'Caption': if len(eval_results) < len(eval_results.columns):
COCO_eval(result_file) eval_results = eval_results.T
elif dataset_name == 'MMVet': logger.info('\n' + tabulate(eval_results))
MMVet_eval(result_file, **judge_kwargs)
elif dataset_name == 'OCRBench': if eval_proxy is not None:
OCRBench_eval(result_file) proxy_set(old_proxy)
elif listinstr(['OCRVQA', 'TextVQA', 'ChartQA', 'DocVQA', 'InfoVQA'], dataset_name):
VQAEval(result_file, dataset_name)
elif listinstr(['MathVista'], dataset_name):
MathVista_eval(result_file, **judge_kwargs)
elif listinstr(['LLaVABench'], dataset_name):
LLaVABench_eval(result_file, **judge_kwargs)
else:
logger.error(f'Dataset {dataset_name} is not handled by evaluator, will be skipped. ')
if __name__ == '__main__': if __name__ == '__main__':

View File

@@ -11,10 +11,10 @@ export PYTHONPATH=$(dirname $SELF_DIR):$PYTHONPATH
# int4 7-8G # int4 7-8G
# model to be used # model to be used
# Example: MODELNAME=MiniCPM-Llama3-V-2_5 # Example: MODELNAME=MiniCPM_V_2_6
MODELNAME=$1 MODELNAME=$1
# datasets to be tested # datasets to be tested
# Example: DATALIST="POPE ScienceQA_TEST ChartQA_TEST" # Example: DATALIST="MMMU_DEV_VAL MathVista_MINI MMVet MMBench_DEV_EN_V11 MMBench_DEV_CN_V11 MMStar HallusionBench AI2D_TEST"
DATALIST=$2 DATALIST=$2
# test mode, all or infer # test mode, all or infer
MODE=$3 MODE=$3

122
eval_mm/vlmevalkit/setup.py Normal file
View File

@@ -0,0 +1,122 @@
import re
import sys
from os.path import exists
from setuptools import find_packages, setup
def parse_requirements(fname='requirements.txt', with_version=True):
"""Parse the package dependencies listed in a requirements file but strips
specific versioning information.
Args:
fname (str): path to requirements file
with_version (bool, default=False): if True include version specs
Returns:
List[str]: list of requirements items
CommandLine:
python -c "import setup; print(setup.parse_requirements())"
"""
require_fpath = fname
def parse_line(line):
"""Parse information from a line in a requirements text file."""
if line.startswith('-r '):
# Allow specifying requirements in other files
target = line.split(' ')[1]
for info in parse_require_file(target):
yield info
else:
info = {'line': line}
if line.startswith('-e '):
info['package'] = line.split('#egg=')[1]
elif '@git+' in line:
info['package'] = line
else:
# Remove versioning from the package
pat = '(' + '|'.join(['>=', '==', '>']) + ')'
parts = re.split(pat, line, maxsplit=1)
parts = [p.strip() for p in parts]
info['package'] = parts[0]
if len(parts) > 1:
op, rest = parts[1:]
if ';' in rest:
# Handle platform specific dependencies
# http://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-platform-specific-dependencies
version, platform_deps = map(str.strip,
rest.split(';'))
info['platform_deps'] = platform_deps
else:
version = rest # NOQA
info['version'] = (op, version)
yield info
def parse_require_file(fpath):
with open(fpath, 'r') as f:
for line in f.readlines():
line = line.strip()
if line and not line.startswith('#'):
for info in parse_line(line):
yield info
def gen_packages_items():
if exists(require_fpath):
for info in parse_require_file(require_fpath):
parts = [info['package']]
if with_version and 'version' in info:
parts.extend(info['version'])
if not sys.version.startswith('3.4'):
# apparently package_deps are broken in 3.4
platform_deps = info.get('platform_deps')
if platform_deps is not None:
parts.append(';' + platform_deps)
item = ''.join(parts)
yield item
packages = list(gen_packages_items())
return packages
with open('README.md') as f:
readme = f.read()
def do_setup():
setup(
name='vlmeval',
version='0.1.0',
description='OpenCompass VLM Evaluation Kit',
author='Haodong Duan',
author_email='dhd.efz@gmail.com',
maintainer='Haodong Duan',
maintainer_email='dhd.efz@gmail.com',
long_description=readme,
long_description_content_type='text/markdown',
cmdclass={},
install_requires=parse_requirements('requirements.txt'),
setup_requires=[],
python_requires='>=3.7.0',
packages=find_packages(exclude=[
'test*',
'paper_test*',
]),
keywords=['AI', 'NLP', 'in-context learning'],
entry_points={
'console_scripts': ['vlmutil = vlmeval:cli']
},
classifiers=[
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
'Programming Language :: Python :: 3.9',
'Programming Language :: Python :: 3.10',
'Intended Audience :: Developers',
'Intended Audience :: Education',
'Intended Audience :: Science/Research',
])
if __name__ == '__main__':
do_setup()

View File

@@ -5,9 +5,12 @@ except ImportError:
from .smp import * from .smp import *
from .api import * from .api import *
from .evaluate import * from .dataset import *
from .utils import * from .utils import *
from .vlm import * from .vlm import *
from .config import * from .config import *
from .tools import cli
load_env() load_env()
__version__ = '0.2rc1'

View File

@@ -1,6 +1,5 @@
from .gpt import OpenAIWrapper, GPT4V from .gpt import OpenAIWrapper, GPT4V
from .gpt_int import OpenAIWrapperInternal, GPT4V_Internal
__all__ = [ __all__ = [
'OpenAIWrapper', 'OpenAIWrapperInternal', 'GPT4V', 'GPT4V_Internal' 'OpenAIWrapper', 'GPT4V'
] ]

View File

@@ -3,7 +3,7 @@ import random as rd
from abc import abstractmethod from abc import abstractmethod
import os.path as osp import os.path as osp
import copy as cp import copy as cp
from ..smp import get_logger, parse_file from ..smp import get_logger, parse_file, concat_images_vlmeval
class BaseAPI: class BaseAPI:
@@ -62,12 +62,22 @@ class BaseAPI:
Returns: Returns:
bool: If the API model is working, return True, else return False. bool: If the API model is working, return True, else return False.
""" """
retry = 3 self.old_timeout = None
if hasattr(self, 'timeout'):
self.old_timeout = self.timeout
self.timeout = 120
retry = 5
while retry > 0: while retry > 0:
ret = self.generate('hello') ret = self.generate('hello')
if ret is not None and ret != '' and self.fail_msg not in ret: if ret is not None and ret != '' and self.fail_msg not in ret:
if self.old_timeout is not None:
self.timeout = self.old_timeout
return True return True
retry -= 1 retry -= 1
if self.old_timeout is not None:
self.timeout = self.old_timeout
return False return False
def check_content(self, msgs): def check_content(self, msgs):
@@ -127,6 +137,61 @@ class BaseAPI:
else: else:
return None return None
# May exceed the context windows size, so try with different turn numbers.
def chat_inner(self, inputs, **kwargs):
_ = kwargs.pop('dataset', None)
while len(inputs):
try:
return self.generate_inner(inputs, **kwargs)
except:
inputs = inputs[1:]
while len(inputs) and inputs[0]['role'] != 'user':
inputs = inputs[1:]
continue
return -1, self.fail_msg + ': ' + 'Failed with all possible conversation turns.', None
def chat(self, messages, **kwargs1):
"""The main function for multi-turn chatting. Will call `chat_inner` with the preprocessed input messages."""
assert hasattr(self, 'chat_inner'), 'The API model should has the `chat_inner` method. '
for msg in messages:
assert isinstance(msg, dict) and 'role' in msg and 'content' in msg, msg
assert self.check_content(msg['content']) in ['str', 'dict', 'liststr', 'listdict'], msg
msg['content'] = self.preproc_content(msg['content'])
# merge kwargs
kwargs = cp.deepcopy(self.default_kwargs)
kwargs.update(kwargs1)
answer = None
# a very small random delay [0s - 0.5s]
T = rd.random() * 0.5
time.sleep(T)
assert messages[-1]['role'] == 'user'
for i in range(self.retry):
try:
ret_code, answer, log = self.chat_inner(messages, **kwargs)
if ret_code == 0 and self.fail_msg not in answer and answer != '':
if self.verbose:
print(answer)
return answer
elif self.verbose:
if not isinstance(log, str):
try:
log = log.text
except:
self.logger.warning(f'Failed to parse {log} as an http response. ')
self.logger.info(f'RetCode: {ret_code}\nAnswer: {answer}\nLog: {log}')
except Exception as err:
if self.verbose:
self.logger.error(f'An error occured during try {i}:')
self.logger.error(err)
# delay before each retry
T = rd.random() * self.wait * 2
time.sleep(T)
return self.fail_msg if answer in ['', None] else answer
def generate(self, message, **kwargs1): def generate(self, message, **kwargs1):
"""The main function to generate the answer. Will call `generate_inner` with the preprocessed input messages. """The main function to generate the answer. Will call `generate_inner` with the preprocessed input messages.
@@ -175,7 +240,7 @@ class BaseAPI:
return self.fail_msg if answer in ['', None] else answer return self.fail_msg if answer in ['', None] else answer
def message_to_promptimg(self, message): def message_to_promptimg(self, message, dataset=None):
assert not self.INTERLEAVE assert not self.INTERLEAVE
model_name = self.__class__.__name__ model_name = self.__class__.__name__
import warnings import warnings
@@ -191,5 +256,10 @@ class BaseAPI:
image = [x['value'] for x in message if x['type'] == 'image'][0] image = [x['value'] for x in message if x['type'] == 'image'][0]
else: else:
prompt = '\n'.join([x['value'] if x['type'] == 'text' else '<image>' for x in message]) prompt = '\n'.join([x['value'] if x['type'] == 'text' else '<image>' for x in message])
if dataset == 'BLINK':
image = concat_images_vlmeval(
[x['value'] for x in message if x['type'] == 'image'],
target_size=512)
else:
image = [x['value'] for x in message if x['type'] == 'image'][0] image = [x['value'] for x in message if x['type'] == 'image'][0]
return prompt, image return prompt, image

View File

@@ -10,18 +10,18 @@ APIBASES = {
def GPT_context_window(model): def GPT_context_window(model):
length_map = { length_map = {
'gpt-4-1106-preview': 128000,
'gpt-4-vision-preview': 128000,
'gpt-4': 8192, 'gpt-4': 8192,
'gpt-4-32k': 32768,
'gpt-4-0613': 8192, 'gpt-4-0613': 8192,
'gpt-4-32k-0613': 32768, 'gpt-4-turbo-preview': 128000,
'gpt-4-1106-preview': 128000,
'gpt-4-0125-preview': 128000,
'gpt-4-vision-preview': 128000,
'gpt-4-turbo': 128000,
'gpt-4-turbo-2024-04-09': 128000,
'gpt-3.5-turbo': 16385,
'gpt-3.5-turbo-0125': 16385,
'gpt-3.5-turbo-1106': 16385, 'gpt-3.5-turbo-1106': 16385,
'gpt-3.5-turbo': 4096,
'gpt-3.5-turbo-16k': 16385,
'gpt-3.5-turbo-instruct': 4096, 'gpt-3.5-turbo-instruct': 4096,
'gpt-3.5-turbo-0613': 4096,
'gpt-3.5-turbo-16k-0613': 16385,
} }
if model in length_map: if model in length_map:
return length_map[model] return length_map[model]
@@ -46,6 +46,7 @@ class OpenAIWrapper(BaseAPI):
max_tokens: int = 1024, max_tokens: int = 1024,
img_size: int = 512, img_size: int = 512,
img_detail: str = 'low', img_detail: str = 'low',
use_azure: bool = False,
**kwargs): **kwargs):
self.model = model self.model = model
@@ -53,11 +54,26 @@ class OpenAIWrapper(BaseAPI):
self.fail_msg = 'Failed to obtain answer via API. ' self.fail_msg = 'Failed to obtain answer via API. '
self.max_tokens = max_tokens self.max_tokens = max_tokens
self.temperature = temperature self.temperature = temperature
self.use_azure = use_azure
if 'step-1v' in model: if 'step-1v' in model:
env_key = os.environ.get('STEPAI_API_KEY', '') env_key = os.environ.get('STEPAI_API_KEY', '')
if key is None: if key is None:
key = env_key key = env_key
elif 'yi-vision' in model:
env_key = os.environ.get('YI_API_KEY', '')
if key is None:
key = env_key
else:
if use_azure:
env_key = os.environ.get('AZURE_OPENAI_API_KEY', None)
assert env_key is not None, 'Please set the environment variable AZURE_OPENAI_API_KEY. '
if key is None:
key = env_key
assert isinstance(key, str), (
'Please set the environment variable AZURE_OPENAI_API_KEY to your openai key. '
)
else: else:
env_key = os.environ.get('OPENAI_API_KEY', '') env_key = os.environ.get('OPENAI_API_KEY', '')
if key is None: if key is None:
@@ -66,6 +82,7 @@ class OpenAIWrapper(BaseAPI):
f'Illegal openai_key {key}. ' f'Illegal openai_key {key}. '
'Please set the environment variable OPENAI_API_KEY to your openai key. ' 'Please set the environment variable OPENAI_API_KEY to your openai key. '
) )
self.key = key self.key = key
assert img_size > 0 or img_size == -1 assert img_size > 0 or img_size == -1
self.img_size = img_size self.img_size = img_size
@@ -75,9 +92,26 @@ class OpenAIWrapper(BaseAPI):
super().__init__(wait=wait, retry=retry, system_prompt=system_prompt, verbose=verbose, **kwargs) super().__init__(wait=wait, retry=retry, system_prompt=system_prompt, verbose=verbose, **kwargs)
if use_azure:
api_base_template = (
'{endpoint}openai/deployments/{deployment_name}/chat/completions?api-version={api_version}'
)
endpoint = os.getenv('AZURE_OPENAI_ENDPOINT', None)
assert endpoint is not None, 'Please set the environment variable AZURE_OPENAI_ENDPOINT. '
deployment_name = os.getenv('AZURE_OPENAI_DEPLOYMENT_NAME', None)
assert deployment_name is not None, 'Please set the environment variable AZURE_OPENAI_DEPLOYMENT_NAME. '
api_version = os.getenv('OPENAI_API_VERSION', None)
assert api_version is not None, 'Please set the environment variable OPENAI_API_VERSION. '
self.api_base = api_base_template.format(
endpoint=os.getenv('AZURE_OPENAI_ENDPOINT'),
deployment_name=os.getenv('AZURE_OPENAI_DEPLOYMENT_NAME'),
api_version=os.getenv('OPENAI_API_VERSION')
)
else:
if api_base is None: if api_base is None:
if 'OPENAI_API_BASE' in os.environ and os.environ['OPENAI_API_BASE'] != '': if 'OPENAI_API_BASE' in os.environ and os.environ['OPENAI_API_BASE'] != '':
self.logger.error('Environment variable OPENAI_API_BASE is set. Will use it as api_base. ') self.logger.info('Environment variable OPENAI_API_BASE is set. Will use it as api_base. ')
api_base = os.environ['OPENAI_API_BASE'] api_base = os.environ['OPENAI_API_BASE']
else: else:
api_base = 'OFFICIAL' api_base = 'OFFICIAL'
@@ -91,14 +125,13 @@ class OpenAIWrapper(BaseAPI):
else: else:
self.logger.error('Unknown API Base. ') self.logger.error('Unknown API Base. ')
sys.exit(-1) sys.exit(-1)
self.logger.info(f'Using API Base: {self.api_base}; API Key: {self.key}') self.logger.info(f'Using API Base: {self.api_base}; API Key: {self.key}')
# inputs can be a lvl-2 nested list: [content1, content2, content3, ...] # inputs can be a lvl-2 nested list: [content1, content2, content3, ...]
# content can be a string or a list of image & text # content can be a string or a list of image & text
def prepare_inputs(self, inputs): def prepare_itlist(self, inputs):
input_msgs = [] assert np.all([isinstance(x, dict) for x in inputs])
if self.system_prompt is not None:
input_msgs.append(dict(role='system', content=self.system_prompt))
has_images = np.sum([x['type'] == 'image' for x in inputs]) has_images = np.sum([x['type'] == 'image' for x in inputs])
if has_images: if has_images:
content_list = [] content_list = []
@@ -111,11 +144,24 @@ class OpenAIWrapper(BaseAPI):
b64 = encode_image_to_base64(img, target_size=self.img_size) b64 = encode_image_to_base64(img, target_size=self.img_size)
img_struct = dict(url=f'data:image/jpeg;base64,{b64}', detail=self.img_detail) img_struct = dict(url=f'data:image/jpeg;base64,{b64}', detail=self.img_detail)
content_list.append(dict(type='image_url', image_url=img_struct)) content_list.append(dict(type='image_url', image_url=img_struct))
input_msgs.append(dict(role='user', content=content_list))
else: else:
assert all([x['type'] == 'text' for x in inputs]) assert all([x['type'] == 'text' for x in inputs])
text = '\n'.join([x['value'] for x in inputs]) text = '\n'.join([x['value'] for x in inputs])
input_msgs.append(dict(role='user', content=text)) content_list = [dict(type='text', text=text)]
return content_list
def prepare_inputs(self, inputs):
input_msgs = []
if self.system_prompt is not None:
input_msgs.append(dict(role='system', content=self.system_prompt))
assert isinstance(inputs, list) and isinstance(inputs[0], dict)
assert np.all(['type' in x for x in inputs]) or np.all(['role' in x for x in inputs]), inputs
if 'role' in inputs[0]:
assert inputs[-1]['role'] == 'user', inputs[-1]
for item in inputs:
input_msgs.append(dict(role=item['role'], content=self.prepare_itlist(item['content'])))
else:
input_msgs.append(dict(role='user', content=self.prepare_itlist(inputs)))
return input_msgs return input_msgs
def generate_inner(self, inputs, **kwargs) -> str: def generate_inner(self, inputs, **kwargs) -> str:
@@ -133,6 +179,10 @@ class OpenAIWrapper(BaseAPI):
if max_tokens <= 0: if max_tokens <= 0:
return 0, self.fail_msg + 'Input string longer than context window. ', 'Length Exceeded. ' return 0, self.fail_msg + 'Input string longer than context window. ', 'Length Exceeded. '
# Will send request if use Azure, dk how to use openai client for it
if self.use_azure:
headers = {'Content-Type': 'application/json', 'api-key': self.key}
else:
headers = {'Content-Type': 'application/json', 'Authorization': f'Bearer {self.key}'} headers = {'Content-Type': 'application/json', 'Authorization': f'Bearer {self.key}'}
payload = dict( payload = dict(
model=self.model, model=self.model,
@@ -141,7 +191,9 @@ class OpenAIWrapper(BaseAPI):
n=1, n=1,
temperature=temperature, temperature=temperature,
**kwargs) **kwargs)
response = requests.post(self.api_base, headers=headers, data=json.dumps(payload), timeout=self.timeout * 1.1) response = requests.post(
self.api_base,
headers=headers, data=json.dumps(payload), timeout=self.timeout * 1.1)
ret_code = response.status_code ret_code = response.status_code
ret_code = 0 if (200 <= int(ret_code) < 300) else ret_code ret_code = 0 if (200 <= int(ret_code) < 300) else ret_code
answer = self.fail_msg answer = self.fail_msg
@@ -152,6 +204,26 @@ class OpenAIWrapper(BaseAPI):
pass pass
return ret_code, answer, response return ret_code, answer, response
def get_image_token_len(self, img_path, detail='low'):
import math
if detail == 'low':
return 85
im = Image.open(img_path)
height, width = im.size
if width > 1024 or height > 1024:
if width > height:
height = int(height * 1024 / width)
width = 1024
else:
width = int(width * 1024 / height)
height = 1024
h = math.ceil(height / 512)
w = math.ceil(width / 512)
total = 85 + 170 * h * w
return total
def get_token_len(self, inputs) -> int: def get_token_len(self, inputs) -> int:
import tiktoken import tiktoken
try: try:
@@ -161,14 +233,12 @@ class OpenAIWrapper(BaseAPI):
assert isinstance(inputs, list) assert isinstance(inputs, list)
tot = 0 tot = 0
for item in inputs: for item in inputs:
if item['type'] == 'text': if 'role' in item:
tot += self.get_token_len(item['content'])
elif item['type'] == 'text':
tot += len(enc.encode(item['value'])) tot += len(enc.encode(item['value']))
elif item['type'] == 'image': elif item['type'] == 'image':
tot += 85 tot += self.get_image_token_len(item['value'], detail=self.img_detail)
if self.img_detail == 'high':
img = Image.open(item['value'])
npatch = np.ceil(img.size[0] / 512) * np.ceil(img.size[1] / 512)
tot += npatch * 170
return tot return tot

View File

@@ -1,90 +0,0 @@
import json
import warnings
import requests
from ..smp import *
from .gpt import GPT_context_window, OpenAIWrapper
url = 'http://ecs.sv.us.alles-apin.openxlab.org.cn/v1/openai/v2/text/chat'
headers = {
'Content-Type': 'application/json'
}
class OpenAIWrapperInternal(OpenAIWrapper):
is_api: bool = True
def __init__(self,
model: str = 'gpt-3.5-turbo-0613',
retry: int = 5,
wait: int = 3,
verbose: bool = True,
system_prompt: str = None,
temperature: float = 0,
timeout: int = 60,
max_tokens: int = 1024,
img_size: int = 512,
img_detail: str = 'low',
**kwargs):
self.model = model
if 'KEYS' in os.environ and osp.exists(os.environ['KEYS']):
keys = load(os.environ['KEYS'])
headers['alles-apin-token'] = keys.get('alles-apin-token', '')
elif 'ALLES' in os.environ:
headers['alles-apin-token'] = os.environ['ALLES']
self.headers = headers
self.temperature = temperature
self.timeout = timeout
self.max_tokens = max_tokens
assert img_size > 0 or img_size == -1
self.img_size = img_size
assert img_detail in ['high', 'low']
self.img_detail = img_detail
super(OpenAIWrapper, self).__init__(
wait=wait, retry=retry, system_prompt=system_prompt, verbose=verbose, **kwargs)
def generate_inner(self, inputs, **kwargs) -> str:
input_msgs = self.prepare_inputs(inputs)
temperature = kwargs.pop('temperature', self.temperature)
max_tokens = kwargs.pop('max_tokens', self.max_tokens)
# Held out 100 tokens as buffer
context_window = GPT_context_window(self.model)
max_tokens = min(max_tokens, context_window - self.get_token_len(inputs))
if 0 < max_tokens <= 100:
print('Less than 100 tokens left, may exceed the context window with some additional meta symbols. ')
if max_tokens <= 0:
return 0, self.fail_msg + 'Input string longer than context window. ', 'Length Exceeded. '
payload = dict(
model=self.model,
messages=input_msgs,
max_tokens=max_tokens,
n=1,
stop=None,
timeout=self.timeout,
temperature=temperature,
**kwargs)
response = requests.post(url, headers=headers, data=json.dumps(payload), timeout=self.timeout * 1.1)
ret_code = response.status_code
ret_code = 0 if (200 <= int(ret_code) < 300) else ret_code
answer = self.fail_msg
try:
resp_struct = json.loads(response.text)
assert resp_struct['msg'] == 'ok' and resp_struct['msgCode'] == '10000', resp_struct
answer = resp_struct['data']['choices'][0]['message']['content'].strip()
except:
pass
return ret_code, answer, response
class GPT4V_Internal(OpenAIWrapperInternal):
def generate(self, message, dataset=None):
return super(GPT4V_Internal, self).generate(message)

View File

@@ -2,18 +2,18 @@ from vlmeval.vlm import *
from vlmeval.api import * from vlmeval.api import *
from functools import partial from functools import partial
ungrouped = { minicpm_series = {
'MiniCPM-V': partial(MiniCPM_V, model_path='openbmb/MiniCPM-V'), 'MiniCPM-V': partial(MiniCPM_V, model_path='openbmb/MiniCPM-V'),
'MiniCPM-V-2': partial(MiniCPM_V, model_path='openbmb/MiniCPM-V-2'), 'MiniCPM-V-2': partial(MiniCPM_V, model_path='openbmb/MiniCPM-V-2'),
'MiniCPM-Llama3-V-2_5': partial(MiniCPM_Llama3_V, model_path='openbmb/MiniCPM-Llama3-V-2_5'), 'MiniCPM-Llama3-V-2_5': partial(MiniCPM_Llama3_V, model_path='openbmb/MiniCPM-Llama3-V-2_5'),
'MiniCPM-V-2_6': partial(MiniCPM_V_2_6, model_path='openbmb/MiniCPM-V-2_6'),
} }
supported_VLM = {} supported_VLM = {}
model_groups = [ model_groups = [
ungrouped minicpm_series
] ]
for grp in model_groups: for grp in model_groups:
supported_VLM.update(grp) supported_VLM.update(grp)

View File

@@ -0,0 +1,186 @@
import warnings
from .image_base import img_root_map, ImageBaseDataset
from .image_caption import ImageCaptionDataset
from .image_yorn import ImageYORNDataset
from .image_mcq import ImageMCQDataset, MMMUDataset, CustomMCQDataset, MUIRDataset, GMAIMMBenchDataset
from .image_mt import MMDUDataset
from .image_vqa import (
ImageVQADataset, MathVision, OCRBench, MathVista, LLaVABench, MMVet, MTVQADataset, CustomVQADataset
)
from .vcr import VCRDataset
from .mmlongbench import MMLongBench
from .dude import DUDE
from .slidevqa import SlideVQA
from .mmbench_video import MMBenchVideo
from .text_mcq import CustomTextMCQDataset, TextMCQDataset
from .videomme import VideoMME
from .mvbench import MVBench, MVBench_MP4
from .utils import *
from ..smp import *
class ConcatDataset(ImageBaseDataset):
# This dataset takes multiple dataset names as input and aggregate them into a single dataset.
# Each single dataset should not have a field named `SUB_DATASET`
DATASET_SETS = {
'MMMB': ['MMMB_ar', 'MMMB_cn', 'MMMB_en', 'MMMB_pt', 'MMMB_ru', 'MMMB_tr'],
'MTL_MMBench_DEV': [
'MMBench_dev_ar', 'MMBench_dev_cn', 'MMBench_dev_en',
'MMBench_dev_pt', 'MMBench_dev_ru', 'MMBench_dev_tr'
]
}
def __init__(self, dataset):
datasets = self.DATASET_SETS[dataset]
self.dataset_map = {}
# The name of the compliation
self.dataset_name = dataset
self.datasets = datasets
for dname in datasets:
dataset = build_dataset(dname)
assert dataset is not None, dataset
self.dataset_map[dname] = dataset
TYPES = [x.TYPE for x in self.dataset_map.values()]
MODALITIES = [x.MODALITY for x in self.dataset_map.values()]
assert np.all([x == TYPES[0] for x in TYPES]), (datasets, TYPES)
assert np.all([x == MODALITIES[0] for x in MODALITIES]), (datasets, MODALITIES)
self.TYPE = TYPES[0]
self.MODALITY = MODALITIES[0]
data_all = []
for dname in datasets:
data = self.dataset_map[dname].data
data['SUB_DATASET'] = [dname] * len(data)
data_new = localize_df(data, dname, nproc=16)
data_all.append(data_new)
data = pd.concat(data_all)
data['original_index'] = data.pop('index')
data['index'] = np.arange(len(data))
self.data = data
def build_prompt(self, line):
if isinstance(line, int):
line = self.data.iloc[line]
idx = line['original_index']
dname = line['SUB_DATASET']
org_data = self.dataset_map[dname].data
org_line = cp.deepcopy(org_data[org_data['index'] == idx]).iloc[0]
return self.dataset_map[dname].build_prompt(org_line)
def dump_image(self, line):
# Assert all images are pre-dumped
assert 'image' not in line
assert 'image_path' in line
tgt_path = toliststr(line['image_path'])
return tgt_path
@classmethod
def supported_datasets(cls):
return list(cls.DATASET_SETS)
def evaluate(self, eval_file, **judge_kwargs):
suffix = eval_file.split('.')[-1]
# First, split the eval_file by dataset
data_all = load(eval_file)
for dname in self.datasets:
tgt = eval_file.replace(self.dataset_name, dname)
data_sub = data_all[data_all['SUB_DATASET'] == dname]
data_sub.pop('index')
data_sub['index'] = data_sub.pop('original_index')
data_sub.pop('SUB_DATASET')
dump(data_sub, tgt)
# Then, evaluate each dataset separately
results_all = []
for dname in self.datasets:
tgt = eval_file.replace(self.dataset_name, dname)
res = self.dataset_map[dname].evaluate(tgt, **judge_kwargs)
assert isinstance(res, pd.DataFrame)
res['DATASET'] = [dname] * len(res)
results_all.append(res)
result = pd.concat(results_all)
score_file = eval_file.replace(f'.{suffix}', '_acc.csv')
dump(result, score_file)
return result
# Add new supported dataset class here
IMAGE_DATASET = [
ImageCaptionDataset, ImageYORNDataset, ImageMCQDataset, ImageVQADataset, MathVision,
MMMUDataset, OCRBench, MathVista, LLaVABench, MMVet, MTVQADataset,
MMLongBench, VCRDataset, MMDUDataset, DUDE, SlideVQA, MUIRDataset, GMAIMMBenchDataset
]
VIDEO_DATASET = [
MMBenchVideo, VideoMME, MVBench, MVBench_MP4
]
TEXT_DATASET = [
TextMCQDataset
]
CUSTOM_DATASET = [
CustomMCQDataset, CustomVQADataset, CustomTextMCQDataset
]
DATASET_COLLECTION = [ConcatDataset]
DATASET_CLASSES = IMAGE_DATASET + VIDEO_DATASET + TEXT_DATASET + CUSTOM_DATASET + DATASET_COLLECTION
SUPPORTED_DATASETS = []
for DATASET_CLS in DATASET_CLASSES:
SUPPORTED_DATASETS.extend(DATASET_CLS.supported_datasets())
def DATASET_TYPE(dataset):
for cls in DATASET_CLASSES:
if dataset in cls.supported_datasets():
if hasattr(cls, 'TYPE'):
return cls.TYPE
# Have to add specific routine to handle ConcatDataset
if dataset in ConcatDataset.DATASET_SETS:
dataset_list = ConcatDataset.DATASET_SETS[dataset]
TYPES = [DATASET_TYPE(dname) for dname in dataset_list]
assert np.all([x == TYPES[0] for x in TYPES]), (dataset_list, TYPES)
return TYPES[0]
if 'openended' in dataset.lower():
return 'VQA'
warnings.warn(f'Dataset {dataset} is a custom one and not annotated as `openended`, will treat as MCQ. ')
return 'MCQ'
def build_dataset(dataset_name, **kwargs):
for cls in DATASET_CLASSES:
if dataset_name in cls.supported_datasets():
return cls(dataset=dataset_name, **kwargs)
warnings.warn(f'Dataset {dataset_name} is not officially supported. ')
data_file = osp.join(LMUDataRoot(), f'{dataset_name}.tsv')
if not osp.exists(data_file):
warnings.warn(f'Data file {data_file} does not exist. Dataset building failed. ')
return None
data = load(data_file)
if 'question' not in [x.lower() for x in data.columns]:
warnings.warn(f'Data file {data_file} does not have a `question` column. Dataset building failed. ')
return None
if 'A' in data and 'B' in data:
if 'image' in data or 'image_path' in data:
warnings.warn(f'Will assume unsupported dataset {dataset_name} as a Custom MCQ dataset. ')
return CustomMCQDataset(dataset=dataset_name, **kwargs)
else:
warnings.warn(f'Will assume unsupported dataset {dataset_name} as a Custom Text MCQ dataset. ')
return CustomTextMCQDataset(dataset=dataset_name, **kwargs)
else:
warnings.warn(f'Will assume unsupported dataset {dataset_name} as a Custom VQA dataset. ')
return CustomVQADataset(dataset=dataset_name, **kwargs)
__all__ = [
'build_dataset', 'img_root_map', 'build_judge', 'extract_answer_from_item', 'prefetch_answer', 'DEBUG_MESSAGE'
] + [cls.__name__ for cls in DATASET_CLASSES]

View File

@@ -0,0 +1,210 @@
import math
from typing import List
from .utils.judge_util import build_judge
from .image_base import ImageBaseDataset
from .mmlongbench import concat_images, MMLongBench_auxeval, anls_compute
from ..smp import *
FAIL_MSG = 'Failed to obtain answer via API.'
def DUDE_acc(result_file):
data = load(result_file)
overall_score = 0.0
score_list = list()
for i in range(len(data)):
item = data.iloc[i]
if isinstance(item['answer'], float) and math.isnan(item['answer']):
item['answer'] = 'Not answerable'
item['answer'] = item['answer'].lower()
item['pred'] = item['pred'].lower()
score = anls_compute(item['answer'], item['pred'])
score_list.append(score)
overall_score += score
data['score'] = score_list
dump(data, result_file)
res = dict()
res['category'], res['num'], res['avg_score'] = ['anls'], [len(data)], [overall_score / len(data)]
res = pd.DataFrame(res)
return res
class DUDE(ImageBaseDataset):
TYPE = 'VQA'
DATASET_URL = {
'DUDE': 'https://opencompass.openxlab.space/utils/VLMEval/DUDE.tsv',
'DUDE_MINI': 'https://opencompass.openxlab.space/utils/VLMEval/DUDE_MINI.tsv',
}
DATASET_MD5 = {
'DUDE': '130d860d08206e1e407cd77150c10d88',
'DUDE_MINI': 'e0c0d998114f0cca7516d12039d2b538',
}
SUPPORTED_MODELS = {
'GPT4': (1, 1),
'GPT4V': (1, 1),
'GPT4V_HIGH': (1, 1),
'GPT4o': (1, 1),
'GPT4o_HIGH': (1, 1),
'GPT4o_MINI': (1, 1),
'XComposer2d5': (1, -1),
'XComposer2_4KHD': (1, -1),
'MiniCPM-Llama3-V-2_5': (1, 5),
'InternVL-Chat-V1-5': (5, 2),
}
def __init__(self, dataset, **kwargs):
self.model_list = list(self.SUPPORTED_MODELS.keys())
model_name = kwargs['model']
if not listinstr(self.model_list, model_name):
raise AssertionError("{} doesn't support the evaluation on DUDE.".format(model_name))
super(DUDE, self).__init__(dataset)
self.is_api = True if listinstr(['GPT4'], model_name) else False
self.max_pages = 120
concat_num, column_num = self.SUPPORTED_MODELS.get(model_name)
self.concat_num = concat_num
self.column_num = column_num
def prepare_tsv(self, url, file_md5=None):
data_root = LMUDataRoot()
os.makedirs(data_root, exist_ok=True)
file_name = url.split('/')[-1]
data_path = osp.join(data_root, file_name)
if osp.exists(data_path) and (file_md5 is None or md5(data_path) == file_md5):
pass
else:
warnings.warn('The dataset tsv is not downloaded')
download_file(url, data_path)
return load(data_path)
def dump_image(self, origin_line):
os.makedirs(self.img_root, exist_ok=True)
try:
import fitz
except:
warnings.warn('Please use `pip install pymupdf` to parse PDF files.')
line = origin_line.copy()
if not isinstance(line['image_path'], List):
line['image_path'] = [line['image_path']]
line['image_path'] = line['image_path'][:self.max_pages]
skip_pdf_parse = True
for im_name in line['image_path']:
path = osp.join(self.img_root, im_name)
if not read_ok(path):
skip_pdf_parse = False
break
# Just for being compatible with the zooped loop: zip(line['image'], line['image_path'])
if skip_pdf_parse:
line['image'] = line['image_path']
else:
pdf_data = base64.b64decode(line['image'])
pdf_file = io.BytesIO(pdf_data)
encoded_images = []
with fitz.open(stream=pdf_file, filetype='pdf') as doc:
doc = doc[:self.max_pages]
for page in doc:
image = page.get_pixmap(dpi=144)
image_file = io.BytesIO(image.tobytes(output='png'))
image = Image.open(image_file)
encoded_image = encode_image_to_base64(image)
encoded_images.append(encoded_image)
line['image'] = encoded_images
print('process {}'.format(line['doc_id']))
if 'image' in line:
if isinstance(line['image'], list):
tgt_path = []
assert 'image_path' in line
for img, im_name in zip(line['image'], line['image_path']):
path = osp.join(self.img_root, im_name)
if not read_ok(path):
decode_base64_to_image_file(img, path)
tgt_path.append(path)
else:
tgt_path = osp.join(self.img_root, f"{line['index']}.jpg")
if not read_ok(tgt_path):
decode_base64_to_image_file(line['image'], tgt_path)
tgt_path = [tgt_path]
else:
assert 'image_path' in line
tgt_path = toliststr(line['image_path'])
if self.concat_num > 0 and not self.is_api:
concatenated_images = concat_images(tgt_path, max_concat=self.concat_num, column_num=self.column_num)
old_tgt_path = tgt_path
assert isinstance(old_tgt_path, list)
if self.column_num != -1:
tgt_path = [
'_'.join(old_tgt_path[0].split('_')[:-1]) + '_concat{}_{}.jpg'.format(self.concat_num, i)
for i in range(len(concatenated_images))
]
else:
tgt_path = ['_'.join(old_tgt_path[0].split('_')[:-1]) + '_concat_all.jpg']
for path, concatenated_image in zip(tgt_path, concatenated_images):
if not read_ok(path):
decode_base64_to_image_file(encode_image_to_base64(concatenated_image), path)
num_images, image_size = len(old_tgt_path), concatenated_image.size
print('concat {} images to a new one with size {}. save at {}'.format(num_images, image_size, path))
return tgt_path
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
logger = get_logger('Evaluation')
model = judge_kwargs['model']
suffix = eval_file.split('.')[-1]
storage = eval_file.replace(f'.{suffix}', f'_{model}.xlsx')
tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl')
if osp.exists(storage):
logger.warning(f'GPT scoring file {storage} already exists, will reuse it in DUDE_eval. ')
else:
data = load(eval_file)
model = build_judge(max_tokens=128, **judge_kwargs)
lt = len(data)
lines = [data.iloc[i] for i in range(lt)]
tups = [(model, line) for line in lines]
indices = [line['index'] for line in lines]
ans = {}
if osp.exists(tmp_file):
ans = load(tmp_file)
tups = [x for x, i in zip(tups, indices) if i not in ans]
indices = [i for i in indices if i not in ans]
if len(indices):
new_results = list()
for model, line in tqdm(tups):
res = MMLongBench_auxeval(model, line)
new_results.append(res)
log_map, res_map, pred_map = {}, {}, {}
all_inds = [line['index'] for line in lines]
for k, v in zip(all_inds, new_results):
log_map[k] = v['log']
res_map[k] = v['res']
pred_map[k] = v['pred']
data['res'] = [res_map[idx] for idx in data['index']]
data['log'] = [log_map[idx] for idx in data['index']]
data['pred'] = [pred_map[idx] for idx in data['index']]
dump(data, storage)
score = DUDE_acc(storage)
score_pth = storage.replace('.xlsx', '_score.csv')
dump(score, score_pth)
logger.info(f'DUDE successfully finished evaluating {eval_file}, results saved in {score_pth}')
logger.info('Score: ')
logger.info(score)

View File

@@ -0,0 +1,165 @@
import pandas as pd
from abc import abstractmethod
from ..smp import *
def img_root_map(dataset):
if 'OCRVQA' in dataset:
return 'OCRVQA'
if 'COCO_VAL' == dataset:
return 'COCO'
if 'MMMU' in dataset:
return 'MMMU'
mmbench_root_map = {
'MMBench_DEV_EN': 'MMBench', 'MMBench_TEST_EN': 'MMBench',
'MMBench_DEV_CN': 'MMBench', 'MMBench_TEST_CN': 'MMBench',
'MMBench': 'MMBench', 'MMBench_CN': 'MMBench',
'MMBench_DEV_EN_V11': 'MMBench_V11', 'MMBench_TEST_EN_V11': 'MMBench_V11',
'MMBench_DEV_CN_V11': 'MMBench_V11', 'MMBench_TEST_CN_V11': 'MMBench_V11',
'MMBench_V11': 'MMBench', 'MMBench_CN_V11': 'MMBench',
}
if dataset in mmbench_root_map:
return mmbench_root_map[dataset]
return dataset
class ImageBaseDataset:
MODALITY = 'IMAGE'
DATASET_URL = {}
DATASET_MD5 = {}
def __init__(self, dataset='MMBench', skip_noimg=True):
ROOT = LMUDataRoot()
# You can override this variable to save image files to a different directory
self.dataset_name = dataset
self.img_root = osp.join(ROOT, 'images', img_root_map(dataset))
data = self.load_data(dataset)
self.skip_noimg = skip_noimg
if skip_noimg and 'image' in data:
data = data[~pd.isna(data['image'])]
data['index'] = [str(x) for x in data['index']]
self.meta_only = True
# The image field can store the base64 encoded image or another question index (for saving space)
if 'image' in data:
data['image'] = [str(x) for x in data['image']]
image_map = {x: y for x, y in zip(data['index'], data['image'])}
for k in image_map:
if len(image_map[k]) <= 64:
idx = image_map[k]
assert idx in image_map and len(image_map[idx]) > 64
image_map[k] = image_map[idx]
images = [toliststr(image_map[k]) for k in data['index']]
data['image'] = [x[0] if len(x) == 1 else x for x in images]
self.meta_only = False
if 'image_path' in data:
paths = [toliststr(x) for x in data['image_path']]
data['image_path'] = [x[0] if len(x) == 1 else x for x in paths]
if np.all([istype(x, int) for x in data['index']]):
data['index'] = [int(x) for x in data['index']]
self.data = data
self.post_build(dataset)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return dict(self.data.iloc[idx])
def prepare_tsv(self, url, file_md5=None):
data_root = LMUDataRoot()
os.makedirs(data_root, exist_ok=True)
update_flag = False
file_name = url.split('/')[-1]
data_path = osp.join(data_root, file_name)
if osp.exists(data_path) and (file_md5 is None or md5(data_path) == file_md5):
pass
else:
warnings.warn('The dataset tsv is not downloaded')
download_file(url, data_path)
update_flag = True
if file_size(data_path, 'GB') > 1:
local_path = data_path.replace('.tsv', '_local.tsv')
if not osp.exists(local_path) or os.environ.get('FORCE_LOCAL', None) or update_flag:
from ..tools import LOCALIZE
LOCALIZE(data_path, local_path)
data_path = local_path
return load(data_path)
def dump_image(self, line):
os.makedirs(self.img_root, exist_ok=True)
if 'image' in line:
if isinstance(line['image'], list):
tgt_path = []
assert 'image_path' in line
for img, im_name in zip(line['image'], line['image_path']):
path = osp.join(self.img_root, im_name)
if not read_ok(path):
decode_base64_to_image_file(img, path)
tgt_path.append(path)
else:
tgt_path = osp.join(self.img_root, f"{line['index']}.jpg")
if not read_ok(tgt_path):
decode_base64_to_image_file(line['image'], tgt_path)
tgt_path = [tgt_path]
else:
assert 'image_path' in line
tgt_path = toliststr(line['image_path'])
return tgt_path
def display(self, line):
if isinstance(line, int):
line = self.data.iloc[line]
assert isinstance(line, pd.Series) or isinstance(line, dict)
mmqa_display(line)
# Return a list of dataset names that are supported by this class, can override
@classmethod
def supported_datasets(cls):
return list(cls.DATASET_URL)
# Given the dataset name, return the dataset as a pandas dataframe, can override
def load_data(self, dataset):
url = self.DATASET_URL[dataset]
file_md5 = self.DATASET_MD5[dataset] if dataset in self.DATASET_MD5 else None
return self.prepare_tsv(url, file_md5)
# Post built hook, will be called after the dataset is built, can override
def post_build(self, dataset):
pass
# Given one data record, return the built prompt (a multi-modal message), can override
def build_prompt(self, line):
if isinstance(line, int):
line = self.data.iloc[line]
if self.meta_only:
tgt_path = toliststr(line['image_path'])
else:
tgt_path = self.dump_image(line)
question = line['question']
msgs = []
if isinstance(tgt_path, list):
msgs.extend([dict(type='image', value=p) for p in tgt_path])
else:
msgs = [dict(type='image', value=tgt_path)]
msgs.append(dict(type='text', value=question))
return msgs
# Given the prediction file, return the evaluation results in the format of a dictionary or pandas dataframe
@abstractmethod
def evaluate(self, eval_file, **judge_kwargs):
pass

View File

@@ -0,0 +1,75 @@
from .image_base import ImageBaseDataset
from ..smp import *
class COCO_Caption_Scorer():
def __init__(self, ref, gt):
from pycocoevalcap.bleu.bleu import Bleu
from pycocoevalcap.rouge.rouge import Rouge
from pycocoevalcap.cider.cider import Cider
self.ref = ref
self.gt = gt
print('setting up scorers...')
self.scorers = [
(Bleu(4), ['Bleu_1', 'Bleu_2', 'Bleu_3', 'Bleu_4']),
(Rouge(), 'ROUGE_L'),
(Cider(), 'CIDEr'),
]
def compute_scores(self):
total_scores = {}
for scorer, method in self.scorers:
print('computing %s score...' % (scorer.method()))
score, scores = scorer.compute_score(self.gt, self.ref)
if isinstance(method, list):
for sc, scs, m in zip(score, scores, method):
print('%s: %0.3f' % (m, sc * 100))
total_scores['Bleu'] = [x * 100 for x in score]
else:
print('%s: %0.3f' % (method, score * 100))
total_scores[method] = score * 100
print('*****DONE*****')
for key, value in total_scores.items():
print('{}:{}'.format(key, value))
return total_scores
class ImageCaptionDataset(ImageBaseDataset):
TYPE = 'Caption'
DATASET_URL = {
'COCO_VAL': 'https://opencompass.openxlab.space/utils/VLMEval/COCO_VAL.tsv',
}
DATASET_MD5 = {
'COCO_VAL': '72a5079dead060269ac222c5aa5128af',
}
def load_data(self, dataset):
data = super().load_data(dataset)
if 'question' not in data:
data['question'] = [(
'Please describe this image in general. Directly provide the description, '
'do not include prefix like "This image depicts". '
)] * len(data)
return data
# It returns a dictionary of scores
@classmethod
def evaluate(self, eval_file, **kwargs):
data = load(eval_file)
lt = len(data)
lines = [data.iloc[i] for i in range(lt)]
ref, gt = {}, {}
for i, line in enumerate(lines):
ref[str(i)] = [str(line['prediction'])]
gt[str(i)] = eval(line['answer'])
scorer = COCO_Caption_Scorer(ref, gt)
coco_caption_score_dict = scorer.compute_scores()
score_pth = eval_file.replace('.xlsx', '_score.json')
dump(coco_caption_score_dict, score_pth)
return coco_caption_score_dict

View File

@@ -0,0 +1,484 @@
import warnings
from .image_base import ImageBaseDataset
from .utils import build_judge, DEBUG_MESSAGE
from ..smp import *
MMMB_URLS = {
'MMMB_ar': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_ar.tsv',
'MMMB_cn': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_cn.tsv',
'MMMB_en': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_en.tsv',
'MMMB_pt': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_pt.tsv',
'MMMB_ru': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_ru.tsv',
'MMMB_tr': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_tr.tsv',
}
MTL_MMBench_URLS = {
'MMBench_dev_ar': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_ar.tsv',
'MMBench_dev_cn': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_cn.tsv',
'MMBench_dev_en': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_en.tsv',
'MMBench_dev_pt': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_pt.tsv',
'MMBench_dev_tr': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_tr.tsv',
'MMBench_dev_ru': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_ru.tsv',
}
MMMB_MD5 = {
'MMMB_ar': 'f3a18b6385f1d9701840aa42de27aead', 'MMMB_cn': '13ed82fa89730037292fcaa27f08f430',
'MMMB_en': '1cd781a71ec5a2983c090b84105d6a01', 'MMMB_pt': '548ea2b3bb2da991790386f0015d30d1',
'MMMB_ru': 'ce1cc8a0533425ab0d86b326ebfc2984', 'MMMB_tr': '0733739d43090327975294292bc5cd67'
}
MTL_MMBench_MD5 = {
'MMBench_dev_ar': '4271b4a0d0200e1a86380a878e0d64a4', 'MMBench_dev_cn': '2ed5135326fed02c8e51ea50dda8222f',
'MMBench_dev_en': 'd9ab776fc018b3d45785e9a5c23431c2', 'MMBench_dev_pt': '4ddfbcd27ef12444b908c03831cd0295',
'MMBench_dev_tr': '4fab39d501389d3d6cc90264bb708f11', 'MMBench_dev_ru': '5ba1171ff2e68f80637bf78349e402a5'
}
class ImageMCQDataset(ImageBaseDataset):
TYPE = 'MCQ'
DATASET_URL = {
# MMBench v1.0
'MMBench_DEV_EN': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_DEV_EN.tsv',
'MMBench_TEST_EN': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_TEST_EN.tsv',
'MMBench_DEV_CN': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_DEV_CN.tsv',
'MMBench_TEST_CN': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_TEST_CN.tsv',
'MMBench': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench.tsv', # Internal Only
'MMBench_CN': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_CN.tsv', # Internal Only
# MMBench v1.1
'MMBench_DEV_EN_V11': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_DEV_EN_V11.tsv',
'MMBench_TEST_EN_V11': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_TEST_EN_V11.tsv',
'MMBench_DEV_CN_V11': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_DEV_CN_V11.tsv',
'MMBench_TEST_CN_V11': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_TEST_CN_V11.tsv',
'MMBench_V11': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_V11.tsv', # Internal Only
'MMBench_CN_V11': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_CN_V11.tsv', # Internal Only
# SEEDBench Series
'SEEDBench_IMG': 'https://opencompass.openxlab.space/utils/VLMEval/SEEDBench_IMG.tsv',
'SEEDBench2': 'https://huggingface.co/datasets/VLMEval/SEEDBench2/resolve/main/SEEDBench2.tsv',
'SEEDBench2_Plus': 'https://opencompass.openxlab.space/utils/VLMEval/SEEDBench2_Plus.tsv',
# ScienceQA Series
'ScienceQA_VAL': 'https://opencompass.openxlab.space/utils/VLMEval/ScienceQA_VAL.tsv',
'ScienceQA_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/ScienceQA_TEST.tsv',
# MMT-Bench
'MMT-Bench_ALL_MI': 'https://opencompass.openxlab.space/utils/VLMEval/MMT-Bench_ALL_MI.tsv',
'MMT-Bench_ALL': 'https://opencompass.openxlab.space/utils/VLMEval/MMT-Bench_ALL.tsv',
'MMT-Bench_VAL_MI': 'https://opencompass.openxlab.space/utils/VLMEval/MMT-Bench_VAL_MI.tsv',
'MMT-Bench_VAL': 'https://opencompass.openxlab.space/utils/VLMEval/MMT-Bench_VAL.tsv',
# AesBench
'AesBench_VAL': 'https://huggingface.co/datasets/VLMEval/AesBench/resolve/main/AesBench_VAL.tsv',
'AesBench_TEST': 'https://huggingface.co/datasets/VLMEval/AesBench/resolve/main/AesBench_TEST.tsv',
# Q-Bench1
'Q-Bench1_VAL': 'https://huggingface.co/datasets/zhangzicheng/qbench_tsv/resolve/main/Q-Bench1_VAL.tsv',
'Q-Bench1_TEST': 'https://huggingface.co/datasets/zhangzicheng/qbench_tsv/resolve/main/Q-Bench1_TEST.tsv',
# A-Bench
'A-Bench_VAL': 'https://huggingface.co/datasets/zhangzicheng/abench_tsv/resolve/main/A-bench_VAL.tsv',
'A-Bench_TEST': 'https://huggingface.co/datasets/zhangzicheng/abench_tsv/resolve/main/A-bench_TEST.tsv',
# Other Benchmarks
'CCBench': 'https://opencompass.openxlab.space/utils/VLMEval/CCBench.tsv',
'AI2D_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/AI2D_TEST.tsv',
'AI2D_TEST_NO_MASK': 'https://opencompass.openxlab.space/utils/VLMEval/AI2D_TEST_NO_MASK.tsv',
'MMStar': 'https://opencompass.openxlab.space/utils/VLMEval/MMStar.tsv',
'RealWorldQA': 'https://opencompass.openxlab.space/utils/VLMEval/RealWorldQA.tsv',
'MLLMGuard_DS': 'https://opencompass.openxlab.space/utils/VLMEval/MLLMGuard_DS.tsv',
'BLINK': 'https://opencompass.openxlab.space/utils/VLMEval/BLINK.tsv',
'TaskMeAnything_v1_imageqa_random': (
'https://huggingface.co/datasets/weikaih/TaskMeAnything-v1-imageqa-random/'
'resolve/main/TaskMeAnything-v1-imageqa-random.tsv'
),
'A-OKVQA': 'https://huggingface.co/datasets/Allen8/A-OKVQA/resolve/main/a-okvqa.tsv'
}
DATASET_MD5 = {
# MMBench v1.0
'MMBench_DEV_EN': 'b6caf1133a01c6bb705cf753bb527ed8',
'MMBench_TEST_EN': '6939fadb0ce626fefc0bdc9c64efc528',
'MMBench_DEV_CN': '08b8fc3324a5ed74155350f57be69fbd',
'MMBench_TEST_CN': '7e1239baf0ee4c8b513e19705a0f317e',
'MMBench': '4115aea3383f3dd0083be6a633e0f820', # Internal Only
'MMBench_CN': '2e053ffc90ea598b1feae13c36dc13ee', # Internal Only
# MMBench v1.1
'MMBench_DEV_EN_V11': '30c05be8f2f347a50be25aa067248184',
'MMBench_TEST_EN_V11': '26f0f15381a21720255091d3e0316ce6',
'MMBench_DEV_CN_V11': '593f9b5f6bea453d870a798b34ae4f37',
'MMBench_TEST_CN_V11': '74bbe4556dac745613c7cbe5ad787050',
'MMBench_V11': 'b9276414f57af1308dcc4d0cd9b42e7c', # Internal Only
'MMBench_CN_V11': '95f6980dd1b4de38e3cbffe0305a3f25', # Internal Only
# SEEDBench
'SEEDBench_IMG': '68017231464752261a2526d6ca3a10c0',
'SEEDBench2': '4ec15cf864c4f16274112284f531813e',
'SEEDBench2_Plus': 'e32d3216dc4f452b0fe497a52015d1fd',
# ScienceQA
'ScienceQA_VAL': '96320d05e142e585e7204e72affd29f3',
'ScienceQA_TEST': 'e42e9e00f9c59a80d8a5db35bc32b71f',
# MMT-Bench
'MMT-Bench_ALL_MI': '5272157097e19cdd7cb41e412ab3b7c7',
'MMT-Bench_ALL': 'b273a2f4c596fe4f2605de0494cd632f',
'MMT-Bench_VAL_MI': 'c7d7b998eb5cd9aa36c7d4f721472462',
'MMT-Bench_VAL': '8dd4b730f53dbf9c3aed90ca31c928e0',
# AesBench
'AesBench_VAL': '3edb0c319e9187aa0b97fe7a11700a8c',
'AesBench_TEST': '58b1f7ba2cc32e1d68896d6ee716bbf8',
# Q-Bench1
'Q-Bench1_VAL': '837bdb6cd2da571713543462815187b7',
'Q-Bench1_TEST': '15e759bfd58c9d5f30b23a317d347153',
# A-Bench
'A-Bench_VAL': '218563ec50d34bb336c814143a5bb9c1',
'A-Bench_TEST': '567013fb033a20cf23f51d8e865bd16c',
# Other Benchmarks
'CCBench': 'f5dde47f24dc5a6fb6e595b409b466ac',
'AI2D_TEST': '0f593e0d1c7df9a3d69bf1f947e71975',
'AI2D_TEST_NO_MASK': 'fd8f463634d4fe9fbd23b876e8eea5be',
'MMStar': 'e1ecd2140806c1b1bbf54b43372efb9e',
'RealWorldQA': '92321028d2bc29040284b6674721e48f',
'MLLMGuard_DS': '975fc0dd7119386e198c37d71e274b3f',
'BLINK': '3b6649b6a662184ea046908e5506260e',
'TaskMeAnything_v1_imageqa_random': '023fef69e2ca21827afb77c5ec3bc889'
}
DATASET_URL.update(MMMB_URLS)
DATASET_URL.update(MTL_MMBench_URLS)
DATASET_MD5.update(MMMB_MD5)
DATASET_MD5.update(MTL_MMBench_MD5)
def build_prompt(self, line):
if isinstance(line, int):
line = self.data.iloc[line]
if self.meta_only:
tgt_path = toliststr(line['image_path'])
else:
tgt_path = self.dump_image(line)
question = line['question']
options = {
cand: line[cand]
for cand in string.ascii_uppercase
if cand in line and not pd.isna(line[cand])
}
options_prompt = 'Options:\n'
for key, item in options.items():
options_prompt += f'{key}. {item}\n'
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
prompt = ''
if hint is not None:
prompt += f'Hint: {hint}\n'
prompt += f'Question: {question}\n'
if len(options):
prompt += options_prompt
prompt += 'Please select the correct answer from the options above. \n'
msgs = []
if isinstance(tgt_path, list):
msgs.extend([dict(type='image', value=p) for p in tgt_path])
else:
msgs = [dict(type='image', value=tgt_path)]
msgs.append(dict(type='text', value=prompt))
return msgs
def evaluate(self, eval_file, **judge_kwargs):
from .utils.multiple_choice import report_acc, report_acc_MMT, mcq_circular_eval, mcq_vanilla_eval
# assert dataset is not None
dataset_map = {
'MMBench_TEST_EN': 'MMBench', 'MMBench_TEST_EN_V11': 'MMBench_V11',
'MMBench_TEST_CN': 'MMBench_CN', 'MMBench_TEST_CN_V11': 'MMBench_CN_V11'
}
dataset = self.dataset_name
if dataset in dataset_map:
dataset = dataset_map[dataset]
nproc = judge_kwargs.pop('nproc', 4)
circular = False
if listinstr(['mmbench', 'ccbench'], dataset.lower()):
data = load(eval_file)
data['index'] = [int(x) for x in data['index']]
dump(data, eval_file)
circular = True
suffix = eval_file.split('.')[-1]
model = judge_kwargs.get('model', 'exact_matching')
assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125']
name_str_map = {'chatgpt-0125': 'openai', 'gpt-4-0125': 'gpt4'}
name_str = name_str_map[model] if model in name_str_map else model
if model == 'exact_matching':
model = None
elif gpt_key_set():
model = build_judge(**judge_kwargs)
if not model.working():
warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
warnings.warn(DEBUG_MESSAGE)
model = None
else:
warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
model = None
result_file = eval_file.replace(f'.{suffix}', f'_{name_str}_result.pkl')
data = load(eval_file)
data = data.sort_values(by='index')
data['prediction'] = [str(x) for x in data['prediction']]
# If not choice label, then use lower case
for k in data.keys():
data[k.lower() if k not in list(string.ascii_uppercase) else k] = data.pop(k)
meta = self.data
meta_q_map = {x: y for x, y in zip(meta['index'], meta['question'])}
data_map = {x: y for x, y in zip(data['index'], data['question'])}
for k in data_map:
assert k in meta_q_map, (
f'eval_file should be the same as or a subset of dataset {self.dataset_name}'
)
if circular:
data = mcq_circular_eval(model, data, meta, nproc, result_file, self.dataset_name)
else:
data = mcq_vanilla_eval(model, data, meta, nproc, result_file, self.dataset_name)
# load split
dump(data, eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
data = load(eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
# May have different report acc functions for different datasets
if 'MMT' in dataset:
acc = report_acc_MMT(data)
else:
acc = report_acc(data)
score_file = eval_file.replace(f'.{suffix}', '_acc.csv')
dump(acc, score_file)
if dataset == 'AesBench_VAL':
warnings.warn('Note that AesBench VAL is just a toy version of AesBench TEST. For full results, \
please evaluate on AesBench TEST. The AesBench TEST dataset is more than 20 times \
larger than the VAL dataset and the leaderboard results are based on AesBench TEST.')
return acc
class MMMUDataset(ImageMCQDataset):
DATASET_URL = {
'MMMU_DEV_VAL': 'https://opencompass.openxlab.space/utils/VLMEval/MMMU_DEV_VAL.tsv',
'MMMU_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/MMMU_TEST.tsv',
}
DATASET_MD5 = {
'MMMU_DEV_VAL': '521afc0f3bf341e6654327792781644d',
'MMMU_TEST': 'c19875d11a2d348d07e5eb4bdf33166d',
}
@staticmethod
def split_MMMU(msgs):
text, images = None, []
for s in msgs:
if s['type'] == 'image':
images.append(s['value'])
elif s['type'] == 'text':
assert text is None
text = s['value']
text_segs = text.split('<image ')
if len(text_segs) == 1:
return msgs
segs = [dict(type='text', value=text_segs[0])]
for i, seg in enumerate(text_segs):
if i == 0:
continue
assert istype(seg[0], int) and seg[1] == '>'
image_idx = int(seg[0]) - 1
segs.append(dict(type='image', value=images[image_idx]))
segs.append(dict(type='text', value=seg[2:]))
return segs
def build_prompt(self, line):
msgs = super().build_prompt(line)
msgs = self.split_MMMU(msgs)
return msgs
class MUIRDataset(ImageMCQDataset):
DATASET_URL = {
'MUIRBench': 'http://opencompass.openxxlab.com/utils/VLMEval/MUIRBench.tsv'
}
DATASET_MD5 = {
'MUIRBench': '2e5e6fd7699761b08a7cb3ab8c0c2ec8'
}
@staticmethod
def split_MUIR(msgs):
text, images = None, []
# Separate images and text from msgs
for s in msgs:
if s['type'] == 'image':
images.append(s['value'])
elif s['type'] == 'text':
assert text is None # Ensure only one text entry is expected
text = s['value']
# Split text by <image> tags
text_segs = text.split('<image>')
# Initialize the segments list
segs = []
# Iterate through the text segments and images
for i, seg in enumerate(text_segs):
# Append the image if this is not the first segment and there are still images left
if i > 0 and i - 1 < len(images):
segs.append(dict(type='image', value=images[i - 1]))
# Append the text segment (if it's non-empty)
if len(seg) > 0:
segs.append(dict(type='text', value=seg))
return segs
def build_prompt(self, line):
if isinstance(line, int):
line = self.data.iloc[line]
if self.meta_only:
tgt_path = toliststr(line['image_path'])
else:
tgt_path = self.dump_image(line)
question = line['question']
options = {
cand: line[cand]
for cand in string.ascii_uppercase
if cand in line and not pd.isna(line[cand])
}
# options_prompt = ''
options_prompt = '\n'.join([f'{key}. {item}' for key, item in options.items()])
# for key, item in options.items():
# options_prompt += f'{key}. {item}\n'
prompt = ''
prompt += f'{question}\n'
if len(options):
prompt += options_prompt
prompt += "\nAnswer with the option's letter from the given choices directly."
msgs = []
if isinstance(tgt_path, list):
msgs.extend([dict(type='image', value=p) for p in tgt_path])
else:
msgs = [dict(type='image', value=tgt_path)]
msgs.append(dict(type='text', value=prompt))
msgs = self.split_MUIR(msgs)
return msgs
class GMAIMMBenchDataset(ImageMCQDataset):
DATASET_URL = {
'GMAI-MMBench_VAL': 'https://huggingface.co/datasets/VLMEval/GMAI-MMBench/resolve/main/GMAI-MMBench_VAL.tsv'
}
DATASET_MD5 = {
'GMAI-MMBench_VAL': '254bd581627866f1c499d3d6b4422324'
}
def report_acc_by_groups(self, df, group_column):
res = defaultdict(list)
# Check for the 'split' column
if 'split' in df:
splits = list(set(df['split']))
res['split'] = splits
else:
df['split'] = ['none'] * len(df)
res['split'] = ['none']
res['Overall'] = [np.mean(df[df['split'] == sp]['hit']) for sp in res['split']]
if group_column not in df:
raise ValueError(f"Column '{group_column}' not found in dataframe.")
abilities = list(set(df[group_column]))
abilities = ['None' if isinstance(ab, float) and pd.isna(ab) else ab for ab in abilities]
abilities.sort()
for ab in abilities:
ab_name = ab
sub_df = df[df[group_column] == ab]
res[ab_name] = [np.mean(sub_df[sub_df['split'] == sp]['hit']) for sp in res['split']]
return pd.DataFrame(res)
def evaluate(self, eval_file, **judge_kwargs):
from .utils.multiple_choice import report_acc, mcq_vanilla_eval
nproc = judge_kwargs.pop('nproc', 4)
suffix = eval_file.split('.')[-1]
model = judge_kwargs.get('model', 'exact_matching')
assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125']
name_str_map = {'chatgpt-0125': 'openai', 'gpt-4-0125': 'gpt4'}
name_str = name_str_map[model] if model in name_str_map else model
if model == 'exact_matching':
model = None
elif gpt_key_set():
model = build_judge(**judge_kwargs)
if not model.working():
warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
warnings.warn(DEBUG_MESSAGE)
model = None
else:
warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
model = None
result_file = eval_file.replace(f'.{suffix}', f'_{name_str}_result.pkl')
data = load(eval_file)
data = data.sort_values(by='index')
data['prediction'] = [str(x) for x in data['prediction']]
# If not choice label, then use lower case
for k in data.keys():
data[k.lower() if k not in list(string.ascii_uppercase) else k] = data.pop(k)
meta = self.data
meta_q_map = {x: y for x, y in zip(meta['index'], meta['question'])}
data_map = {x: y for x, y in zip(data['index'], data['question'])}
for k in data_map:
assert k in meta_q_map, (
f'eval_file should be the same as or a subset of dataset {self.dataset_name}'
)
data = mcq_vanilla_eval(model, data, meta, nproc, result_file, self.dataset_name)
# load split
dump(data, eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
data = load(eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
acc = report_acc(data)
for group_col in ['clinical vqa task', 'department', 'perceptual granularity']:
acc_grouped = self.report_acc_by_groups(data, group_col)
score_file_grouped = eval_file.replace(f'.{suffix}', f'_{group_col}_acc.csv')
dump(acc_grouped, score_file_grouped)
return acc
class CustomMCQDataset(ImageMCQDataset):
def load_data(self, dataset):
data_path = osp.join(LMUDataRoot(), f'{dataset}.tsv')
if file_size(data_path, 'GB') > 1:
local_path = data_path.replace('.tsv', '_local.tsv')
if not osp.exists(local_path) or os.environ.get('FORCE_LOCAL', None):
from ..tools import LOCALIZE
LOCALIZE(data_path, local_path)
data_path = local_path
return load(data_path)

View File

@@ -0,0 +1,128 @@
from .image_base import ImageBaseDataset
from .utils.judge_util import build_judge
from ..smp import *
from ..utils import track_progress_rich
class ImageMTDataset(ImageBaseDataset):
TYPE = 'MT'
def build_prompt(self, line):
if isinstance(line, int):
line = self.data.iloc[line]
if self.meta_only:
tgt_path = toliststr(line['image_path'])
else:
tgt_path = self.dump_image(line)
questions = toliststr(line['question'])
if 'answer' in line:
answers = toliststr(line['answer'])
else:
answers = [''] * len(questions)
assert len(questions) == len(answers)
dlgs, pics_number = [], 0
for i in range(len(questions)):
q, a = questions[i], answers[i]
if '<ImageHere>' in q:
content = []
tag_number = q.count('<ImageHere>')
images = tgt_path[pics_number: pics_number + tag_number]
pics_number += tag_number
q_split = q.split('<ImageHere>')
for i in range(tag_number):
qsp, im = q_split[i], images[i]
if qsp != '':
content.append(dict(type='text', value=qsp))
content.append(dict(type='image', value=im))
if q_split[-1] != '':
content.append(dict(type='text', value=q_split[-1]))
else:
content = [dict(type='text', value=q)]
dlgs.append(dict(role='user', content=content))
assert '<ImageHere>' not in a, 'We currently do not support images in the answer. '
content = [dict(type='text', value=a)]
dlgs.append(dict(role='assistant', content=content))
return dlgs
class MMDUDataset(ImageMTDataset):
DATASET_URL = {'MMDU': 'https://opencompass.openxlab.space/utils/VLMEval/MMDU.tsv'}
DATASET_MD5 = {'MMDU': '848b635a88a078f49aebcc6e39792061'}
DIMS = [
'Creativity', 'Richness', 'Visual Perception', 'Logical Coherence',
'Answer Accuracy', 'Image Relationship Understanding', 'Overall Score'
]
def calculat_metric(self, ans):
all = defaultdict(lambda: 0)
tot = defaultdict(lambda: 0)
valid = defaultdict(lambda: 0)
for k in ans:
res = ans[k]['res']
assert isinstance(res, pd.DataFrame)
lt = len(res)
for i in range(lt):
line = res.iloc[i]
for k in self.DIMS:
tot[k] += 1
if k in line and line[k] is not None:
try:
score = int(line[k])
score = np.clip(score, 0, 10)
all[k] += score
valid[k] += 1
except Exception as e:
print(f'Failed to parse the score: {str(e)}')
sp1 = {'set': 'all'}
sp1.update({k: all[k] / tot[k] * 10 for k in self.DIMS})
sp2 = {'set': 'valid'}
sp2.update({k: all[k] / valid[k] * 10 for k in self.DIMS})
return pd.DataFrame([sp1, sp2])
def evaluate(self, eval_file, **judge_kwargs):
suffix = eval_file.split('.')[-1]
model = judge_kwargs['model']
tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl')
score_file = eval_file.replace(f'.{suffix}', f'_{model}_score.csv')
nproc = judge_kwargs.pop('nproc', 4)
data = load(eval_file)
model = judge_kwargs.pop('model', 'gpt-4o')
judge_model = build_judge(model=model, **judge_kwargs)
lt = len(data)
lines = [data.iloc[i] for i in range(lt)]
tups = [(judge_model, line) for line in lines]
indices = [line['index'] for line in lines]
ans = {}
if osp.exists(tmp_file):
ans = load(tmp_file)
tups = [x for x, i in zip(tups, indices) if i not in ans]
indices = [i for i in indices if i not in ans]
from .utils.mmdu import mmdu_score
if len(indices):
new_results = track_progress_rich(
mmdu_score,
tups,
nproc=nproc,
chunksize=nproc,
keys=indices,
save=tmp_file,)
ans = load(tmp_file)
for k, v in zip(indices, new_results):
assert k in ans
metric = self.calculat_metric(ans)
dump(metric, score_file)
return metric

View File

@@ -0,0 +1,433 @@
from functools import partial
from .image_base import ImageBaseDataset
from .utils import build_judge, DEBUG_MESSAGE
from ..smp import *
from ..utils import track_progress_rich
class ImageVQADataset(ImageBaseDataset):
TYPE = 'VQA'
DATASET_URL = {
'OCRVQA_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/OCRVQA_TEST.tsv',
'OCRVQA_TESTCORE': 'https://opencompass.openxlab.space/utils/VLMEval/OCRVQA_TESTCORE.tsv',
'TextVQA_VAL': 'https://opencompass.openxlab.space/utils/VLMEval/TextVQA_VAL.tsv',
'DocVQA_VAL': 'https://opencompass.openxlab.space/utils/VLMEval/DocVQA_VAL.tsv',
'DocVQA_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/DocVQA_TEST.tsv',
'InfoVQA_VAL': 'https://opencompass.openxlab.space/utils/VLMEval/InfoVQA_VAL.tsv',
'InfoVQA_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/InfoVQA_TEST.tsv',
'ChartQA_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/ChartQA_TEST.tsv',
}
DATASET_MD5 = {
'OCRVQA_TEST': 'ca46a6d74b403e9d6c0b670f6fc00db9',
'OCRVQA_TESTCORE': 'c5239fe77db8bdc1f2ad8e55e0d1fe97',
'TextVQA_VAL': 'b233b31f551bbf4056f2f955da3a92cd',
'DocVQA_VAL': 'd5ee77e1926ff10690d469c56b73eabf',
'DocVQA_TEST': '6a2f28cac26ef2d3447374e8c6f6c8e9',
'InfoVQA_VAL': '2342e9c225222f0ef4dec545ebb126fe',
'InfoVQA_TEST': 'df535bf51b88dc9718252c34131a6227',
'ChartQA_TEST': 'c902e0aa9be5582a7aad6dcf52734b42',
}
def build_prompt(self, line):
msgs = super().build_prompt(line)
assert msgs[-1]['type'] == 'text'
msgs[-1]['value'] += '\nAnswer the question using a single word or phrase.'
return msgs
# It returns a DataFrame
def evaluate(self, eval_file, **judge_kwargs):
from .utils.vqa_eval import hit_calculate, process_line
data = load(eval_file)
dataset = self.dataset_name
assert 'answer' in data and 'prediction' in data
data['prediction'] = [str(x) for x in data['prediction']]
data['answer'] = [str(x) for x in data['answer']]
lt = len(data)
pool = mp.Pool(16)
lines = [data.iloc[i] for i in range(lt)]
if listinstr(['TextVQA'], dataset):
res = pool.map(partial(process_line, method='vqa_score'), lines)
elif listinstr(['ChartQA'], dataset):
res = pool.map(partial(process_line, method='relaxed_accuracy'), lines)
elif listinstr(['OCRVQA'], dataset):
res = pool.map(partial(process_line, method='accuracy'), lines)
elif listinstr(['DocVQA', 'InfoVQA'], dataset):
res = pool.map(partial(process_line, method='anls'), lines)
else: # default using vqa_score to calculate score
res = pool.map(process_line, lines)
hit = hit_calculate(res, dataset)
ret = dict()
if 'split' in data:
splits = set(data['split'])
for sp in splits:
sub = [r for l, r in zip(lines, res) if l['split'] == sp]
# [np.mean(x['match']) >= full_score_weight for x in sub]
hit = hit_calculate(sub, dataset)
ret[sp] = np.mean(hit) * 100
sub = [r for l, r in zip(lines, res)]
hit = hit_calculate(sub, dataset)
ret['Overall'] = np.mean(hit) * 100
else:
ret['Overall'] = np.mean(hit) * 100
if 'category' in data:
cates = list(set(data['category']))
cates.sort()
for c in cates:
sub = [r for l, r in zip(lines, res) if l['category'] == c]
# [np.mean(x['match']) >= full_score_weight for x in sub]
hit = hit_calculate(sub, dataset)
ret[c] = np.mean(hit) * 100
ret = d2df(ret)
ret.round(2)
suffix = eval_file.split('.')[-1]
result_file = eval_file.replace(f'.{suffix}', '_acc.csv')
dump(ret, result_file)
return ret
class OCRBench(ImageBaseDataset):
TYPE = 'VQA'
DATASET_URL = {
'OCRBench': 'https://opencompass.openxlab.space/utils/VLMEval/OCRBench.tsv'
}
DATASET_MD5 = {'OCRBench': 'e953d98a987cc6e26ef717b61260b778'}
# It returns a dictionary
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
OCRBench_score = {
'Regular Text Recognition': 0,
'Irregular Text Recognition': 0,
'Artistic Text Recognition': 0,
'Handwriting Recognition': 0,
'Digit String Recognition': 0,
'Non-Semantic Text Recognition': 0,
'Scene Text-centric VQA': 0,
'Doc-oriented VQA': 0,
'Key Information Extraction': 0,
'Handwritten Mathematical Expression Recognition': 0,
}
data = load(eval_file)
lt = len(data)
lines = [data.iloc[i] for i in range(lt)]
for i in tqdm(range(len(lines))):
line = lines[i]
predict = str(line['prediction'])
answers = eval(line['answer'])
category = line['category']
if category == 'Handwritten Mathematical Expression Recognition':
for j in range(len(answers)):
answer = answers[j].strip().replace('\n', ' ').replace(' ', '')
predict = predict.strip().replace('\n', ' ').replace(' ', '')
if answer in predict:
OCRBench_score[category] += 1
break
else:
for j in range(len(answers)):
answer = answers[j].lower().strip().replace('\n', ' ')
predict = predict.lower().strip().replace('\n', ' ')
if answer in predict:
OCRBench_score[category] += 1
break
final_score_dict = {}
final_score_dict['Text Recognition'] = \
(OCRBench_score['Regular Text Recognition'] + OCRBench_score['Irregular Text Recognition']
+ OCRBench_score['Artistic Text Recognition'] + OCRBench_score['Handwriting Recognition']
+ OCRBench_score['Digit String Recognition'] + OCRBench_score['Non-Semantic Text Recognition'])
final_score_dict['Scene Text-centric VQA'] = OCRBench_score['Scene Text-centric VQA']
final_score_dict['Doc-oriented VQA'] = OCRBench_score['Doc-oriented VQA']
final_score_dict['Key Information Extraction'] = OCRBench_score['Key Information Extraction']
final_score_dict['Handwritten Mathematical Expression Recognition'] = \
(OCRBench_score['Handwritten Mathematical Expression Recognition'])
final_score_dict['Final Score'] = \
(final_score_dict['Text Recognition'] + final_score_dict['Scene Text-centric VQA']
+ final_score_dict['Doc-oriented VQA'] + final_score_dict['Key Information Extraction']
+ final_score_dict['Handwritten Mathematical Expression Recognition'])
final_score_dict['Final Score Norm'] = (float(final_score_dict['Final Score']) / 10)
score_pth = eval_file.replace('.xlsx', '_score.json')
dump(final_score_dict, score_pth)
return final_score_dict
class MathVista(ImageBaseDataset):
TYPE = 'VQA'
DATASET_URL = {
'MathVista_MINI': 'https://opencompass.openxlab.space/utils/VLMEval/MathVista_MINI.tsv'
}
DATASET_MD5 = {'MathVista_MINI': 'f199b98e178e5a2a20e7048f5dcb0464'}
# It returns a DataFrame
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
from .utils.mathvista import MathVista_auxeval, MathVista_acc
model = judge_kwargs['model']
suffix = eval_file.split('.')[-1]
storage = eval_file.replace(f'.{suffix}', f'_{model}.xlsx')
tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl')
nproc = judge_kwargs.pop('nproc', 4)
if not osp.exists(storage):
data = load(eval_file)
model = build_judge(max_tokens=128, **judge_kwargs)
assert model.working(), ('MathVista evaluation requires a working OPENAI API\n' + DEBUG_MESSAGE)
lt = len(data)
lines = [data.iloc[i] for i in range(lt)]
tups = [(model, line) for line in lines]
indices = [line['index'] for line in lines]
ans = {}
if osp.exists(tmp_file):
ans = load(tmp_file)
tups = [x for x, i in zip(tups, indices) if i not in ans]
indices = [i for i in indices if i not in ans]
if len(indices):
new_results = track_progress_rich(
MathVista_auxeval,
tups,
nproc=nproc,
chunksize=nproc,
keys=indices,
save=tmp_file,
)
ans = load(tmp_file)
for k, v in zip(indices, new_results):
assert k in ans
assert ans[k]['log'] == v['log'] and ans[k]['res'] == v['res']
data['res'] = [ans[idx]['res'] for idx in data['index']]
data['log'] = [ans[idx]['log'] for idx in data['index']]
dump(data, storage)
score = MathVista_acc(storage)
score_pth = storage.replace('.xlsx', '_score.csv')
dump(score, score_pth)
return score
class MathVision(ImageBaseDataset):
TYPE = 'VQA'
DATASET_URL = {
'MathVision': 'https://opencompass.openxlab.space/utils/VLMEval/MathVision.tsv',
'MathVision_MINI': 'https://opencompass.openxlab.space/utils/VLMEval/MathVision_MINI.tsv'
}
DATASET_MD5 = {
'MathVision': '93f6de14f7916e598aa1b7165589831e',
'MathVision_MINI': '060fe4fa5d868987ce179307bd5f8a33'
}
# It returns a DataFrame
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
from .utils.mathv import MATH_V_auxeval, MATH_V_acc
if 'model' in judge_kwargs:
model = judge_kwargs['model']
else:
model = os.path.basename(os.environ.get('LOCAL_LLM'))
suffix = eval_file.split('.')[-1]
storage = eval_file.replace(f'.{suffix}', f'_{model}.xlsx')
tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl')
nproc = judge_kwargs.pop('nproc', 4)
if not osp.exists(storage):
data = load(eval_file)
model = build_judge(max_tokens=128, **judge_kwargs)
assert model.working(), ('MATH-Vision evaluation requires a working OPENAI API\n' + DEBUG_MESSAGE)
lt = len(data)
lines = [data.iloc[i] for i in range(lt)]
tups = [(model, line) for line in lines]
indices = [line['index'] for line in lines]
ans = {}
if osp.exists(tmp_file):
ans = load(tmp_file)
tups = [x for x, i in zip(tups, indices) if i not in ans]
indices = [i for i in indices if i not in ans]
if len(indices):
new_results = track_progress_rich(
MATH_V_auxeval,
tups,
nproc=nproc,
chunksize=nproc,
keys=indices,
save=tmp_file,
)
ans = load(tmp_file)
for k, v in zip(indices, new_results):
assert k in ans
assert ans[k]['log'] == v['log'] and ans[k]['res'] == v['res']
data['res'] = [ans[idx]['res'] for idx in data['index']]
data['log'] = [ans[idx]['log'] for idx in data['index']]
dump(data, storage)
score = MATH_V_acc(storage)
score_pth = storage.replace('.xlsx', '_score.csv')
dump(score, score_pth)
return score
class LLaVABench(ImageBaseDataset):
TYPE = 'VQA'
DATASET_URL = {'LLaVABench': 'https://opencompass.openxlab.space/utils/VLMEval/LLaVABench.tsv'}
DATASET_MD5 = {'LLaVABench': 'd382a093f749a697820d3dadd61c8428'}
# It returns a DataFrame
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
from .utils.llavabench import (
build_prompt,
LLaVABench_atomeval,
LLaVABench_score,
)
suffix = '.' + eval_file.split('.')[-1]
record_file = eval_file.replace(suffix, '_openai_result' + suffix)
score_file = eval_file.replace(suffix, '_score.csv')
nproc = judge_kwargs.pop('nproc', 4)
system_prompt = 'You are a helpful and precise assistant for checking the quality of the answer.'
if not osp.exists(record_file):
data = load(eval_file)
lines = [data.iloc[i] for i in range(len(data))]
model = build_judge(temperature=0.2, system_prompt=system_prompt, **judge_kwargs)
assert model.working(), ('LLaVABench evaluation requires a working OPENAI API\n' + DEBUG_MESSAGE)
prompts = [build_prompt(line) for line in lines]
tups = [(model, prompt) for prompt in prompts]
scores = track_progress_rich(LLaVABench_atomeval, tups, nproc=nproc, chunksize=nproc)
data['gpt4_score'] = [x[0] for x in scores]
data['score'] = [x[1] for x in scores]
dump(data, record_file)
data = load(record_file)
ret = LLaVABench_score(data).round(1)
dump(ret, score_file)
return ret
class MMVet(ImageBaseDataset):
TYPE = 'VQA'
DATASET_URL = {
'MMVet': 'https://opencompass.openxlab.space/utils/VLMEval/MMVet.tsv'
}
DATASET_MD5 = {'MMVet': '748aa6d4aa9d4de798306a63718455e3'}
# It returns a DataFrame
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
from .utils.mmvet import MMVet_auxeval, MMVet_acc
suffix = eval_file.split('.')[-1]
model = judge_kwargs['model']
storage = eval_file.replace(f'.{suffix}', f'_{model}.xlsx')
tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl')
nproc = judge_kwargs.pop('nproc', 4)
if not osp.exists(storage):
data = load(eval_file)
model = build_judge(max_tokens=3, **judge_kwargs)
assert model.working(), ('MMVet evaluation requires a working OPENAI API\n' + DEBUG_MESSAGE)
lt = len(data)
lines = [data.iloc[i] for i in range(lt)]
tups = [(model, line) for line in lines]
indices = [line['index'] for line in lines]
ans = load(tmp_file) if osp.exists(tmp_file) else {}
tups = [x for x, i in zip(tups, indices) if i not in ans]
indices = [i for i in indices if i not in ans]
if len(indices):
new_results = track_progress_rich(
MMVet_auxeval,
tups,
nproc=nproc,
chunksize=nproc,
keys=indices,
save=tmp_file,
)
ans = load(tmp_file)
for k, v in zip(indices, new_results):
assert k in ans
assert ans[k]['log'] == v['log'] and ans[k]['score'] == v['score']
data['score'] = [ans[idx]['score'] for idx in data['index']]
data['log'] = [ans[idx]['log'] for idx in data['index']]
dump(data, storage)
score, score_fine = MMVet_acc(storage)
score_pth = storage.replace('.xlsx', '_score.csv')
score_fine_pth = storage.replace('.xlsx', '_score_fine.csv')
dump(score, score_pth)
dump(score_fine, score_fine_pth)
return score
class MTVQADataset(ImageBaseDataset):
TYPE = 'VQA'
DATASET_URL = {'MTVQA_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/MTVQA_TEST.tsv'}
DATASET_MD5 = {'MTVQA_TEST': 'd87c17dbab934b7cd89c0a3c1c5657f4'}
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
data = load(eval_file)
assert 'answer' in data and 'prediction' in data and 'category' in data
data['prediction'] = [str(x) for x in data['prediction']]
data['answer'] = [str(x) for x in data['answer']]
if 'split' in data:
assert np.all([x.lower() == 'test' for x in data['split']]), 'We only support MTVQA_TEST for now. '
lt = len(data)
category_scores = defaultdict(list)
for i in range(lt):
line = data.iloc[i]
ans = line['answer'].strip().lower().replace('.', '')
pred = line['prediction'].strip().lower().replace('.', '')
cate = line['category']
score = 1.0 if ans in pred else 0.0
category_scores[cate].append(score)
category_scores['Average'].append(score)
# Calculate the average score for each category, the score is normalized to [0, 100]
category_averages = {category: np.mean(scores) * 100 for category, scores in category_scores.items()}
suffix = eval_file.split('.')[-1]
result_file = eval_file.replace(f'.{suffix}', '_acc.json')
dump(category_averages, result_file)
return category_averages
# MT-VQA adopts a custom prompt
def build_prompt(self, line):
msgs = super().build_prompt(line)
assert sum([x['type'] == 'text' for x in msgs]) == 1
for item in msgs:
if item['type'] == 'text':
item['value'] += '\nAnswer the question using a word or phrase in the language of the question.'
return msgs
class CustomVQADataset(ImageBaseDataset):
TYPE = 'VQA'
def load_data(self, dataset):
data_path = osp.join(LMUDataRoot(), f'{dataset}.tsv')
if file_size(data_path, 'GB') > 1:
local_path = data_path.replace('.tsv', '_local.tsv')
if not osp.exists(local_path) or os.environ.get('FORCE_LOCAL', None):
from ..tools import LOCALIZE
LOCALIZE(data_path, local_path)
data_path = local_path
return load(data_path)
def evaluate(self, eval_file, **judge_kwargs):
raise NotImplementedError

View File

@@ -0,0 +1,88 @@
from ..smp import *
from ..utils import *
from .image_base import ImageBaseDataset
from .utils import build_judge, DEBUG_MESSAGE
class ImageYORNDataset(ImageBaseDataset):
TYPE = 'Y/N'
DATASET_URL = {
'MME': 'https://opencompass.openxlab.space/utils/VLMEval/MME.tsv',
'HallusionBench': 'https://opencompass.openxlab.space/utils/VLMEval/HallusionBench.tsv',
'POPE': 'https://opencompass.openxlab.space/utils/VLMEval/POPE.tsv',
}
DATASET_MD5 = {
'MME': 'b36b43c3f09801f5d368627fb92187c3',
'HallusionBench': '0c23ac0dc9ef46832d7a24504f2a0c7c',
'POPE': 'c12f5acb142f2ef1f85a26ba2fbe41d5',
}
# It returns a dataframe
def evaluate(self, eval_file, **judge_kwargs):
from .utils.yorn import YOrN_Extraction, YOrN_auxeval
from .utils.yorn import default_rating, MME_rating, Hallusion_rating, POPE_rating
dataset = self.dataset_name
data = load(eval_file)
data['prediction'] = [str(x) for x in data['prediction']]
storage = eval_file.replace('.xlsx', '_auxmatch.xlsx')
tmp_file = eval_file.replace('.xlsx', '_tmp.pkl')
nproc = judge_kwargs.pop('nproc', 4)
if not osp.exists(storage):
ans_map = {k: YOrN_Extraction(v) for k, v in zip(data['index'], data['prediction'])}
if osp.exists(tmp_file):
tmp = load(tmp_file)
for k in tmp:
if ans_map[k] == 'Unknown' and tmp[k] != 'Unknown':
ans_map[k] = tmp[k]
data['extracted'] = [ans_map[x] for x in data['index']]
unknown = data[data['extracted'] == 'Unknown']
model = judge_kwargs.get('model', 'exact_matching')
if model == 'exact_matching':
model = None
elif gpt_key_set():
model = build_judge(**judge_kwargs)
if not model.working():
warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
warnings.warn(DEBUG_MESSAGE)
model = None
else:
model = None
warnings.warn('OPENAI_API_KEY is not working properly, will use exact matching for evaluation')
if model is not None:
lt = len(unknown)
lines = [unknown.iloc[i] for i in range(lt)]
tups = [(model, line) for line in lines]
indices = list(unknown['index'])
if len(tups):
res = track_progress_rich(
YOrN_auxeval, tups, nproc=nproc, chunksize=nproc, keys=indices, save=tmp_file)
for k, v in zip(indices, res):
ans_map[k] = v
data['extracted'] = [ans_map[x] for x in data['index']]
dump(data, storage)
data = load(storage)
data['score'] = (data['answer'] == data['extracted'])
dump(data, storage)
if dataset is not None and listinstr(['MME'], dataset):
score = MME_rating(storage)
elif dataset is not None and listinstr(['Hallusion'], dataset):
score = Hallusion_rating(storage)
elif dataset is not None and listinstr(['POPE'], dataset):
score = POPE_rating(storage)
else:
score = default_rating(storage)
score_tgt = eval_file.replace('.xlsx', '_score.csv')
dump(score, score_tgt)
return score

View File

@@ -0,0 +1,252 @@
from huggingface_hub import snapshot_download
from ..smp import *
from .video_base import VideoBaseDataset
from .utils import build_judge, DEBUG_MESSAGE
from ..utils import track_progress_rich
FAIL_MSG = 'Failed to obtain answer via API.'
def unwrap_hf_pkl(pth, suffix='.mp4'):
base_dir = os.path.join(pth, 'video_pkl/')
target_dir = os.path.join(pth, 'video/')
pickle_files = [os.path.join(base_dir, file) for file in os.listdir(base_dir)]
pickle_files.sort()
if not os.path.exists(target_dir):
os.makedirs(target_dir, exist_ok=True)
for pickle_file in pickle_files:
with open(pickle_file, 'rb') as file:
video_data = pickle.load(file)
# For each video file in the pickle file, write its contents to a new mp4 file
for video_name, video_content in video_data.items():
output_path = os.path.join(target_dir, f'{video_name}{suffix}')
with open(output_path, 'wb') as output_file:
output_file.write(video_content)
print('The video file has been restored and stored from the pickle file.')
else:
print('The video file already exists.')
class MMBenchVideo(VideoBaseDataset):
MD5 = '98f7df3eb1007fc375ea6fe88a98e2ff'
SYS = 'You are an AI assistant responsible for answering questions about videos.'
FRAMES_TMPL_PACK = """
You will be provided with {} separate frames uniformly sampled from a video, \
the frames are provided in chronological order of the video.
Please analyze these images and provide the answer / answers to the \
following question / questions about the video content.
If multiple questions are provided (with indices I1, I2, I3, ...), \
you should organize your answers in the following json format:
{{
'I1': 'Answer to Question I1',
'I2': 'Answer to Question I2',
...
}}
Otherwise, please directly reply with your response to the only question.
Even if the information in these separate frames is not enough to give an answer,
PLEASE GIVE A RESPONSE TO EACH OF THE QUESTIONS IN THE FORMAT DESCRIBED ABOVE.
"""
FRAMES_TMPL_NOPACK = """
You will be provided with {} separate frames uniformly sampled from a video, \
the frames are provided in chronological order of the video.
Please analyze these images and provide the answer to the question about the video content.
Please directly reply with your response to the only question.
"""
TYPE = 'VQA'
def __init__(self, dataset='MMBench-Video', pack=False):
super().__init__(dataset=dataset, pack=pack)
@classmethod
def supported_datasets(cls):
return ['MMBench-Video']
def prepare_dataset(self, dataset_name='MMBench-Video', repo_id='nebulae09/MMBench-Video'):
def check_integrity(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if md5(data_file) != self.MD5:
return False
data = load(data_file)
for video_pth in data['video_path']:
if not osp.exists(osp.join(pth, video_pth)):
return False
return True
cache_path = get_cache_path(repo_id)
if cache_path is not None and check_integrity(cache_path):
dataset_path = cache_path
else:
dataset_path = snapshot_download(repo_id=repo_id, repo_type='dataset')
unwrap_hf_pkl(dataset_path)
self.video_path = osp.join(dataset_path, 'video/')
data_file = osp.join(dataset_path, f'{dataset_name}.tsv')
return dict(data_file=data_file, root=osp.join(dataset_path, 'video'))
def build_prompt_pack(self, line, num_frames):
if isinstance(line, int):
assert line < len(self)
video = self.videos[line]
elif isinstance(line, pd.Series):
video = line['video']
elif isinstance(line, str):
video = line
frames = self.save_video_frames(video, num_frames)
sub = self.data[self.data['video'] == video]
sys_prompt = self.SYS + self.FRAMES_TMPL_PACK.format(num_frames)
message = [dict(type='text', value=sys_prompt)]
for im in frames:
message.append(dict(type='image', value=im))
nq = len(sub)
prompt = 'Questions: \n{}\nAnswers: \n'
qs = {int(sub.iloc[i]['index']): sub.iloc[i]['question'] for i in range(nq)}
prompt = prompt.format(json.dumps(qs))
message.append(dict(type='text', value=prompt))
return message
def build_prompt_nopack(self, line, num_frames, video_llm):
if isinstance(line, int):
assert line < len(self)
line = self.data.iloc[line]
if video_llm:
question = line['question']
prefix, video_idx_path = os.path.split(line['video_path'])
message = [dict(type='text', value=question)]
message.append(dict(type='video', value=os.path.join(self.video_path, video_idx_path)))
return message
else:
frames = self.save_video_frames(line['video'], num_frames)
sys_prompt = self.FRAMES_TMPL_NOPACK.format(num_frames)
message = [dict(type='text', value=sys_prompt)]
for im in frames:
message.append(dict(type='image', value=im))
prompt = 'Question: {}\nAnswer: '.format(line['question'])
message.append(dict(type='text', value=prompt))
return message
def build_prompt(self, line, num_frames, video_llm):
if self.pack and not video_llm:
return self.build_prompt_pack(line, num_frames)
else:
return self.build_prompt_nopack(line, num_frames, video_llm)
@staticmethod
def remove_side_quote(s, syms=[',', '"', "'"]):
if np.all([x in syms for x in s]):
return ''
while s[0] in syms:
s = s[1:]
while s[-1] in syms:
s = s[:-1]
return s
@staticmethod
def robust_json_load(s):
try:
jsons = list(extract_json_objects(s))
assert len(jsons) == 1
return jsons[0]
except:
if '{' in s and s.find('{') == s.rfind('{'):
sub_str = s[s.find('{') + 1:].strip()
lines = sub_str.split('\n')
res = {}
for l in lines:
l = l.strip()
if ': ' in l:
key = l.split(': ')[0].strip()
val = l.split(': ')[1].strip()
key = MMBenchVideo.remove_side_quote(key)
val = MMBenchVideo.remove_side_quote(val)
if len(key) and len(val):
res[key] = val
return res
return None
def load_pack_answers(self, data_raw):
vstats = defaultdict(lambda: 0)
data = defaultdict(lambda: {})
for k in data_raw:
ans = data_raw[k].strip()
if FAIL_MSG in ans:
vstats['GEN_FAIL'] += 1
continue
res = self.robust_json_load(ans)
if res is not None:
data[k] = res
vstats['PARSE_OK'] += 1
else:
vstats['PARSE_FAIL'] += 1
# return data
meta = cp.deepcopy(self.data)
lt = len(meta)
prediction = []
for i in range(lt):
line = meta.iloc[i]
vid = line['video']
idx = str(line['index'])
prediction.append(data[vid][idx] if idx in data[vid] else None)
meta['prediction'] = prediction
vstats['VALIDQ'] = len([x for x in prediction if x is not None])
vstats['INVALIDQ'] = len([x for x in prediction if x is None])
return meta, vstats
# It returns a dictionary
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
from .utils.mmbench_video import get_dimension_rating, system_prompt, build_prompt
assert eval_file.endswith('.xlsx'), 'data file should be an xlsx file'
judge = judge_kwargs['model']
nproc = judge_kwargs.pop('nproc', 4)
tmp_file = eval_file.replace('.xlsx', f'_{judge}_tmp.pkl')
tgt_file = eval_file.replace('.xlsx', f'_{judge}_rating.json')
score_file = eval_file.replace('.xlsx', f'_{judge}_score.xlsx')
model = build_judge(system_prompt=system_prompt, **judge_kwargs)
assert model.working(), 'MMBench-Video evaluation requires a working OPENAI API\n' + DEBUG_MESSAGE
if not osp.exists(score_file):
res = {} if not osp.exists(tmp_file) else load(tmp_file)
res = {k: v for k, v in res.items() if model.fail_msg not in v}
data = load(eval_file)
data_un = data[~data['index'].isin(res)]
data_un = data_un[~pd.isna(data_un['prediction'])]
lt = len(data_un)
prompts = [build_prompt(data_un.iloc[i]) for i in range(lt)]
indices = [data_un.iloc[i]['index'] for i in range(lt)]
if len(prompts):
_ = track_progress_rich(
model.generate,
prompts,
keys=indices,
save=tmp_file,
nproc=nproc,
chunksize=nproc
)
score_map = load(tmp_file)
data['score'] = [score_map[idx] if idx in score_map else -1 for idx in data['index']]
rejected = [x for x in score_map.values() if FAIL_MSG in x]
data['score'] = [int(x) if istype(x, int) else -1 for x in data['score']]
print(
f'Among {len(data)} questions, failed to obtain prediction for {len(data) - len(score_map)} questions, '
f'failed to obtain the score for another {len(rejected)} questions. '
f'Those questions will be counted as 0 score in ALL rating, and will not be counted in VALID rating.'
)
dump(data, score_file)
rating = get_dimension_rating(score_file)
dump(rating, tgt_file)
return rating

View File

@@ -0,0 +1,582 @@
import re
import math
from urllib.request import urlopen
from PIL import Image, ImageDraw, ImageFont
import torchvision.transforms as transforms
from vlmeval.dataset.utils import build_judge, levenshtein_distance
from vlmeval.smp import *
from .image_base import ImageBaseDataset
FAIL_MSG = 'Failed to obtain answer via API.'
def get_gpt4_ICE():
example_1 = """
---
Question: List the primary questions asked about the services in this report.
Analysis: The primary questions asked about the services in the report for The Limes Residential Home are:\n\n
1. Is the service safe?\n
2. Is the service effective?\n
3. Is the service caring?\n
4. Is the service responsive?\n
5. Is the service well-led?
Extracted answer: [
'Is the servife safe?',
'Is the service effective',
'Is the serve caring?',
'Is the service responsive?',
'Is the service well-led?'
]
Answer format: List\n
"""
example_2 = """
---
Question: How many regulations of the HSCA 2008 are breached in all according to this report?
Analysis: According to the report, the provider breached 10 Health and Social Care Act 2008 (Regulated Activities)
Regulations in total. Here are the specifics:\n\n1. Regulation 13: Safeguarding service users from abuse and
improper treatment\n2. Regulation 12: Safe care and treatment\n3. Regulation 18: Staffing\n4. Regulation 11:
Need for consent\n5. Regulation 10: Dignity and respect\n6. Regulation 9: Person-centred care\n7. Regulation 17:
Good governance\n8. Regulation 18 (CQC Registration Regulations 2009): Notification of other incidents\n9.
Regulation 18: Failure to maintain an accurate and up-to-date care plan\n10. Regulation 11: Failure to implement
the Mental Capacity Act 2005 code of practice effectively\n\nThese breaches involve issues concerning staffing,
safeguarding, medicines management, dignity and respect, consent, care planning, governance, and failure to
notify the CQC of incidents.
Extracted answer: 10
Answer format: Integer\n
"""
example_3 = """
---
Question: According to the survey that is the percentage of Chinese who are paying more or
about the same attention to politics after Trump's election?
Analysis: The survey provided does not specify the percentage of Chinese individuals specifically who are paying
more or about the same attention to politics after Trump's election. The report focuses primarily on American
demographics and does not include specific details about the Chinese population in relation to this question. If
you need information about a different demographic or a summary of the findings from the American demographic,
I can certainly help with that!
Extracted answer: Not answerable
Answer format: String\n
"""
example_4 = """
---
Question: How many quotations from male respondent over 50 years old are included in this report?
Analysis: The image you've provided appears to be a screenshot of a document with multiple charts. However, the
text is too small and blurry to read accurately. If you can provide a clearer image or more context, I might be
able to help you with your question.
Extracted answer: Fail to answer
Answer format: String\n
"""
return [example_1, example_2, example_3, example_4]
def build_mmlongbench_gpt4_prompt(line):
task_description = """
Given the question and analysis, you are tasked to extract answers with required formats from the free-form analysis.
- Your extracted answers should be one of the following formats: (1) Integer, (2) Float, (3) String and (4) List.
If you find the analysis the question can not be answered from the given documents, type "Not answerable".
Exception: If the analysis only tells you that it can not read/understand the images or documents,
type "Fail to answer".
- Please make your response as concise as possible. Also note that your response should be formatted as below:
```
Extracted answer: [answer]
Answer format: [answer format]
```
Please read the following example, then extract the answer from the model response
and type it at the end of the prompt.\n
"""
question = line['question']
prediction = str(line['prediction'])
prompt = task_description
examples = get_gpt4_ICE()
for example in examples:
prompt += example
prompt += '---\nQuestion:' + question + '\n'
prompt += 'Analysis: ' + prediction
return prompt
def anls_compute(groundtruth, prediction, threshold=0.5):
dist = levenshtein_distance(groundtruth, prediction)
length = max(len(groundtruth.upper()), len(prediction.upper()))
value = 0.0 if length == 0 else float(dist) / float(length)
anls = 1.0 - value
if anls <= threshold:
anls = 0.0
return anls
def is_float_equal(reference, prediction, include_percentage: bool = False, is_close: float = False) -> bool:
def get_precision(gt_ans: float) -> int:
precision = 3
if '.' in str(gt_ans):
precision = len(str(gt_ans).split('.')[-1])
return precision
reference = float(str(reference).strip().rstrip('%').strip())
try:
prediction = float(str(prediction).strip().rstrip('%').strip())
except:
return False
if include_percentage:
gt_result = [reference / 100, reference, reference * 100]
else:
gt_result = [reference]
for item in gt_result:
try:
if is_close:
if math.isclose(item, prediction, rel_tol=0.01):
return True
precision = max(min(get_precision(prediction), get_precision(item)), 2)
if round(prediction, precision) == round(item, precision):
return True
except Exception:
continue
return False
def get_clean_string(s):
s = str(s).lower().strip()
if s.endswith('mile'):
s.rstrip('mile').strip()
if s.endswith('miles'):
s.rstrip('miles').strip()
if s.endswith('million'):
s.rstrip('million').strip()
# remove parenthesis
s = re.sub(r'\s*\([^)]*\)', '', s).strip()
# remove quotes
s = re.sub(r"^['\"]|['\"]$", '', s).strip()
s = s.strip().lstrip('$').strip()
s = s.strip().rstrip('%').strip()
return s
def is_exact_match(s):
flag = False
# Website
if 'https://' in s:
flag = True
# code file
if s.endswith('.py') or s.endswith('ipynb'):
flag = True
if s.startswith('page'):
flag = True
# telephone number
if re.fullmatch(r'\b\d+(-\d+|\s\d+)?\b', s):
flag = True
# time
if 'a.m.' in s or 'p.m.' in s:
flag = True
# YYYY-MM-DD
if re.fullmatch(r'\b\d{4}[-\s]\d{2}[-\s]\d{2}\b', s):
flag = True
# YYYY-MM
if re.fullmatch(r'\b\d{4}[-\s]\d{2}\b', s):
flag = True
# Email address
if re.fullmatch(r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}', s):
flag = True
return flag
def isfloat(num):
try:
float(num)
return True
except ValueError:
return False
def get_font():
try:
truetype_url = 'http://opencompass.openxlab.space/utils/Fonts/SimHei.ttf'
ff = urlopen(truetype_url)
font = ImageFont.truetype(ff, size=40)
except:
print('Fail to download the font. Use the default one.')
font = ImageFont.load_default(size=40)
return font
def frame2img(img_path_list, font, save_path=None, idx_start=0):
imgs = [Image.open(img_path) for img_path in img_path_list]
new_imgs = []
for img in imgs:
w, h = img.size
scale = w / h
if w > h:
new_w = 560 * 2
new_h = int(560 * 2 / scale)
else:
new_w = int(560 * 2 * scale)
new_h = 560 * 2
img = transforms.functional.resize(img, [new_h, new_w],)
new_imgs.append(img)
imgs = new_imgs
new_w = 0
new_h = 0
pad = 40
if w > h:
for im in imgs:
w, h = im.size
new_w = max(new_w, w)
new_h += h + 10 + pad
new_img = Image.new('RGB', (new_w, new_h), 'white')
draw = ImageDraw.Draw(new_img)
curr_h = 0
for idx, im in enumerate(imgs):
w, h = im.size
new_img.paste(im, (0, pad + curr_h))
draw.text((0, curr_h), f'<IMAGE {idx+idx_start}>', font=font, fill='black')
if idx + 1 < len(imgs):
draw.line([(0, pad + curr_h + h + 5), (new_w, pad + curr_h + h + 5)], fill='black', width=2)
curr_h += h + 10 + pad
else:
for im in imgs:
w, h = im.size
new_w += w + 10
new_h = max(new_h, h)
new_h += pad
new_img = Image.new('RGB', (new_w, new_h), 'white')
draw = ImageDraw.Draw(new_img)
curr_w = 0
for idx, im in enumerate(imgs):
w, h = im.size
new_img.paste(im, (curr_w, pad))
draw.text((curr_w, 0), f'<IMAGE {idx+idx_start}>', font=font, fill='black')
if idx + 1 < len(imgs):
draw.line([(curr_w + w + 5, 0), (curr_w + w + 5, new_h)], fill='black', width=2)
curr_w += w + 10
if save_path is not None:
new_img.save(save_path)
return new_img
def concat_images(image_list, max_concat=1, column_num=1):
concatenated_images = []
if column_num == -1:
MAX_COLUMN_NUM = 20
max_concat = 1
while len(image_list) / max_concat > MAX_COLUMN_NUM:
max_concat += 1
interval = max(math.ceil(len(image_list) / max_concat), 1)
for i in range(0, len(image_list), interval):
batch_images = image_list[i:i + interval]
concatenated_image = frame2img(batch_images, font=get_font(), idx_start=i)
concatenated_images.append(concatenated_image)
else:
interval = max(math.ceil(len(image_list) / max_concat), 1)
for i in range(0, len(image_list), interval):
batch_images = [Image.open(filename) for filename in image_list[i:i + interval]]
if column_num == 1:
total_height = batch_images[0].height * len(batch_images)
else:
total_height = batch_images[0].height * ((len(batch_images) - 1) // column_num + 1)
concatenated_image = Image.new('RGB', (batch_images[0].width * column_num, total_height), 'white')
x_offset, y_offset = 0, 0
for count, image in enumerate(batch_images):
concatenated_image.paste(image, (x_offset, y_offset))
x_offset += image.width
if (count + 1) % column_num == 0:
y_offset += image.height
x_offset = 0
concatenated_images.append(concatenated_image)
return concatenated_images
def eval_score(gt, pred, answer_type):
if answer_type == 'Int':
try:
gt, pred = int(gt), int(float(pred))
except:
pred = ''
score = (gt == pred)
elif answer_type == 'Float':
try:
gt = float(get_clean_string(str(gt)))
pred = float(get_clean_string(str(pred)))
except:
pred = ''
score = is_float_equal(gt, pred, include_percentage=True, is_close=True)
elif answer_type == 'Str':
gt = get_clean_string(gt)
pred = get_clean_string(pred)
if is_exact_match(gt):
score = (gt == pred)
else:
score = anls_compute(gt, pred)
else:
if isinstance(gt, str) and gt.startswith('['):
gt = eval(gt)
if not isinstance(gt, list):
gt = [gt]
if isinstance(pred, str) and pred.startswith('['):
pred = eval(pred)
if not isinstance(pred, list):
pred = [pred]
print(len(gt), len(pred))
if len(gt) != len(pred):
score = 0.0
else:
gt = sorted([get_clean_string(a) for a in gt])
pred = sorted([get_clean_string(a) for a in pred])
print(gt, pred)
if isfloat(gt[0]) or is_exact_match(gt[0]):
score = ('-'.join(gt) == '-'.join(pred))
else:
score = min([anls_compute(gt_v, pred_v) for gt_v, pred_v in zip(gt, pred)])
return float(score)
def MMLongBench_auxeval(model, line):
prompt = build_mmlongbench_gpt4_prompt(line)
log = ''
retry = 5
for i in range(retry):
prediction = line['prediction']
res = model.generate(prompt, temperature=i * 0.5)
if FAIL_MSG in res:
log += f'Try {i}: output is {prediction}, failed to parse.\n'
else:
log += 'Succeed'
try:
pred = res.split('Answer format:')[0].split('Extracted answer:')[1].strip()
except:
pred = ''
return dict(log=log, res=res, pred=pred)
log += 'All 5 retries failed.\n'
return dict(log=log, res='', pred='')
def get_f1(data):
gt_pos_data = data[data.apply(lambda k: k['answer'] != 'Not answerable', axis=1)]
pred_pos_data = data[data.apply(lambda k: k['pred'] != 'Not answerable', axis=1)]
recall = sum(gt_pos_data['score'].tolist()) / len(gt_pos_data)
precision = sum(pred_pos_data['score'].tolist()) / len(pred_pos_data)
return 2 * recall * precision / (recall + precision)
def MMLongBench_acc(result_file):
data = load(result_file)
overall_score = 0.0
score_list = list()
for i in range(len(data)):
item = data.iloc[i]
try:
score = eval_score(item['answer'], item['pred'], item['answer_format'])
except:
score = 0.0
score_list.append(score)
overall_score += score
data['score'] = score_list
dump(data, result_file)
data_chart = data[data.apply(lambda k: 'Chart' in eval(k['evidence_sources']), axis=1)]
data_table = data[data.apply(lambda k: 'Table' in eval(k['evidence_sources']), axis=1)]
data_image = data[data.apply(lambda k: 'Figure' in eval(k['evidence_sources']), axis=1)]
data_text = data[data.apply(lambda k: 'Pure-text (Plain-text)' in eval(k['evidence_sources']), axis=1)]
data_layout = data[data.apply(lambda k: 'Generalized-text (Layout)' in eval(k['evidence_sources']), axis=1)]
data_single = data[data.apply(lambda k: len(eval(k['evidence_pages'])) == 1, axis=1)]
data_multi = data[data.apply(lambda k: len(eval(k['evidence_pages'])) > 1, axis=1)]
data_unans = data[data.apply(lambda k: len(eval(k['evidence_pages'])) == 0, axis=1)]
res = dict()
res['category'] = [
'overall_f1', 'overall_acc', 'text', 'layout', 'table', 'chart',
'image', 'single-page', 'multi-page', 'unanswerable'
]
res['num'] = [
len(data), len(data), len(data_text), len(data_layout), len(data_table),
len(data_chart), len(data_image), len(data_single), len(data_multi), len(data_unans)
]
res['avg_score'] = [
get_f1(data),
overall_score / len(data),
sum(data_text['score'].tolist()) / len(data_text) if len(data_text) > 0 else 0.0,
sum(data_layout['score'].tolist()) / len(data_layout) if len(data_layout) > 0 else 0.0,
sum(data_table['score'].tolist()) / len(data_table) if len(data_table) > 0 else 0.0,
sum(data_chart['score'].tolist()) / len(data_chart) if len(data_chart) > 0 else 0.0,
sum(data_image['score'].tolist()) / len(data_image) if len(data_image) > 0 else 0.0,
sum(data_single['score'].tolist()) / len(data_single) if len(data_single) > 0 else 0.0,
sum(data_multi['score'].tolist()) / len(data_multi) if len(data_multi) > 0 else 0.0,
sum(data_unans['score'].tolist()) / len(data_unans) if len(data_unans) > 0 else 0.0,
]
res = pd.DataFrame(res)
return res
class MMLongBench(ImageBaseDataset):
TYPE = 'VQA'
DATASET_URL = {
'MMLongBench_DOC': 'https://opencompass.openxlab.space/utils/VLMEval/MMLongBench_DOC.tsv',
}
DATASET_MD5 = {
'MMLongBench_DOC': '9b393e1f4c52718380d50586197eac9b',
}
SUPPORTED_MODELS = {
'GPT4': (1, 1),
'GPT4V': (1, 1),
'GPT4V_HIGH': (1, 1),
'GPT4o': (1, 1),
'GPT4o_HIGH': (1, 1),
'GPT4o_MINI': (1, 1),
'MiniCPM-Llama3-V-2_5': (1, 5),
'InternVL-Chat-V1-5': (5, 2),
'XComposer2_4KHD': (1, 5),
'XComposer2d5': (1, -1),
}
def __init__(self, dataset, **kwargs):
self.model_list = list(self.SUPPORTED_MODELS.keys())
model_name = kwargs['model']
if not listinstr(self.model_list, model_name):
raise AssertionError("{} doesn't support the evaluation on MMLongBench_DOC.".format(model_name))
super(MMLongBench, self).__init__(dataset)
self.is_api = True if listinstr(['GPT4'], model_name) else False
self.max_pages = 120
concat_num, column_num = self.SUPPORTED_MODELS.get(model_name)
self.concat_num = concat_num
self.column_num = column_num
def dump_image(self, origin_line):
os.makedirs(self.img_root, exist_ok=True)
try:
import fitz
except:
warnings.warn('Please use `pip install pymupdf` to parse PDF files.')
line = origin_line.copy()
line['image_path'] = line['image_path'][:self.max_pages]
skip_pdf_parse = True
for im_name in line['image_path']:
path = osp.join(self.img_root, im_name)
if not read_ok(path):
skip_pdf_parse = False
break
# Just for being compatible with the zooped loop: zip(line['image'], line['image_path'])
if skip_pdf_parse:
line['image'] = line['image_path']
else:
pdf_data = base64.b64decode(line['image'])
pdf_file = io.BytesIO(pdf_data)
encoded_images = []
with fitz.open(stream=pdf_file, filetype='pdf') as doc:
doc = doc[:self.max_pages]
for page in doc:
image = page.get_pixmap(dpi=144)
image_file = io.BytesIO(image.tobytes(output='png'))
image = Image.open(image_file)
encoded_image = encode_image_to_base64(image)
encoded_images.append(encoded_image)
line['image'] = encoded_images
print('process {}'.format(line['doc_id']))
if 'image' in line:
if isinstance(line['image'], list):
tgt_path = []
assert 'image_path' in line
for img, im_name in zip(line['image'], line['image_path']):
path = osp.join(self.img_root, im_name)
if not read_ok(path):
decode_base64_to_image_file(img, path)
tgt_path.append(path)
else:
tgt_path = osp.join(self.img_root, f"{line['index']}.jpg")
if not read_ok(tgt_path):
decode_base64_to_image_file(line['image'], tgt_path)
tgt_path = [tgt_path]
else:
assert 'image_path' in line
tgt_path = toliststr(line['image_path'])
if self.concat_num > 0 and not self.is_api:
concatenated_images = concat_images(tgt_path, max_concat=self.concat_num, column_num=self.column_num)
old_tgt_path = tgt_path
assert isinstance(old_tgt_path, list)
if self.column_num != -1:
tgt_path = [
'_'.join(old_tgt_path[0].split('_')[:-1]) + '_concat{}_{}.jpg'.format(self.concat_num, i)
for i in range(len(concatenated_images))
]
else:
tgt_path = [
'_'.join(old_tgt_path[0].split('_')[:-1]) + '_concat_all_{}.jpg'.format(i)
for i in range(len(concatenated_images))
]
for path, concatenated_image in zip(tgt_path, concatenated_images):
if not read_ok(path):
decode_base64_to_image_file(encode_image_to_base64(concatenated_image), path)
num_images, image_size = len(old_tgt_path), concatenated_image.size
print('concat {} images to a new one with size {}. save at {}'.format(num_images, image_size, path))
return tgt_path
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
logger = get_logger('Evaluation')
model = judge_kwargs['model']
suffix = eval_file.split('.')[-1]
storage = eval_file.replace(f'.{suffix}', f'_{model}.xlsx')
tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl')
if osp.exists(storage):
logger.warning(f'GPT scoring file {storage} already exists, will reuse it in MMLongBench_eval. ')
else:
data = load(eval_file)
model = build_judge(max_tokens=128, **judge_kwargs)
lt = len(data)
lines = [data.iloc[i] for i in range(lt)]
tups = [(model, line) for line in lines]
indices = [line['index'] for line in lines]
ans = {}
if osp.exists(tmp_file):
ans = load(tmp_file)
tups = [x for x, i in zip(tups, indices) if i not in ans]
indices = [i for i in indices if i not in ans]
if len(indices):
new_results = list()
for model, line in tqdm(tups):
res = MMLongBench_auxeval(model, line)
new_results.append(res)
log_map, res_map, pred_map = {}, {}, {}
all_inds = [line['index'] for line in lines]
for k, v in zip(all_inds, new_results):
log_map[k] = v['log']
res_map[k] = v['res']
pred_map[k] = v['pred']
data['res'] = [res_map[idx] for idx in data['index']]
data['log'] = [log_map[idx] for idx in data['index']]
data['pred'] = [pred_map[idx] for idx in data['index']]
dump(data, storage)
score = MMLongBench_acc(storage)
score_pth = storage.replace('.xlsx', '_score.csv')
dump(score, score_pth)
logger.info(f'MMLongBench_eval successfully finished evaluating {eval_file}, results saved in {score_pth}')
logger.info('Score: ')
logger.info(score)

View File

@@ -0,0 +1,577 @@
import huggingface_hub
from huggingface_hub import snapshot_download
from ..smp import *
from .video_base import VideoBaseDataset
from .utils import build_judge, DEBUG_MESSAGE
from ..utils import track_progress_rich
import torchvision.transforms as T
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from decord import VideoReader, cpu
import imageio
import cv2
import zipfile
import os
import glob
from moviepy.editor import VideoFileClip, ImageSequenceClip
import moviepy.config_defaults
from .utils.mvbench import *
FAIL_MSG = 'Failed to obtain answer via API.'
moviepy.config_defaults.LOGGER_LEVEL = logging.CRITICAL + 1
class MVBench(VideoBaseDataset):
MD5 = 'ae2a2607e2f8618155709220c6e927a6'
SYS = """Carefully watch the video and pay attention to the cause and sequence of events, \
the detail and movement of objects, and the action and pose of persons. \
Based on your observations, select the best option that accurately addresses the question.
"""
TYPE = 'MCQ'
def __init__(self, dataset='MVBench', pack=False):
self.type_data_list = {
'Action Sequence': ('action_sequence.json',
'your_data_path/star/Charades_v1_480/', 'video', True), # has start & end
'Action Prediction': ('action_prediction.json',
'your_data_path/star/Charades_v1_480/', 'video', True), # has start & end
'Action Antonym': ('action_antonym.json',
'your_data_path/ssv2_video/', 'video', False),
'Fine-grained Action': ('fine_grained_action.json',
'your_data_path/Moments_in_Time_Raw/videos/', 'video', False),
'Unexpected Action': ('unexpected_action.json',
'your_data_path/FunQA_test/test/', 'video', False),
'Object Existence': ('object_existence.json',
'your_data_path/clevrer/video_validation/', 'video', False),
'Object Interaction': ('object_interaction.json',
'your_data_path/star/Charades_v1_480/', 'video', True), # has start & end
'Object Shuffle': ('object_shuffle.json',
'your_data_path/perception/videos/', 'video', False),
'Moving Direction': ('moving_direction.json',
'your_data_path/clevrer/video_validation/', 'video', False),
'Action Localization': ('action_localization.json',
'your_data_path/sta/sta_video/', 'video', True), # has start & end
'Scene Transition': ('scene_transition.json',
'your_data_path/scene_qa/video/', 'video', False),
'Action Count': ('action_count.json',
'your_data_path/perception/videos/', 'video', False),
'Moving Count': ('moving_count.json',
'your_data_path/clevrer/video_validation/', 'video', False),
'Moving Attribute': ('moving_attribute.json',
'your_data_path/clevrer/video_validation/', 'video', False),
'State Change': ('state_change.json',
'your_data_path/perception/videos/', 'video', False),
'Fine-grained Pose': ('fine_grained_pose.json',
'your_data_path/nturgbd/', 'video', False),
'Character Order': ('character_order.json',
'your_data_path/perception/videos/', 'video', False),
'Egocentric Navigation': ('egocentric_navigation.json',
'your_data_path/vlnqa/', 'video', False),
'Episodic Reasoning': ('episodic_reasoning.json',
'your_data_path/tvqa/frames_fps3_hq/', 'frame', True), # has start & end, read frame
'Counterfactual Inference': ('counterfactual_inference.json',
'your_data_path/clevrer/video_validation/', 'video', False),
}
super().__init__(dataset=dataset, pack=pack)
@classmethod
def supported_datasets(cls):
return ['MVBench']
def prepare_dataset(self, dataset_name='MVBench', repo_id='OpenGVLab/MVBench'):
def check_integrity(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if not os.path.exists(data_file):
return False
if md5(data_file) != self.MD5:
return False
data = load(data_file)
for idx, item in data.iterrows():
if not osp.exists(osp.join(pth, item['prefix'], item['video'])):
return False
return True
cache_path = get_cache_path(repo_id, branch='main')
if cache_path is not None and check_integrity(cache_path):
dataset_path = cache_path
else:
def unzip_hf_zip(pth):
pth = os.path.join(pth, 'video/')
for filename in os.listdir(pth):
if filename.endswith('.zip'):
# 构建完整的文件路径
zip_path = os.path.join(pth, filename)
# 解压 ZIP 文件
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(pth)
def generate_tsv(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if os.path.exists(data_file) and md5(data_file) == self.MD5:
return
json_data_dir = os.path.join(dataset_path, 'json')
self.data_list = []
for k, v in self.type_data_list.items():
with open(os.path.join(json_data_dir, v[0]), 'r') as f:
json_data = json.load(f)
for data in json_data:
self.data_list.append({
'task_type': k,
'prefix': v[1].replace('your_data_path', os.path.join(dataset_path, 'video')),
'data_type': v[2],
'bound': v[3],
'start': data['start'] if 'start' in data.keys() else None,
'end': data['end'] if 'end' in data.keys() else None,
'video': data['video'],
'question': data['question'],
'answer': data['answer'],
'candidates': data['candidates']
})
data_df = pd.DataFrame(self.data_list)
data_df = data_df.assign(index=range(len(data_df)))
data_df.to_csv(data_file, sep='\t', index=False)
def move_files(pth):
# special for mvbench
src_folder = os.path.join(pth, 'video/data0613')
for subdir in os.listdir(src_folder):
subdir_path = os.path.join(src_folder, subdir)
if os.path.isdir(subdir_path):
for subsubdir in os.listdir(subdir_path):
subsubdir_path = os.path.join(subdir_path, subsubdir)
if os.path.isdir(subsubdir_path):
for item in os.listdir(subsubdir_path):
item_path = os.path.join(subsubdir_path, item)
target_folder = os.path.join(pth, 'video', subdir, subsubdir, item)
if not os.path.exists(target_folder):
shutil.move(item_path, os.path.join(target_folder, item))
hf_token = os.environ.get('HUGGINGFACE_TOKEN')
huggingface_hub.login(hf_token)
dataset_path = snapshot_download(repo_id=repo_id, repo_type='dataset')
move_files(dataset_path)
unzip_hf_zip(dataset_path)
generate_tsv(dataset_path)
data_file = osp.join(dataset_path, f'{dataset_name}.tsv')
self.decord_method = {
'video': self.read_video,
'gif': self.read_gif,
'frame': self.read_frame,
}
self.nframe = 8
self.resolution = 224
self.frame_fps = 3
# transform
crop_size = self.resolution
scale_size = self.resolution
input_mean = [0.48145466, 0.4578275, 0.40821073]
input_std = [0.26862954, 0.26130258, 0.27577711]
self.transform = T.Compose([
GroupScale(int(scale_size), interpolation=InterpolationMode.BICUBIC),
GroupCenterCrop(crop_size),
Stack(),
ToTorchFormatTensor(),
GroupNormalize(input_mean, input_std)
])
return dict(root=dataset_path, data_file=data_file)
def get_index(self, bound, fps, max_frame, first_idx=0):
if bound:
start, end = bound[0], bound[1]
else:
start, end = -100000, 100000
start_idx = max(first_idx, round(start * fps))
end_idx = min(round(end * fps), max_frame)
seg_size = float(end_idx - start_idx) / self.num_segments
frame_indices = np.array([
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
for idx in range(self.num_segments)
])
return frame_indices
def read_video(self, video_path, bound=None):
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
max_frame = len(vr) - 1
fps = float(vr.get_avg_fps())
images_group = list()
frame_indices = self.get_index(bound, fps, max_frame, first_idx=0)
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy())
images_group.append(img)
torch_imgs = self.transform(images_group)
return torch_imgs
def read_gif(self, video_path, bound=None, fps=25):
gif = imageio.get_reader(video_path)
max_frame = len(gif) - 1
images_group = list()
frame_indices = self.get_index(bound, fps, max_frame, first_idx=0)
for index, frame in enumerate(gif):
if index in frame_indices:
img = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
img = Image.fromarray(img)
images_group.append(img)
torch_imgs = self.transform(images_group)
return torch_imgs
def read_frame(self, video_path, bound=None, fps=3):
max_frame = len(os.listdir(video_path))
images_group = list()
frame_indices = self.get_index(bound, fps, max_frame, first_idx=1) # frame_idx starts from 1
for frame_index in frame_indices:
img = Image.open(os.path.join(video_path, f'{frame_index:05d}.jpg'))
images_group.append(img)
torch_imgs = self.transform(images_group)
return torch_imgs
def save_video_frames(self, imgs, video_name, frames):
frame_paths = self.frame_paths(video_name, frames)
flag = np.all([osp.exists(p) for p in frame_paths])
if not flag:
block_size = imgs.size(0) // frames
split_tensors = torch.split(imgs, block_size)
to_pil = transforms.ToPILImage()
images = [to_pil(arr) for arr in split_tensors]
for im, pth in zip(images, frame_paths):
if not osp.exists(pth):
im.save(pth)
return frame_paths
def qa_template(self, data):
question = f"Question: {data['question']}\n"
question += 'Options:\n'
answer = data['answer']
answer_idx = -1
for idx, c in enumerate(eval(data['candidates'])):
question += f"({chr(ord('A') + idx)}) {c}\n"
if c == answer:
answer_idx = idx
question = question.rstrip()
answer = f"({chr(ord('A') + answer_idx)}) {answer}"
return question, answer
def load_into_video_and_process(self, line):
video_path = os.path.join(line['prefix'], line['video'])
if line['data_type'] in ['gif'] or os.path.splitext(video_path)[1] in ['.webm']:
processed_video_path = video_path.replace(os.path.splitext(video_path)[1], '.mp4')
if not os.path.exists(processed_video_path):
# using MoviePy to transform GIF, webm into mp4 format
gif_clip = VideoFileClip(video_path)
gif_clip.write_videofile(processed_video_path, codec='libx264')
gif_clip.close()
elif line['data_type'] in ['frame']:
input_images = os.path.join(video_path, '*.jpg')
processed_video_path = f'{video_path}.mp4'
if not os.path.exists(processed_video_path):
# using MoviePy to transform images into mp4
image_files = sorted(glob.glob(input_images))
image_clip = ImageSequenceClip(image_files, fps=self.frame_fps)
image_clip.write_videofile(processed_video_path, codec='libx264')
image_clip.close()
else:
processed_video_path = video_path
if line['bound']:
base_name, suffix = os.path.splitext(processed_video_path)
output_video_path = f'{base_name}_processed{suffix}'
if not os.path.exists(output_video_path):
video_clip = VideoFileClip(processed_video_path)
clip = video_clip.subclip(line['start'], min(line['end'], video_clip.duration))
clip.write_videofile(output_video_path)
clip.close()
else:
output_video_path = processed_video_path
return output_video_path
def build_prompt(self, line, num_frames, video_llm):
if isinstance(line, int):
assert line < len(self)
line = self.data.iloc[line]
question, answer = self.qa_template(line)
message = [dict(type='text', value=self.SYS)]
message.append(dict(type='text', value=question))
if video_llm:
new_video_path = self.load_into_video_and_process(line)
message.append(dict(type='video', value=new_video_path))
else:
bound = None
if line['bound']:
bound = (
line['start'],
line['end'],
)
video_path = os.path.join(line['prefix'], line['video'])
decord_method = self.decord_method[line['data_type']]
self.num_segments = num_frames if num_frames > 0 else self.nframe
torch_imgs = decord_method(video_path, bound)
img_frame_paths = self.save_video_frames(torch_imgs, line['video'], self.num_segments)
for im in img_frame_paths:
message.append(dict(type='image', value=im))
message.append(dict(type='text', value='\nOnly give the best option.'))
message.append(dict(type='text', value='Best option:('))
return message
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
assert eval_file.endswith('.xlsx'), 'data file should be an xlsx file'
tmp_file = eval_file.replace('.xlsx', '_tmp.pkl')
tgt_file = eval_file.replace('.xlsx', '_rating.json')
score_file = eval_file.replace('.xlsx', '_score.xlsx')
if not osp.exists(score_file):
res = {} if not osp.exists(tmp_file) else load(tmp_file)
res = {k: v for k, v in res.items() if FAIL_MSG not in v}
data = load(eval_file)
data_un = data[~pd.isna(data['prediction'])]
for idx in data['index']:
ans = data.loc[data['index'] == idx, 'answer'].values[0]
pred = data.loc[data['index'] == idx, 'prediction'].values[0]
options = eval(data.loc[data['index'] == idx, 'candidates'].values[0])
answer_idx = -1
for id, c in enumerate(options):
if c == ans:
answer_idx = id
ans = f"({chr(ord('A') + answer_idx)}) {ans}"
if FAIL_MSG in pred:
data.loc[idx, 'score'] = -1
else:
data.loc[idx, 'score'] = int(check_ans(pred, ans))
rejected = [x for x in data['score'] if x == -1]
print(
f'Among {len(data)} questions, failed to obtain prediction for {len(data) - len(data_un)} questions, '
f'failed to obtain the score for another {len(rejected)} questions. '
f'Those questions will be counted as -1 score in ALL rating, and will not be counted in VALID rating.'
)
dump(data, score_file)
rating = get_dimension_rating(score_file)
dump(rating, tgt_file)
return rating
class MVBench_MP4(VideoBaseDataset):
MP4_MD5 = '7b4608045347904c28c153015a7a2b6b'
SYS = """Carefully watch the video and pay attention to the cause and sequence of events, \
the detail and movement of objects, and the action and pose of persons. \
Based on your observations, select the best option that accurately addresses the question.
"""
TYPE = 'MCQ'
def __init__(self, dataset='MVBench_MP4', pack=False):
super().__init__(dataset=dataset, pack=pack)
@classmethod
def supported_datasets(cls):
return ['MVBench_MP4']
def prepare_dataset(self, dataset_name='MVBench_MP4', repo_id='OpenGVLab/MVBench'):
def check_integrity(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if not os.path.exists(data_file):
return False
if md5(data_file) != self.MP4_MD5:
return False
data = load(data_file)
for idx, item in data.iterrows():
if not osp.exists(osp.join(pth, item['prefix'], item['video'])):
return False
return True
cache_path = get_cache_path(repo_id, branch='video')
if cache_path is not None and check_integrity(cache_path):
dataset_path = cache_path
else:
def generate_tsv(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if os.path.exists(data_file) and md5(data_file) == self.MD5:
return
json_data_path = os.path.join(dataset_path, 'test.json')
json_data = load(json_data_path)
root_data_dict = json_data['root']
self.data_list = []
for k, v in json_data['meta'].items():
for item in v:
self.data_list.append({
'task_type': k,
'prefix': root_data_dict[k],
'video': item['video'],
'question': item['question'],
'answer': item['answer'],
'candidates': item['candidates']
})
data_df = pd.DataFrame(self.data_list)
data_df = data_df.assign(index=range(len(data_df)))
data_df.to_csv(data_file, sep='\t', index=False)
hf_token = os.environ.get('HUGGINGFACE_TOKEN')
huggingface_hub.login(hf_token)
dataset_path = snapshot_download(repo_id=repo_id, repo_type='dataset', revision='video')
generate_tsv(dataset_path)
data_file = osp.join(dataset_path, f'{dataset_name}.tsv')
self.nframe = 8
self.resolution = 224
# transform
crop_size = self.resolution
scale_size = self.resolution
input_mean = [0.48145466, 0.4578275, 0.40821073]
input_std = [0.26862954, 0.26130258, 0.27577711]
self.transform = T.Compose([
GroupScale(int(scale_size), interpolation=InterpolationMode.BICUBIC),
GroupCenterCrop(crop_size),
Stack(),
ToTorchFormatTensor(),
GroupNormalize(input_mean, input_std)
])
return dict(root=dataset_path, data_file=data_file)
def qa_template(self, data):
question = f"Question: {data['question']}\n"
question += 'Options:\n'
answer = data['answer']
answer_idx = -1
for idx, c in enumerate(eval(data['candidates'])):
question += f"({chr(ord('A') + idx)}) {c}\n"
if c == answer:
answer_idx = idx
question = question.rstrip()
answer = f"({chr(ord('A') + answer_idx)}) {answer}"
return question, answer
def get_index(self, max_frame):
seg_size = float(max_frame) / self.num_segments
frame_indices = np.array([
int((seg_size / 2) + np.round(seg_size * idx))
for idx in range(self.num_segments)
])
return frame_indices
def read_video(self, video_path, bound=None):
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
max_frame = len(vr) - 1
images_group = list()
frame_indices = self.get_index(max_frame)
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy())
images_group.append(img)
torch_imgs = self.transform(images_group)
return torch_imgs
def save_video_frames(self, imgs, video_name, frames):
frame_paths = self.frame_paths(video_name, frames)
flag = np.all([osp.exists(p) for p in frame_paths])
if not flag:
block_size = imgs.size(0) // frames
split_tensors = torch.split(imgs, block_size)
to_pil = transforms.ToPILImage()
images = [to_pil(arr) for arr in split_tensors]
for im, pth in zip(images, frame_paths):
if not osp.exists(pth):
im.save(pth)
return frame_paths
def build_prompt(self, line, num_frames, video_llm):
if isinstance(line, int):
assert line < len(self)
line = self.data.iloc[line]
question, answer = self.qa_template(line)
message = [dict(type='text', value=self.SYS)]
message.append(dict(type='text', value=question))
video_path = os.path.join(self.data_root, line['prefix'], line['video'])
if video_llm:
message.append(dict(type='video', value=video_path))
else:
video_path = os.path.join(self.data_root, line['prefix'], line['video'])
self.num_segments = num_frames if num_frames > 0 else self.nframe
torch_imgs = self.read_video(video_path)
img_frame_paths = self.save_video_frames(torch_imgs, line['video'], self.num_segments)
for im in img_frame_paths:
message.append(dict(type='image', value=im))
message.append(dict(type='text', value='\nOnly give the best option.'))
message.append(dict(type='text', value='Best option:('))
return message
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
assert eval_file.endswith('.xlsx'), 'data file should be an xlsx file'
tmp_file = eval_file.replace('.xlsx', '_tmp.pkl')
tgt_file = eval_file.replace('.xlsx', '_rating.json')
score_file = eval_file.replace('.xlsx', '_score.xlsx')
if not osp.exists(score_file):
res = {} if not osp.exists(tmp_file) else load(tmp_file)
res = {k: v for k, v in res.items() if FAIL_MSG not in v}
data = load(eval_file)
data_un = data[~pd.isna(data['prediction'])]
for idx in data['index']:
ans = data.loc[data['index'] == idx, 'answer'].values[0]
pred = data.loc[data['index'] == idx, 'prediction'].values[0]
options = eval(data.loc[data['index'] == idx, 'candidates'].values[0])
answer_idx = -1
for id, c in enumerate(options):
if c == ans:
answer_idx = id
ans = f"({chr(ord('A') + answer_idx)}) {ans}"
if FAIL_MSG in pred:
data.loc[idx, 'score'] = -1
else:
data.loc[idx, 'score'] = int(check_ans(pred, ans))
rejected = [x for x in data['score'] if x == -1]
print(
f'Among {len(data)} questions, failed to obtain prediction for {len(data) - len(data_un)} questions, '
f'failed to obtain the score for another {len(rejected)} questions. '
f'Those questions will be counted as -1 score in ALL rating, and will not be counted in VALID rating.'
)
dump(data, score_file)
rating = get_dimension_rating(score_file)
dump(rating, tgt_file)
return rating

View File

@@ -0,0 +1,189 @@
import re
import math
from typing import List
from vlmeval.dataset.utils.judge_util import build_judge
from vlmeval.smp import *
from .image_base import ImageBaseDataset
from .mmlongbench import concat_images, MMLongBench_auxeval, anls_compute
FAIL_MSG = 'Failed to obtain answer via API.'
def get_f1(gt, pred):
gt_bow, pred_bow = gt.strip().split(), pred.strip().split()
if not gt_bow or not pred_bow:
return 0.0
recall = len([pred_e for pred_e in pred_bow if pred_e in gt_bow]) / len(gt_bow)
precision = len([pred_e for pred_e in pred_bow if pred_e in gt_bow]) / len(pred_bow)
f1 = 2 * recall * precision / (recall + precision) if (recall + precision) > 1e-4 else 0.0
return f1
def SlideVQA_acc(result_file):
data = load(result_file)
anls_list, em_list, f1_list = list(), list(), list()
for i in range(len(data)):
item = data.iloc[i]
if isinstance(item['answer'], float) and math.isnan(item['answer']):
item['answer'] = 'Not answerable'
item['answer'] = re.sub('\n', '', item['answer']).lower()
item['pred'] = str(item['pred']).lower()
anls_score = anls_compute(item['answer'], item['pred'])
em_score = (item['answer'].strip() == item['pred'].strip())
f1_score = get_f1(item['answer'], item['pred'])
anls_list.append(anls_score)
em_list.append(em_score)
f1_list.append(f1_score)
print('---------------------')
print(item['answer'], item['pred'], anls_score, em_score, f1_score)
data['anls'] = anls_list
data['em'] = em_list
data['f1'] = f1_list
dump(data, result_file)
res = dict()
res['category'], res['num'] = ['anls', 'EM', 'F1'], [len(data), len(data), len(data)]
res['avg'] = [sum(anls_list) / len(data), sum(em_list) / len(data), sum(f1_list) / len(data)]
res = pd.DataFrame(res)
return res
class SlideVQA(ImageBaseDataset):
TYPE = 'VQA'
DATASET_URL = {
'SLIDEVQA_MINI': 'https://opencompass.openxlab.space/utils/VLMEval/SLIDEVQA_MINI.tsv',
'SLIDEVQA': 'https://opencompass.openxlab.space/utils/VLMEval/SLIDEVQA.tsv',
}
DATASET_MD5 = {
'SLIDEVQA_MINI': '6d9a8d8814fa5b7669deb2af3a3208eb',
'SLIDEVQA': '5e822c2f800e94c1e23badfd478326b6',
}
SUPPORTED_MODELS = {
'GPT4': (1, 1),
'GPT4V': (1, 1),
'GPT4V_HIGH': (1, 1),
'GPT4o': (1, 1),
'GPT4o_HIGH': (1, 1),
'GPT4o_MINI': (1, 1),
'XComposer2d5': (1, -1),
'XComposer2_4KHD': (1, -1),
'MiniCPM-Llama3-V-2_5': (1, 5),
'InternVL-Chat-V1-5': (5, 2),
}
def __init__(self, dataset, **kwargs):
self.model_list = list(self.SUPPORTED_MODELS.keys())
model_name = kwargs['model']
if not listinstr(self.model_list, model_name):
raise AssertionError("{} doesn't support the evaluation on SlideVQA.".format(model_name))
super(SlideVQA, self).__init__(dataset)
self.is_api = True if listinstr(['GPT4'], model_name) else False
self.max_pages = 120
concat_num, column_num = self.SUPPORTED_MODELS.get(model_name)
self.concat_num = concat_num
self.column_num = column_num
def dump_image(self, origin_line):
os.makedirs(self.img_root, exist_ok=True)
line = origin_line.copy()
if not isinstance(line['image_path'], List):
line['image_path'] = [line['image_path']]
line['image_path'] = line['image_path'][:self.max_pages]
if 'image' in line:
if isinstance(line['image'], list):
tgt_path = []
assert 'image_path' in line
for img, im_name in zip(line['image'], line['image_path']):
path = osp.join(self.img_root, im_name)
if not read_ok(path):
decode_base64_to_image_file(img, path)
tgt_path.append(path)
else:
tgt_path = osp.join(self.img_root, f"{line['index']}.jpg")
if not read_ok(tgt_path):
decode_base64_to_image_file(line['image'], tgt_path)
tgt_path = [tgt_path]
else:
assert 'image_path' in line
tgt_path = toliststr(line['image_path'])
if self.concat_num > 0 and not self.is_api:
concatenated_images = concat_images(tgt_path, max_concat=self.concat_num, column_num=self.column_num)
old_tgt_path = tgt_path
assert isinstance(old_tgt_path, list)
if self.column_num != -1:
tgt_path = [
'_'.join(old_tgt_path[0].split('_')[:-1]) + '_concat{}_{}.jpg'.format(self.concat_num, i)
for i in range(len(concatenated_images))
]
else:
tgt_path = ['_'.join(old_tgt_path[0].split('_')[:-1]) + '_concat_all.jpg']
for path, concatenated_image in zip(tgt_path, concatenated_images):
if not read_ok(path):
decode_base64_to_image_file(encode_image_to_base64(concatenated_image), path)
num_images, image_size = len(old_tgt_path), concatenated_image.size
print('concat {} images to a new one with size {}. save at {}'.format(num_images, image_size, path))
return tgt_path
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
logger = get_logger('Evaluation')
model = judge_kwargs['model']
suffix = eval_file.split('.')[-1]
storage = eval_file.replace(f'.{suffix}', f'_{model}.xlsx')
tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl')
if osp.exists(storage):
logger.warning(f'GPT scoring file {storage} already exists, will reuse it in SlideVQA_eval. ')
else:
data = load(eval_file)
model = build_judge(max_tokens=128, **judge_kwargs)
lt = len(data)
lines = [data.iloc[i] for i in range(lt)]
tups = [(model, line) for line in lines]
indices = [line['index'] for line in lines]
ans = {}
if osp.exists(tmp_file):
ans = load(tmp_file)
tups = [x for x, i in zip(tups, indices) if i not in ans]
indices = [i for i in indices if i not in ans]
if len(indices):
new_results = list()
for model, line in tqdm(tups):
res = MMLongBench_auxeval(model, line)
new_results.append(res)
log_map, res_map, pred_map = {}, {}, {}
all_inds = [line['index'] for line in lines]
for k, v in zip(all_inds, new_results):
log_map[k] = v['log']
res_map[k] = v['res']
pred_map[k] = v['pred']
data['res'] = [res_map[idx] for idx in data['index']]
data['log'] = [log_map[idx] for idx in data['index']]
data['pred'] = [pred_map[idx] for idx in data['index']]
dump(data, storage)
score = SlideVQA_acc(storage)
score_pth = storage.replace('.xlsx', '_score.csv')
dump(score, score_pth)
logger.info(f'SlideVQA successfully finished evaluating {eval_file}, results saved in {score_pth}')
logger.info('Score: ')
logger.info(score)

View File

@@ -0,0 +1,88 @@
from abc import abstractmethod
from ..smp import *
class TextBaseDataset:
MODALITY = 'TEXT'
DATASET_URL = {}
DATASET_MD5 = {}
def __init__(self, dataset='MMBench', **kwargs):
self.dataset_name = dataset
data = self.load_data(dataset)
data['index'] = [str(x) for x in data['index']]
if np.all([istype(x, int) for x in data['index']]):
data['index'] = [int(x) for x in data['index']]
self.data = data
self.post_build(dataset)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return dict(self.data.iloc[idx])
def prepare_tsv(self, url, file_md5=None):
data_root = LMUDataRoot()
os.makedirs(data_root, exist_ok=True)
update_flag = False
file_name = url.split('/')[-1]
data_path = osp.join(data_root, file_name)
if osp.exists(data_path) and (file_md5 is None or md5(data_path) == file_md5):
pass
else:
warnings.warn('The dataset tsv is not downloaded')
download_file(url, data_path)
update_flag = True
if file_size(data_path, 'GB') > 1:
local_path = data_path.replace('.tsv', '_local.tsv')
if not osp.exists(local_path) or os.environ.get('FORCE_LOCAL', None) or update_flag:
from ..tools import LOCALIZE
LOCALIZE(data_path, local_path)
data_path = local_path
return load(data_path)
def dump_image(self, line):
return []
def display(self, line):
if isinstance(line, int):
line = self.data.iloc[line]
assert isinstance(line, pd.Series) or isinstance(line, dict)
mmqa_display(line)
# Return a list of dataset names that are supported by this class, can override
@classmethod
def supported_datasets(cls):
return list(cls.DATASET_URL)
# Given the dataset name, return the dataset as a pandas dataframe, can override
def load_data(self, dataset):
url = self.DATASET_URL[dataset]
file_md5 = self.DATASET_MD5[dataset]
return self.prepare_tsv(url, file_md5)
# Post built hook, will be called after the dataset is built, can override
def post_build(self, dataset):
pass
# Given one data record, return the built prompt (a multi-modal message), can override
def build_prompt(self, line):
if isinstance(line, int):
line = self.data.iloc[line]
question = line['question']
msgs = []
msgs.append(dict(type='text', value=question))
return msgs
# Given the prediction file, return the evaluation results in the format of a dictionary or pandas dataframe
@abstractmethod
def evaluate(self, eval_file, **judge_kwargs):
pass

View File

@@ -0,0 +1,123 @@
from .text_base import TextBaseDataset
from .utils import build_judge, DEBUG_MESSAGE
from ..smp import *
class TextMCQDataset(TextBaseDataset):
TYPE = 'MCQ'
DATASET_URL = {}
DATASET_MD5 = {}
def build_prompt(self, line):
if isinstance(line, int):
line = self.data.iloc[line]
question = line['question']
options = {
cand: line[cand]
for cand in string.ascii_uppercase
if cand in line and not pd.isna(line[cand])
}
options_prompt = 'Options:\n'
for key, item in options.items():
options_prompt += f'{key}. {item}\n'
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
prompt = ''
if hint is not None:
prompt += f'Hint: {hint}\n'
prompt += f'Question: {question}\n'
if len(options):
prompt += options_prompt
prompt += 'Please select the correct answer from the options above. \n'
msgs = []
msgs.append(dict(type='text', value=prompt))
return msgs
def evaluate(self, eval_file, **judge_kwargs):
from .utils.multiple_choice import report_acc, report_acc_MMT, mcq_circular_eval, mcq_vanilla_eval
# assert dataset is not None
dataset_map = {
'MMBench_TEST_EN': 'MMBench', 'MMBench_TEST_EN_V11': 'MMBench_V11',
'MMBench_TEST_CN': 'MMBench_CN', 'MMBench_TEST_CN_V11': 'MMBench_CN_V11'
}
dataset = self.dataset_name
if dataset in dataset_map:
dataset = dataset_map[dataset]
nproc = judge_kwargs.pop('nproc', 4)
circular = False
suffix = eval_file.split('.')[-1]
model = judge_kwargs.get('model', 'exact_matching')
assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125']
name_str_map = {'chatgpt-0125': 'openai', 'gpt-4-0125': 'gpt4'}
name_str = name_str_map[model] if model in name_str_map else model
if model == 'exact_matching':
model = None
elif gpt_key_set():
model = build_judge(**judge_kwargs)
if not model.working():
warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
warnings.warn(DEBUG_MESSAGE)
model = None
else:
warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
model = None
result_file = eval_file.replace(f'.{suffix}', f'_{name_str}_result.pkl')
data = load(eval_file)
data = data.sort_values(by='index')
data['prediction'] = [str(x) for x in data['prediction']]
# If not choice label, then use lower case
for k in data.keys():
data[k.lower() if k not in list(string.ascii_uppercase) else k] = data.pop(k)
meta = self.data
meta_q_map = {x: y for x, y in zip(meta['index'], meta['question'])}
data_map = {x: y for x, y in zip(data['index'], data['question'])}
for k in data_map:
assert k in meta_q_map, (
f'eval_file should be the same as or a subset of dataset {self.dataset_name}'
)
if circular:
data = mcq_circular_eval(model, data, meta, nproc, result_file, self.dataset_name)
else:
data = mcq_vanilla_eval(model, data, meta, nproc, result_file, self.dataset_name)
# load split
dump(data, eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
data = load(eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
# May have different report acc functions for different datasets
if 'MMT' in dataset:
acc = report_acc_MMT(data)
else:
acc = report_acc(data)
score_file = eval_file.replace(f'.{suffix}', '_acc.csv')
dump(acc, score_file)
return acc
class CustomTextMCQDataset(TextMCQDataset):
def load_data(self, dataset):
data_path = osp.join(LMUDataRoot(), f'{dataset}.tsv')
if file_size(data_path, 'GB') > 1:
local_path = data_path.replace('.tsv', '_local.tsv')
if not osp.exists(local_path) or os.environ.get('FORCE_LOCAL', None):
from ..tools import LOCALIZE
LOCALIZE(data_path, local_path)
data_path = local_path
return load(data_path)

View File

@@ -0,0 +1,9 @@
from .judge_util import build_judge, DEBUG_MESSAGE
from .multiple_choice import extract_answer_from_item, prefetch_answer
from .vqa_eval import levenshtein_distance
__all__ = [
'build_judge', 'extract_answer_from_item', 'prefetch_answer',
'levenshtein_distance', 'DEBUG_MESSAGE'
]

View File

@@ -0,0 +1,41 @@
import os
from ...api import OpenAIWrapper
from ...smp import load_env
INTERNAL = os.environ.get('INTERNAL', 0)
def build_judge(**kwargs):
model = kwargs.pop('model', None)
kwargs.pop('nproc', None)
load_env()
LOCAL_LLM = os.environ.get('LOCAL_LLM', None)
if LOCAL_LLM is None:
model_map = {
'gpt-4-turbo': 'gpt-4-1106-preview',
'gpt-4-0613': 'gpt-4-0613',
'gpt-4-0125': 'gpt-4-0125-preview',
'gpt-4-0409': 'gpt-4-turbo-2024-04-09',
'chatgpt-1106': 'gpt-3.5-turbo-1106',
'chatgpt-0125': 'gpt-3.5-turbo-0125',
'gpt-4o': 'gpt-4o-2024-05-13',
'gpt-4o-mini': 'gpt-4o-mini-2024-07-18',
}
model_version = model_map[model]
else:
model_version = LOCAL_LLM
model = OpenAIWrapper(model_version, **kwargs)
return model
DEBUG_MESSAGE = """
To debug the OpenAI API, you can try the following scripts in python:
```python
from vlmeval.api import OpenAIWrapper
model = OpenAIWrapper('gpt-4-1106-preview', verbose=True)
msgs = [dict(type='text', value='Hello!')]
code, answer, resp = model.generate_inner(msgs)
print(code, answer, resp)
```
You cam see the specific error if the API call fails.
"""

View File

@@ -1,10 +1,6 @@
import argparse
import numpy as np import numpy as np
import pandas as pd import pandas as pd
import os.path as osp from ...smp import *
from vlmeval.evaluate.misc import build_judge
from vlmeval.smp import *
from vlmeval.utils import track_progress_rich
rule_dict = { rule_dict = {
'llava_bench_conv': {'role': 'Assistant', 'prompt': 'We would like to request your feedback on the performance of two AI assistants in response to the user question displayed above. The user asks the question on observing an image. For your reference, the visual content in the image is represented with a few sentences describing the image. \nPlease rate the helpfulness, relevance, accuracy, level of details of their responses. Each assistant receives an overall score on a scale of 1 to 10, where a higher score indicates better overall performance.\nPlease first output a single line containing only two values indicating the scores for Assistant 1 and 2, respectively. The two scores are separated by a space.\nIn the subsequent line, please provide a comprehensive explanation of your evaluation, avoiding any potential bias and ensuring that the order in which the responses were presented does not affect your judgment.'}, # noqa: E501 'llava_bench_conv': {'role': 'Assistant', 'prompt': 'We would like to request your feedback on the performance of two AI assistants in response to the user question displayed above. The user asks the question on observing an image. For your reference, the visual content in the image is represented with a few sentences describing the image. \nPlease rate the helpfulness, relevance, accuracy, level of details of their responses. Each assistant receives an overall score on a scale of 1 to 10, where a higher score indicates better overall performance.\nPlease first output a single line containing only two values indicating the scores for Assistant 1 and 2, respectively. The two scores are separated by a space.\nIn the subsequent line, please provide a comprehensive explanation of your evaluation, avoiding any potential bias and ensuring that the order in which the responses were presented does not affect your judgment.'}, # noqa: E501
@@ -67,54 +63,3 @@ def LLaVABench_score(data):
ret['VLM Score'].append(np.mean(sub['score']) * 10) ret['VLM Score'].append(np.mean(sub['score']) * 10)
ret['GPT4 Score'].append(np.mean(sub['gpt4_score']) * 10) ret['GPT4 Score'].append(np.mean(sub['gpt4_score']) * 10)
return pd.DataFrame(ret) return pd.DataFrame(ret)
def LLaVABench_eval(eval_file, **judge_kwargs):
suffix = '.' + eval_file.split('.')[-1]
record_file = eval_file.replace(suffix, '_openai_result' + suffix)
score_file = eval_file.replace(suffix, '_score.csv')
nproc = judge_kwargs.pop('nproc', 4)
if not osp.exists(record_file):
data = load(eval_file)
lines = [data.iloc[i] for i in range(len(data))]
model = build_judge(
temperature=0.2,
system_prompt='You are a helpful and precise assistant for checking the quality of the answer.',
**judge_kwargs)
prompts = [build_prompt(line) for line in lines]
tups = [(model, prompt) for prompt in prompts]
scores = track_progress_rich(LLaVABench_atomeval, tups, nproc=nproc, chunksize=nproc)
data['gpt4_score'] = [x[0] for x in scores]
data['score'] = [x[1] for x in scores]
dump(data, record_file)
data = load(record_file)
ret = LLaVABench_score(data).round(1)
print(ret)
dump(ret, score_file)
return ret
def parse_args():
parser = argparse.ArgumentParser(description='LLaVABench Evaluation. ')
parser.add_argument('data', type=str, help='The question set for inference, in excel / tsv / json format. ')
parser.add_argument(
'--model', type=str, help='The LLM (GPT) used for inference. ', default='gpt-4-turbo',
choices=['gpt-4-0613', 'gpt-4-turbo', 'chatgpt-1106', 'chatgpt-0613', 'gpt-4-0314'])
parser.add_argument('--nproc', type=int, default=4)
parser.add_argument('--verbose', action='store_true')
args = parser.parse_args()
return args
if __name__ == '__main__':
load_env()
args = parse_args()
judge_kwargs = dict(model=args.model, nproc=args.nproc, verbose=args.verbose)
if 'OPENAI_API_KEY_JUDGE' in os.environ and os.environ['OPENAI_API_KEY_JUDGE']:
judge_kwargs['key'] = os.environ['OPENAI_API_KEY_JUDGE']
if 'OPENAI_API_BASE_JUDGE' in os.environ and os.environ['OPENAI_API_BASE_JUDGE']:
judge_kwargs['api_base'] = os.environ['OPENAI_API_BASE_JUDGE']
LLaVABench_eval(eval_file=args.data, **judge_kwargs)

View File

@@ -0,0 +1,170 @@
from ...smp import *
from ...utils import can_infer
try:
from latex2sympy2 import latex2sympy
except ImportError:
print('Please install latex2sympy2 by running "pip install latex2sympy2"')
FAIL_MSG = 'Failed to obtain answer via API.'
def is_equal(asw: str, gt_asw: str) -> bool:
if not isinstance(asw, str) != str or not isinstance(gt_asw, str):
print('Warning: input is not string')
print(asw, gt_asw)
asw = str(asw).lower().strip()
gt_asw = str(gt_asw).lower().strip()
if gt_asw == asw:
return True
try:
a = eval(gt_asw)
b = eval(asw)
if abs(a - b) < 1e-6:
return True
except:
pass
try:
a = latex2sympy(gt_asw)
b = latex2sympy(asw)
if abs(eval(str(a)) - eval(str(b))) < 1e-6:
return True
if abs(a - b) < 1e-6:
return True
except:
pass
return False
def get_gpt4_ICE():
example_1 = """
Hint: Please answer the question and provide the final answer at the end.\n
Question: Which number is missing?\n
Model response: The number missing in the sequence is 14.\n
Extracted answer: 14
"""
example_2 = """
Hint: Please answer the question and provide the final answer at the end.\n
Question: What is the fraction of females facing the camera?\n
Model response: The fraction of females facing the camera is 0.6,
which means that six out of ten females in the group are facing the camera.\n
Extracted answer: 0.6
"""
example_3 = """
Hint: Please answer the question and provide the final answer at the end.\n
Question: How much money does Luca need to buy a sour apple candy and a butter-scotch candy? (Unit: $)\n
Model response: Luca needs $1.45 to buy a sour apple candy and a butterscotch candy.\n
Extracted answer: 1.45
"""
example_4 = """
Hint: Please answer the question and provide the final answer at the end.\n
Question: Between which two years does the line graph saw its maximum peak?\n
Model response: The line graph saw its maximum peak between 2007 and 2008.\n
Extracted answer: [2007, 2008]
"""
example_5 = """
Hint: Please answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.\n
Question: What fraction of the shape is blue?\n
Choices: (A) 3/11 (B) 8/11 (C) 6/11 (D) 3/5\n
Model response: The correct answer is (B) 8/11.\n
Extracted answer: B
"""
return [example_1, example_2, example_3, example_4, example_5]
def build_mathv_gpt4_prompt(line):
task_description = """
Please read the following example.
Then extract the answer from the model response and type it at the end of the prompt.\n
"""
question = line['question']
prediction = str(line['prediction'])
prompt = task_description
examples = get_gpt4_ICE()
for example in examples:
prompt += example + '\n'
prompt += question + '\n'
prompt += 'Model respone: ' + prediction
prompt += 'Extracted answer:'
return prompt
def list_to_dict(lst):
return {chr(65 + i): val for i, val in enumerate(lst)}
def post_check(line, prefetch=False):
res = None
ans = line['answer']
response = line['prediction'] if prefetch else line['res']
try:
if len(eval(line['choices'])) > 0:
ans = line['answer']
choices = list_to_dict(eval(line['choices']))
res = can_infer(response, choices)
if prefetch:
return res
else:
res = str(response)
ans = str(ans)
except ValueError:
pass
if is_equal(res, ans):
return res if prefetch else True
else:
return False
def MATH_V_auxeval(model, line):
prompt = build_mathv_gpt4_prompt(line)
log = ''
retry = 5
if post_check(line, prefetch=True):
res = post_check(line, prefetch=True)
return dict(log='Prefetch succeed', res=res)
for i in range(retry):
prediction = line['prediction']
res = model.generate(prompt, temperature=i * 0.5)
if FAIL_MSG in res:
log += f'Try {i}: output is {prediction}, failed to parse.\n'
else:
log += 'Succeed'
return dict(log=log, res=res)
log += 'All 5 retries failed.\n'
return dict(log=log, res='')
def MATH_V_acc(result_file):
data = load(result_file)
tot = defaultdict(lambda: 0)
fetch = defaultdict(lambda: 0)
hit = defaultdict(lambda: 0)
lt = len(data)
for i in range(lt):
item = data.iloc[i]
cate = item['category']
tot['Overall'] += 1
tot[cate] += 1
if item['log'] == 'Prefetch succeed':
fetch['Overall'] += 1
fetch[cate] += 1
if post_check(item, prefetch=False):
hit['Overall'] += 1
hit[cate] += 1
res = defaultdict(list)
for k in tot.keys():
res['Subject'].append(k)
res['tot'].append(tot[k])
res['prefetch'].append(fetch[k])
res['hit'].append(hit[k])
res['prefetch_rate'].append(fetch[k] / tot[k] * 100)
res['acc'].append(hit[k] / tot[k] * 100)
res = pd.DataFrame(res).sort_values('Subject', ignore_index=True)
return res

View File

@@ -1,7 +1,8 @@
from vlmeval.evaluate.misc import build_judge from ...smp import *
from vlmeval.smp import * from ...utils import can_infer
from vlmeval.utils import track_progress_rich
from vlmeval.utils.matching_util import can_infer
FAIL_MSG = 'Failed to obtain answer via API.'
def get_gpt4_ICE(): def get_gpt4_ICE():
@@ -110,7 +111,8 @@ def MathVista_auxeval(model, line):
for i in range(retry): for i in range(retry):
prediction = line['prediction'] prediction = line['prediction']
res = model.generate(prompt, temperature=i * 0.5) res = model.generate(prompt, temperature=i * 0.5)
if res is None:
if FAIL_MSG in res:
log += f'Try {i}: output is {prediction}, failed to parse.\n' log += f'Try {i}: output is {prediction}, failed to parse.\n'
else: else:
log += 'Succeed' log += 'Succeed'
@@ -160,81 +162,3 @@ def MathVista_acc(result_file):
res['acc'].append(hit[k] / tot[k] * 100) res['acc'].append(hit[k] / tot[k] * 100)
res = pd.DataFrame(res) res = pd.DataFrame(res)
return res return res
def MathVista_eval(eval_file, **judge_kwargs):
logger = get_logger('Evaluation')
model = judge_kwargs['model']
suffix = eval_file.split('.')[-1]
storage = eval_file.replace(f'.{suffix}', f'_{model}.xlsx')
tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl')
nproc = judge_kwargs.pop('nproc', 4)
if osp.exists(storage):
logger.warning(f'GPT scoring file {storage} already exists, will reuse it in MathVista_eval. ')
else:
data = load(eval_file)
model = build_judge(max_tokens=128, **judge_kwargs)
lt = len(data)
lines = [data.iloc[i] for i in range(lt)]
tups = [(model, line) for line in lines]
indices = [line['index'] for line in lines]
ans = {}
if osp.exists(tmp_file):
ans = load(tmp_file)
tups = [x for x, i in zip(tups, indices) if i not in ans]
indices = [i for i in indices if i not in ans]
if len(indices):
new_results = track_progress_rich(
MathVista_auxeval, tups, nproc=nproc, chunksize=nproc,
keys=indices, save=tmp_file)
ans = load(tmp_file)
for k, v in zip(indices, new_results):
assert k in ans
assert ans[k]['log'] == v['log'] and ans[k]['res'] == v['res']
log_map, res_map = {}, {}
all_inds = [line['index'] for line in lines]
for k in all_inds:
log_map[k] = ans[k]['log']
res_map[k] = ans[k]['res']
data['res'] = [res_map[idx] for idx in data['index']]
data['log'] = [log_map[idx] for idx in data['index']]
dump(data, storage)
score = MathVista_acc(storage)
score_pth = storage.replace('.xlsx', '_score.csv')
dump(score, score_pth)
logger.info(f'MathVista_eval successfully finished evaluating {eval_file}, results saved in {score_pth}')
logger.info('Score: ')
logger.info(score)
def parse_args():
parser = argparse.ArgumentParser(description='Inference LLM Answers. ')
parser.add_argument('data', type=str, help='The question set for inference, in excel / tsv / json format. ')
parser.add_argument(
'--model',
type=str,
help='The LLM (GPT) used for inference. ',
default='gpt-4-turbo',
choices=['gpt-4-0613', 'gpt-4-turbo', 'chatgpt-1106', 'chatgpt-0613'])
parser.add_argument('--nproc', type=int, default=4)
parser.add_argument('--verbose', action='store_true')
args = parser.parse_args()
return args
if __name__ == '__main__':
load_env()
args = parse_args()
judge_kwargs = dict(model=args.model, nproc=args.nproc, verbose=args.verbose)
if 'OPENAI_API_KEY_JUDGE' in os.environ and os.environ['OPENAI_API_KEY_JUDGE']:
judge_kwargs['key'] = os.environ['OPENAI_API_KEY_JUDGE']
if 'OPENAI_API_BASE_JUDGE' in os.environ and os.environ['OPENAI_API_BASE_JUDGE']:
judge_kwargs['api_base'] = os.environ['OPENAI_API_BASE_JUDGE']
MathVista_eval(eval_file=args.data, **judge_kwargs)

View File

@@ -0,0 +1,70 @@
from ...smp import *
import numpy as np
FAIL_MSG = 'Failed to obtain answer via API.'
system_prompt = """
As an AI assistant, your task is to evaluate a candidate answer in comparison to a given correct answer.
The question itself, the correct 'groundtruth' answer, and the candidate answer will be provided to you.
Your assessment should range from 0 to 3, \
based solely on the semantic similarity between the groundtruth and the candidate answer, \
disregarding any grammatical differences.
A rating of 0 suggests no similarity, implying the candidate answer is entirely incorrect.
A rating of 1 suggests low similarity, meaning the candidate answer is largely incorrect.
A rating of 2 suggests high similarity, meaning the candidate answer is largely correct.
Lastly, a rating of 3 indicates complete similarity, which means the candidate answer is entirely correct.
Your response should be a single integer from 0, 1, 2, or 3.
"""
MMV_DIMENSIONS = {
'CP': ['Video Topic', 'Video Emotion', 'Video Scene', 'Video Style'],
'FP-S': ['OCR', 'Object Recognition', 'Attribute Recognition', 'Event Recognition', 'Human Motion', 'Counting'],
'FP-C': ['Spatial Relationship', 'Human-object Interaction', 'Human Interaction'],
'HL': ['Hallucination'],
'LR': ['Structuralized Image-Text Understanding', 'Mathematical Calculation'],
'AR': ['Physical Property', 'Function Reasoning', 'Identity Reasoning'],
'RR': ['Natural Relation', 'Physical Relation', 'Social Relation'],
'CSR': ['Common Sense Reasoning'],
'TR': ['Counterfactual Reasoning', 'Causal Reasoning', 'Future Prediction'],
}
L3_DIMS = []
for k, v in MMV_DIMENSIONS.items():
L3_DIMS.extend(v)
MMV_DIMENSIONS['Perception'] = []
MMV_DIMENSIONS['Reasoning'] = []
MMV_DIMENSIONS['Overall'] = []
for k in ['CP', 'FP-C', 'FP-S', 'HL']:
MMV_DIMENSIONS['Perception'].extend(MMV_DIMENSIONS[k])
MMV_DIMENSIONS['Overall'].extend(MMV_DIMENSIONS[k])
for k in ['LR', 'AR', 'RR', 'CSR', 'TR']:
MMV_DIMENSIONS['Reasoning'].extend(MMV_DIMENSIONS[k])
MMV_DIMENSIONS['Overall'].extend(MMV_DIMENSIONS[k])
def get_dimension_rating(data_path):
data = load(data_path)
coarse_rating = {k: [] for k in MMV_DIMENSIONS}
fine_rating = {k: [] for k in L3_DIMS}
for i in range(len(data)):
cate = data.iloc[i]['dimensions']
cates = eval(cate)
for c in cates:
fine_rating[c].append(data.iloc[i]['score'])
for d in MMV_DIMENSIONS:
if np.any([x in MMV_DIMENSIONS[d] for x in cates]):
coarse_rating[d].append(data.iloc[i]['score'])
coarse_all = {k: f'{np.mean([max(x, 0) for x in v]):.2f}' for k, v in coarse_rating.items()}
coarse_valid = {k: f'{np.mean([x for x in v if x >= 0]):.2f}' for k, v in coarse_rating.items()}
fine_all = {k: f'{np.mean([max(x, 0) for x in v]):.2f}' for k, v in fine_rating.items()}
fine_valid = {k: f'{np.mean([x for x in v if x >= 0]):.2f}' for k, v in fine_rating.items()}
return dict(coarse_all=coarse_all, coarse_valid=coarse_valid, fine_all=fine_all, fine_valid=fine_valid)
def build_prompt(item):
tmpl = 'Question: {}\nGroundtruth answer: {}\nCandidate answer: {}\nYour response: '
return tmpl.format(item['question'], item['answer'], item['prediction'])

View File

@@ -0,0 +1,126 @@
from ...smp import *
meta_prompt = """
You are an assistant skilled at evaluating the quality of creative text.
Please act as an impartial judge and evaluate the quality of the response provided by an AI assistant to \
the user question displayed below. You'll need to assess the response on the following dimensions: \
Creativity, Richness, Visual Perception, Logical Coherence, Answer Accuracy and Image Relationship Understanding. \
We will provide you with a creative question and the AI model's response and a reference answer for your evaluation. \
As you begin your assessment, follow this process:
1. Evaluate the AI model's answers on different dimensions, pointing out its strengths or weaknesses \
in each dimension and assigning a score of 1 to 10 for each.
2. Finally, based on the assessments across dimensions, \
provide an overall score of 1 to 10 for the AI model's response.
3. Your scoring should be as stringent as possible and follow the scoring rules below:
In general, the higher the quality of the model's response and its strict adherence to user needs, \
the higher the score. Responses that do not meet user needs will receive lower scores.
Scoring rules:
Creativity:
Scores 1-2 when there is no innovation or uniqueness in the content.
Scores 3-4 when providing partially original content but with low creative quality.
Scores 5-6 when mostly creative but lacks significant novelty, with moderate quality.
Scores 7-8 when having novelty and high-quality content.
Scores 9-10 when highly novel and of exceptional quality compared to the reference answer.
Richness:
Scores 1-2 when lacking depth and breadth, with very limited information.
Scores 3-4 when limited in depth and breadth, with fewer explanations and examples, showing low diversity.
Scores 5-6 when limited in depth and breadth but provides basic necessary information.
Scores 7-8 when providing depth and useful additional information.
Scores 9-10 when providing exceptional depth, breadth, and high diversity compared to the reference answer.
Visual Perception:
Scores 1-2 when the description of the visual information in the image contains errors or \
is significantly inconsistent with the content of the image.
Scores 3-4 When the description of the visual information in the image reflects only a small amount \
of the image's information and contains some errors.
Scores 5-6 when the description of the visual information in the image includes the basic information \
of the image but contains minimal information.
Scores 7-8 when the description of the visual information in the image matches the image well and is rich in content, \
providing a substantial amount of information about the image.
Scores 9-10 when the description of the visual information in the image not only matches the image \
but also is more detailed and informative compared to the reference answer, providing more information about the image.
Logical Coherence:
Scores 1-2 when entirely incoherent, lacking any logic, and not matching the question or known information.
Scores 3-4 when somewhat coherent but with many logical errors or inconsistencies.
Scores 5-6 when mostly coherent, with few errors, but may struggle to maintain complete coherence in complex situations.
Scores 7-8 when excellent logical handling, very few errors.
Scores 9-10 when flawless logic, impeccable in handling complexity, \
and significantly higher logical coherence compared to the reference answer.
Answer Accuracy:
Scores 1-2 when the answer is significantly inconsistent with the question or contains obvious errors.
Scores 3-4 when the answer is partially correct but contains some errors or is incomplete.
Scores 5-6 when the answer is basically correct but lacks details or is not sufficiently detailed.
Scores 7-8 when the answer is accurate and detailed, fully corresponding to the question.
Scores 9-10 when the answer is not only accurate and detailed but also provides additional useful information, \
exceeding expectations.
Image Relationship Understanding:
Scores 1-2 when there are significant errors or confusion in distinguishing and describing different images, \
unable to correctly identify and relate the content of the images.
Scores 3-4 when the description of different images reflects only minimal distinguishing information, \
contains some errors and confusion, and fails to clearly differentiate and relate the images.
Scores 5-6 when the description of different images includes basic distinguishing information, \
is able to correctly identify and relate the images in a basic manner, \
but the information provided is minimal and lacks detail.
Scores 7-8 when the description of different images is accurate and detailed, \
clearly distinguishing and relating the images, \
with rich content that points out the main commonalities and differences between the images.
Scores 9-10 when the description of different images is not only accurate and detailed but also \
provides richer information and analysis, clearly distinguishing and relating the images, \
more comprehensively pointing out the commonalities and differences \
between the images compared to the reference answer.
Overall Score:
Scores 1-2 when irrelevant to the question, factually incorrect, or generates harmful content.
Scores 3-4 when no serious errors, mostly harmless, but of low quality and does not meet requirements.
Scores 5-6 when basically meeting requirements but performing poorly in some dimensions, with moderate quality.
Scores 7-8 when performing well in all dimensions.
Scores 9-10 when fully addressing user questions and all requirements, significantly surpassing the reference answer.
Please remember, you must evaluate and explain before scoring. After your explanation for each dimension, \
add the score for that dimension. Finally, at the end of your response, \
in the format of the dictionary (including brackets), return all your scoring results, \
ensuring your scores are integers:
{'Dimension One': Score, 'Dimension Two': Score, ..., 'Overall Score': Score}, \
for example: {'Creativity': 9, 'Richness': 6, ..., 'Overall Score': 7}.\n
"""
question_begin_prompt = '[Question]'
reference_begin_prompt = '[The Start of Reference Answer]'
reference_end_prompt = '[The End of Reference Answer]'
answers_begin_prompt = '[The Start of Assistants Answer]'
answers_end_prompt = '[The End of Assistants Answer]'
def mmdu_score(model, line):
question = eval(line['question'])
gt = eval(line['answer'])
prediction = eval(line['prediction'])
DIMS = [
'Creativity', 'Richness', 'Visual Perception', 'Logical Coherence',
'Answer Accuracy', 'Image Relationship Understanding', 'Overall Score'
]
all_result_dict = []
logs = []
for j in range(len(question)):
try:
prompt = meta_prompt + question_begin_prompt + '\n' + question[j] + '\n\n' + \
reference_begin_prompt + '\n' + gt[j] + '\n' + reference_end_prompt + '\n\n' + \
answers_begin_prompt + '\n' + prediction[j] + '\n' + answers_end_prompt
response = model.generate(prompt)
start_index = response.find('{')
end_index = response.rfind('}') + 1
dictionary_str = response[start_index: end_index]
result_dict = eval(dictionary_str)
all_result_dict.append(result_dict)
if all([x in result_dict for x in DIMS]):
logs.append('Succeed')
else:
logs.append(
f'Following Dims are not in results of turn {j}: '
f'{",".join([x for x in DIMS if x not in result_dict])}'
)
except Exception as e:
print({e})
all_result_dict.append({d: None for d in DIMS})
logs.append(str(e))
df = pd.DataFrame(all_result_dict)
return dict(res=df, log='\n'.join(logs))

View File

@@ -1,6 +1,4 @@
from vlmeval.evaluate.misc import build_judge from ...smp import *
from vlmeval.smp import *
from vlmeval.utils import track_progress_rich
def build_mmvet_gpt4_prompt(line): def build_mmvet_gpt4_prompt(line):
@@ -106,86 +104,3 @@ def MMVet_acc(result_file):
res = pd.DataFrame(res) res = pd.DataFrame(res)
res2 = pd.DataFrame(res2) res2 = pd.DataFrame(res2)
return res, res2 return res, res2
def MMVet_eval(eval_file, **judge_kwargs):
logger = get_logger('Evaluation')
suffix = eval_file.split('.')[-1]
model = judge_kwargs['model']
storage = eval_file.replace(f'.{suffix}', f'_{model}.xlsx')
tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl')
nproc = judge_kwargs.pop('nproc', 4)
if osp.exists(storage):
logger.warning(f'GPT scoring file {storage} already exists, will reuse it in MMVet_eval. ')
else:
data = load(eval_file)
model = build_judge(max_tokens=3, **judge_kwargs)
lt = len(data)
lines = [data.iloc[i] for i in range(lt)]
tups = [(model, line) for line in lines]
indices = [line['index'] for line in lines]
ans = {}
if osp.exists(tmp_file):
ans = load(tmp_file)
tups = [x for x, i in zip(tups, indices) if i not in ans]
indices = [i for i in indices if i not in ans]
if len(indices):
new_results = track_progress_rich(
MMVet_auxeval, tups, nproc=nproc, chunksize=nproc,
keys=indices, save=tmp_file)
ans = load(tmp_file)
for k, v in zip(indices, new_results):
assert k in ans
assert ans[k]['log'] == v['log'] and ans[k]['score'] == v['score']
log_map, score_map = {}, {}
all_inds = [line['index'] for line in lines]
for k in all_inds:
log_map[k] = ans[k]['log']
score_map[k] = ans[k]['score']
data['score'] = [score_map[idx] for idx in data['index']]
data['log'] = [log_map[idx] for idx in data['index']]
dump(data, storage)
score, score_fine = MMVet_acc(storage)
score_pth = storage.replace('.xlsx', '_score.csv')
score_fine_pth = storage.replace('.xlsx', '_score_fine.csv')
dump(score, score_pth)
dump(score_fine, score_fine_pth)
logger.info(
f'MMVet_eval successfully finished evaluating {eval_file}, '
f'results saved in {score_pth} and {score_fine_pth}'
)
logger.info('Score: ')
logger.info(score)
def parse_args():
parser = argparse.ArgumentParser(description='Inference LLM Answers. ')
parser.add_argument('data', type=str, help='The question set for inference, in excel / tsv / json format. ')
parser.add_argument(
'--model',
type=str,
help='The LLM (GPT) used for inference. ',
default='gpt-4-turbo',
choices=['gpt-4-0613', 'gpt-4-turbo', 'chatgpt-1106', 'chatgpt-0613'])
parser.add_argument('--nproc', type=int, default=4)
parser.add_argument('--verbose', action='store_true')
args = parser.parse_args()
return args
if __name__ == '__main__':
load_env()
args = parse_args()
judge_kwargs = dict(model=args.model, nproc=args.nproc, verbose=args.verbose)
if 'OPENAI_API_KEY_JUDGE' in os.environ and os.environ['OPENAI_API_KEY_JUDGE']:
judge_kwargs['key'] = os.environ['OPENAI_API_KEY_JUDGE']
if 'OPENAI_API_BASE_JUDGE' in os.environ and os.environ['OPENAI_API_BASE_JUDGE']:
judge_kwargs['api_base'] = os.environ['OPENAI_API_BASE_JUDGE']
MMVet_eval(eval_file=args.data, **judge_kwargs)

View File

@@ -0,0 +1,442 @@
import pandas as pd
from ...utils import can_infer, track_progress_rich
from ...smp import *
import numpy as np
MMB_abbrs = {
'coarse_perception': 'CP',
'finegrained_perception (instance-level)': 'FP-S',
'finegrained_perception (cross-instance)': 'FP-C',
'logic_reasoning': 'LR',
'relation_reasoning': 'RR',
'attribute_reasoning': 'AR'
}
MMT_abbrs = {
'visual_recognition': 'VR',
'localization': 'Loc',
'ocr': 'OCR',
'counting': 'Count',
'hallucination': 'HLN',
'image_retrieval': 'IR',
'threed': '3D',
'visual_captioning': 'VC',
'visual_grounding': 'VG',
'doc_understanding': 'DU',
'action_recognition': 'AR',
'pixel_level_perception': 'PLP',
'image-to-image_translation': 'I2IT',
'relation_reasoning': 'RR',
'intelligence_quotient_test': 'IQT',
'emotion': 'Emo',
'visual_illusion': 'VI',
'meme_understanding': 'MemU',
'visual_prompt_understanding': 'VPU',
'anomaly_detection': 'AND',
'keypoint_detection': 'KD',
'visual_commonsense_reasoning': 'VCR',
'image_evaluation_judgement': 'IEJ',
'multiple_image_analysis': 'MIA',
'cross_image_matching': 'CIM',
'temporal_understanding': 'TU',
'visual_code': 'VP',
'medical_understanding': 'MedU',
'autonomous_driving': 'AUD',
'discipline_knowledge_reasoning': 'DKR',
'embodied_ai': 'EA',
'gui_navigation': 'GN'
}
def MMMU_preproc(data):
logger = get_logger('Evaluation')
cnt = 0
As, Bs, Ans = list(data['A']), list(data['B']), list(data['answer'])
lt = len(data)
for i in range(lt):
if pd.isna(As[i]):
As[i] = Ans[i]
Bs[i] = 'Other Answers'
cnt += 1
logger.info(f'During MMMU_preproc in Evaluation, {cnt} open questions are re-formulated to multi-choice ones. ')
data['A'] = As
data['B'] = Bs
return data
def report_acc(df):
# assert group in [None, 'category', 'l2-category']
res = defaultdict(list)
if 'split' in df:
splits = list(set(df['split']))
res['split'] = splits
else:
df['split'] = ['none'] * len(df)
res['split'] = ['none']
for group in [None, 'l2-category', 'category']:
if group is None:
res['Overall'] = [np.mean(df[df['split'] == sp]['hit']) for sp in res['split']]
elif group not in df:
continue
else:
abilities = list(set(df[group]))
abilities.sort()
for ab in abilities:
ab_name = MMB_abbrs[ab] if ab in MMB_abbrs else ab
sub_df = df[df[group] == ab]
res[ab_name] = [np.mean(sub_df[sub_df['split'] == sp]['hit']) for sp in res['split']]
return pd.DataFrame(res)
def report_acc_MMT(df):
# assert group in [None, 'category', 'l2-category']
res = defaultdict(list)
res['split'] = list()
res['Overall'] = list()
for _, name in MMT_abbrs.items():
res[name] = list()
if 'split' in df:
splits = list(set(df['split']))
res['split'] = splits
else:
df['split'] = ['none'] * len(df)
res['split'] = ['none']
for group in [None, 'category', 'l2-category']:
if group is None:
res['Overall'] = [np.mean(df[df['split'] == sp]['hit']) for sp in res['split']]
res['Overall'].extend([np.mean(df['hit'])])
elif group not in df:
continue
elif group == 'category':
abilities = list(set(df[group]))
abilities.sort()
for ab in abilities:
ab_name = ab
sub_df = df[df[group] == ab]
res[ab_name] = [np.mean(sub_df[sub_df['split'] == sp]['hit']) for sp in res['split']]
res[ab_name].extend([np.mean(sub_df['hit'])])
else:
abilities = list(set(df[group]))
abilities.sort()
for ab in abilities:
sub_task_name_list = df[df['l2-category'] == ab]['category'].unique()
sub_task_acc = []
for sub_task_name in sub_task_name_list:
sub_df = df[df['category'] == sub_task_name]
sub_task_acc.append([np.mean(sub_df[sub_df['split'] == sp]['hit']) for sp in res['split']])
new_acc = []
for i in range(len(sub_task_acc[0])):
new_acc.append(sum([_[i] for _ in sub_task_acc]) / len([_ for _ in sub_task_acc]))
ab_name = MMT_abbrs[ab] if ab in MMT_abbrs else ab
res[ab_name] = new_acc
sub_task_acc = []
for sub_task_name in sub_task_name_list:
sub_df = df[df['category'] == sub_task_name]
sub_task_acc.append([np.mean(sub_df['hit'])])
new_acc = []
for i in range(len(sub_task_acc[0])):
new_acc.append(sum([_[i] for _ in sub_task_acc]) / len([_ for _ in sub_task_acc]))
res[ab_name].extend(new_acc)
res['split'].append('ALL')
return pd.DataFrame(res)
def build_prompt(question, options, prediction):
tmpl = (
'You are an AI assistant who will help me to match '
'an answer with several options of a single-choice question. '
'You are provided with a question, several options, and an answer, '
'and you need to find which option is most similar to the answer. '
'If the meaning of all options are significantly different from the answer, output Z. '
'Your should output a single uppercase character in A, B, C, D (if they are valid options), and Z. \n'
'Example 1: \n'
'Question: What is the main object in image?\nOptions: A. teddy bear B. rabbit C. cat D. dog\n'
'Answer: a cute teddy bear\nYour output: A\n'
'Example 2: \n'
'Question: What is the main object in image?\nOptions: A. teddy bear B. rabbit C. cat D. dog\n'
'Answer: Spider\nYour output: Z\n'
'Example 3: \n'
'Question: {}?\nOptions: {}\nAnswer: {}\nYour output: '
)
return tmpl.format(question, options, prediction)
def build_prompt_blink(question, options, prediction):
tmpl = (
'You are an AI assistant who will help me to match an answer with several options of a single-choice question. '
'You are provided with a question, several options, and an answer, '
'and you need to find which option is most similar to the answer. '
"If the answer says things like refuse to answer, I'm sorry cannot help, etc., output Z."
'If the meaning of all options are significantly different from the answer, '
'or the answer does not select any option, output Z. '
'Your should output one of the choices, A, B, C, D (if they are valid options), or Z.\n'
'Example 1: \n'
'Question: Which point is closer to the camera?\nSelect from the following choices.\n'
'Options: A. Point A\nB. Point B\n(Z) Failed\n'
'Answer: Point B, where the child is sitting, is closer to the camera.\nYour output: (B)\n'
'Example 2: \n'
'Question: Which point is closer to the camera?\nSelect from the following choices.\n'
'Options: (A) Point A\n(B) Point B\n(Z) Failed\n'
"Answer: I'm sorry, but I can't assist with that request.\nYour output: (Z)\n"
'Example 3: \n'
'Question: Which point is corresponding to the reference point?\nSelect from the following choices.\n'
'Options: (A) Point A\n(B) Point B\n(Z) Failed\n'
'Answer:The reference point (REF) on the first image is at the tip of the pot, '
'which is the part used to Poke if the pots were used for that action. Looking at the second image, '
'we need to find the part of the object that would correspond to poking.\n'
"(A) Point A is at the tip of the spoon's handle, which is not used for poking.\n"
'(B) Point B is at the bottom of the spoon, which is not used for poking.\n'
'(C) Point C is on the side of the pspoonot, which is not used for poking.\n'
'(D) Point D is at the tip of the spoon, which is not used for poking.\n'
'\nTherefore, there is no correct answer in the choices\nYour output: (Z)\n'
'Example 4: \n'
'Question: {}?\nOptions: {}\n(Z) Failed\nAnswer: {}\nYour output: '
)
return tmpl.format(question, options, prediction)
def build_prompt_cn(question, options, prediction):
tmpl = (
'你是一个帮助我匹配答案与单选题中多个选项的 AI 助手。'
'你会被提供:一个问题,多个选项,一个答案。你的任务是找到与答案意义最相近的选项。'
'如果所有选项的意义都与答案显著不同,则输出 Z。'
'你应该输出一个单个的大写字母,例如 A, B, C, D如果它们是有效选项或 Z。'
'例 1:'
'问题: 图中最主要的物体是什么?\n选项: A. 泰迪熊 B. 兔子 C. 猫 D. 狗\n答案: 一只可爱的泰迪熊\n输出: A\n'
'例 2: \n'
'问题: 图中最主要的物体是什么?\n选项: A. 泰迪熊 B. 兔子 C. 猫 D. 狗\n答案: 蜘蛛\n输出: Z\n'
'例 3: \n'
'问题: {}?\n选项: {}\n答案: {}\n输出: '
)
return tmpl.format(question, options, prediction)
def build_choices(item):
ret = {}
for ch in string.ascii_uppercase:
if ch in item and (not pd.isna(item[ch])):
ret[ch] = item[ch]
return ret
def prefetch_answer(item):
choices = build_choices(item)
return can_infer(item['prediction'], choices)
def extract_answer_from_item(model, item, dataset_name=None):
logger = get_logger('Evaluation')
# It will return: (pred, raw, llm_time)
choices = build_choices(item)
option_str = build_option_str(choices)
if dataset_name == 'BLINK':
prompt = build_prompt_blink(item['question'], option_str, item['prediction'])
elif cn_string(item['question']):
prompt = build_prompt_cn(item['question'], option_str, item['prediction'])
else:
prompt = build_prompt(item['question'], option_str, item['prediction'])
retry = 3
ret = can_infer(item['prediction'], choices)
if ret:
return dict(opt=ret, log=item['prediction'])
if model is None:
return dict(opt='Z', log='Failed in Prefetch, no GPT-based answer matching under `exact_matching` policy.')
while retry:
ans = model.generate(prompt)
if 'Failed to obtain answer via API' in ans:
logger.warning('GPT API failed to answer. ')
else:
ret = can_infer(ans, choices)
if ret:
return dict(opt=ret, log=ans)
else:
logger.warning(f'Output includes 0 / > 1 letter among candidates {set(choices)} and Z: {ans}')
retry -= 1
if retry == 0:
options = list(choices) + ['Z'] if 'Z' not in choices else []
return dict(opt=rd.choice(options), log='Failed to predict, thus randomly generate one. ')
# For Circular Evaluation
def prefetch_circular_group(sub_data, verbose=False):
lt = len(sub_data)
GT, PRED = [], []
for i in range(lt):
item = sub_data.iloc[i]
GT.append(item['GT'])
PRED.append(prefetch_answer(item))
if PRED[-1] and (GT[-1] != PRED[-1]):
log = (
f'Failed in Prefetching Rolling {i}: Answer is {GT[-1]}, '
f"Prediction is {item['prediction']}, Pre-fetched is {PRED[-1]}. "
)
return dict(hit=0, log=log)
flag = True
for g, p in zip(GT, PRED):
if g != p:
flag = False
ret = (dict(hit=1, log='Succeed During Pre-fetching'), ) if flag else (None, )
ret = ret + (GT, PRED) if verbose else ret
return ret if len(ret) > 1 else ret[0]
def eval_vanilla(model, item, dataset_name=None):
res = extract_answer_from_item(model, item, dataset_name=dataset_name)
opt, match_log = res['opt'], res['log']
if opt == item['GT']:
return dict(hit=1, log=f'Match Log: {match_log}. ')
else:
return dict(hit=0, log=f'Match Log: {match_log}. ')
# For Circular Evaluation
def eval_circular_group(model, sub_data, dataset_name=None):
res, GT, PRED = prefetch_circular_group(sub_data, verbose=True)
if res is not None:
return res
lt = len(sub_data)
log = ''
for i in range(lt):
if PRED[i]:
log += f'Rolling {i} Matched.\n'
else:
res = extract_answer_from_item(model, sub_data.iloc[i], dataset_name=dataset_name)
opt, match_log = res['opt'], res['log']
PRED[i] = opt
if PRED[i] != GT[i]:
log += (
f"Failed in Rolling {i}: Answer is {GT[i]}; Prediction is {sub_data.iloc[i]['prediction']}; "
f'Pre-fetched is {PRED[i]}; Match Log is {match_log}.\n'
)
return dict(hit=0, log=log)
else:
log += (
f"Rolling {i}: Answer is {GT[i]}, Prediction is {sub_data.iloc[i]['prediction']}, "
f'Pre-fetched is {PRED[i]}.\n'
)
return dict(hit=1, log=log)
# data, meta are pd.DataFrame, result_file is a path
def mcq_vanilla_eval(model, data, meta, nproc, result_file, dataset_name=None):
result = {}
if osp.exists(result_file):
result = load(result_file)
answer_map = {i: c for i, c in zip(meta['index'], meta['answer'])}
if 'MMMU' in dataset_name:
data = MMMU_preproc(data)
answer_map = {k: (v if v in list(string.ascii_uppercase) else 'A') for k, v in answer_map.items()}
data = data[data['index'].isin(answer_map)]
data['GT'] = [answer_map[idx] for idx in data['index']]
items = []
for i in range(len(data)):
# Dealing with the normal part
item = data.iloc[i]
if item['index'] not in result:
items.append(item)
tups = [dict(model=model, item=x, dataset_name=dataset_name) for x in items]
keys = [x['index'] for x in items]
if len(tups):
res = track_progress_rich(eval_vanilla, tups, nproc=nproc, chunksize=nproc, save=result_file, keys=keys)
result = load(result_file)
for k, v in zip(keys, res):
if k in result:
assert result[k]['hit'] == v['hit'] and result[k]['log'] == v['log']
else:
result[k] = v
data['hit'] = [result[i]['hit'] for i in data['index']]
data['log'] = [result[i]['log'] for i in data['index']]
if 'GT' in data:
data.pop('GT')
return data
# data, meta are pd.DataFrame, result_file is a path
def mcq_circular_eval(model, data, meta, nproc, result_file, dataset_name=None):
result = {}
if osp.exists(result_file):
result = load(result_file)
# Build Answer Map
answer_map = {i: c for i, c in zip(meta['index'], meta['answer'])}
for idx in list(meta['index']) + list(data['index']):
assert istype(idx, int)
# Only keep those lines in the meta data
data = data[data['index'].isin(answer_map)]
data['GT'] = [answer_map[idx] for idx in data['index']]
data_main = data[data['index'] < int(1e6)]
data_groups = []
for i in range(len(data_main)):
# Dealing with the normal part
idx = data_main.iloc[i]['index']
if idx not in result:
sub_data = data[data['index'] % int(1e6) == idx]
data_groups.append(sub_data)
if len(data_groups):
prefetched = [prefetch_circular_group(g, verbose=False) for g in data_groups]
remain = []
for dg, pf in zip(data_groups, prefetched):
if pf is not None:
result[dg.iloc[0]['index'] % 1e6] = pf
else:
remain.append(dg)
dump(result, result_file)
tups = [dict(model=model, sub_data=x, dataset_name=dataset_name) for x in remain]
keys = [x.iloc[0]['index'] % 1e6 for x in remain]
if len(tups) == 0:
pass
elif model is None:
logger = get_logger('Evaluation')
logger.warning('Exact Matching mode, will not do GPT-based answer matching. ')
for k in keys:
result[k] = dict(
hit=0, log='Failed in Prefetch, no GPT-based answer matching under `exact_matching` policy.')
else:
res = track_progress_rich(
eval_circular_group,
tups,
nproc=nproc,
chunksize=nproc,
save=result_file,
keys=keys)
result = load(result_file)
for k, v in zip(keys, res):
if k in result:
assert result[k]['hit'] == v['hit'] and result[k]['log'] == v['log']
else:
result[k] = v
tmp_pth = f'/tmp/{timestr()}.xlsx'
dump(data_main, tmp_pth)
data_main = load(tmp_pth)
indices = data_main['index']
data_main['hit'] = [result[i]['hit'] for i in indices]
data_main['log'] = [result[i]['log'] for i in indices]
if 'GT' in data_main:
data_main.pop('GT')
return data_main

View File

@@ -0,0 +1,450 @@
from ...smp import *
from PIL import Image, ImageOps
import torchvision
import random
import numbers
import math
import torch
def get_dimension_rating(data_path):
data = load(data_path)
result_board = {}
for idx, item in data.iterrows():
if item['task_type'] not in result_board:
result_board[item['task_type']] = [0, 0]
result_board[item['task_type']][1] += 1
if item['score']:
result_board[item['task_type']][0] += 1
correct = 0
total = 0
for key, value in result_board.items():
correct += value[0]
total += value[1]
result_board[key].append(f'{value[0] / value[1] * 100 :.2f}%')
result_board['overall'] = [correct, total, f'{correct / total * 100 :.2f}%']
return result_board
def check_ans(pred, gt):
flag = False
pred_list = pred.lower().split(' ')
pred_option, _ = pred_list[0], ' '.join(pred_list[1:])
gt_list = gt.lower().split(' ')
gt_option, gt_content = gt_list[0], ' '.join(gt_list[1:])
if gt_content[-1] == '.':
gt_content = gt_content[:-1]
if pred_option.replace('.', '') in gt_option:
flag = True
elif gt_option in pred_option:
flag = True
return flag
class GroupRandomCrop(object):
def __init__(self, size):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
def __call__(self, img_group):
w, h = img_group[0].size
th, tw = self.size
out_images = list()
x1 = random.randint(0, w - tw)
y1 = random.randint(0, h - th)
for img in img_group:
assert (img.size[0] == w and img.size[1] == h)
if w == tw and h == th:
out_images.append(img)
else:
out_images.append(img.crop((x1, y1, x1 + tw, y1 + th)))
return out_images
class MultiGroupRandomCrop(object):
def __init__(self, size, groups=1):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
self.groups = groups
def __call__(self, img_group):
w, h = img_group[0].size
th, tw = self.size
out_images = list()
for i in range(self.groups):
x1 = random.randint(0, w - tw)
y1 = random.randint(0, h - th)
for img in img_group:
assert (img.size[0] == w and img.size[1] == h)
if w == tw and h == th:
out_images.append(img)
else:
out_images.append(img.crop((x1, y1, x1 + tw, y1 + th)))
return out_images
class GroupCenterCrop(object):
def __init__(self, size):
self.worker = torchvision.transforms.CenterCrop(size)
def __call__(self, img_group):
return [self.worker(img) for img in img_group]
class GroupRandomHorizontalFlip(object):
"""Randomly horizontally flips the given PIL.Image with a probability of 0.5
"""
def __init__(self, is_flow=False):
self.is_flow = is_flow
def __call__(self, img_group, is_flow=False):
v = random.random()
if v < 0.5:
ret = [img.transpose(Image.FLIP_LEFT_RIGHT) for img in img_group]
if self.is_flow:
for i in range(0, len(ret), 2):
# invert flow pixel values when flipping
ret[i] = ImageOps.invert(ret[i])
return ret
else:
return img_group
class GroupNormalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, tensor):
rep_mean = self.mean * (tensor.size()[0] // len(self.mean))
rep_std = self.std * (tensor.size()[0] // len(self.std))
# TODO: make efficient
for t, m, s in zip(tensor, rep_mean, rep_std):
t.sub_(m).div_(s)
return tensor
class GroupScale(object):
""" Rescales the input PIL.Image to the given 'size'.
'size' will be the size of the smaller edge.
For example, if height > width, then image will be
rescaled to (size * height / width, size)
size: size of the smaller edge
interpolation: Default: PIL.Image.BILINEAR
"""
def __init__(self, size, interpolation=Image.BILINEAR):
self.worker = torchvision.transforms.Resize(size, interpolation)
def __call__(self, img_group):
return [self.worker(img) for img in img_group]
class GroupOverSample(object):
def __init__(self, crop_size, scale_size=None, flip=True):
self.crop_size = crop_size if not isinstance(
crop_size, int) else (crop_size, crop_size)
if scale_size is not None:
self.scale_worker = GroupScale(scale_size)
else:
self.scale_worker = None
self.flip = flip
def __call__(self, img_group):
if self.scale_worker is not None:
img_group = self.scale_worker(img_group)
image_w, image_h = img_group[0].size
crop_w, crop_h = self.crop_size
offsets = GroupMultiScaleCrop.fill_fix_offset(
False, image_w, image_h, crop_w, crop_h)
oversample_group = list()
for o_w, o_h in offsets:
normal_group = list()
flip_group = list()
for i, img in enumerate(img_group):
crop = img.crop((o_w, o_h, o_w + crop_w, o_h + crop_h))
normal_group.append(crop)
flip_crop = crop.copy().transpose(Image.FLIP_LEFT_RIGHT)
if img.mode == 'L' and i % 2 == 0:
flip_group.append(ImageOps.invert(flip_crop))
else:
flip_group.append(flip_crop)
oversample_group.extend(normal_group)
if self.flip:
oversample_group.extend(flip_group)
return oversample_group
class GroupFullResSample(object):
def __init__(self, crop_size, scale_size=None, flip=True):
self.crop_size = crop_size if not isinstance(
crop_size, int) else (crop_size, crop_size)
if scale_size is not None:
self.scale_worker = GroupScale(scale_size)
else:
self.scale_worker = None
self.flip = flip
def __call__(self, img_group):
if self.scale_worker is not None:
img_group = self.scale_worker(img_group)
image_w, image_h = img_group[0].size
crop_w, crop_h = self.crop_size
w_step = (image_w - crop_w) // 4
h_step = (image_h - crop_h) // 4
offsets = list()
offsets.append((0 * w_step, 2 * h_step)) # left
offsets.append((4 * w_step, 2 * h_step)) # right
offsets.append((2 * w_step, 2 * h_step)) # center
oversample_group = list()
for o_w, o_h in offsets:
normal_group = list()
flip_group = list()
for i, img in enumerate(img_group):
crop = img.crop((o_w, o_h, o_w + crop_w, o_h + crop_h))
normal_group.append(crop)
if self.flip:
flip_crop = crop.copy().transpose(Image.FLIP_LEFT_RIGHT)
if img.mode == 'L' and i % 2 == 0:
flip_group.append(ImageOps.invert(flip_crop))
else:
flip_group.append(flip_crop)
oversample_group.extend(normal_group)
oversample_group.extend(flip_group)
return oversample_group
class GroupMultiScaleCrop(object):
def __init__(self, input_size, scales=None, max_distort=1,
fix_crop=True, more_fix_crop=True):
self.scales = scales if scales is not None else [1, .875, .75, .66]
self.max_distort = max_distort
self.fix_crop = fix_crop
self.more_fix_crop = more_fix_crop
self.input_size = input_size if not isinstance(input_size, int) else [
input_size, input_size]
self.interpolation = Image.BILINEAR
def __call__(self, img_group):
im_size = img_group[0].size
crop_w, crop_h, offset_w, offset_h = self._sample_crop_size(im_size)
crop_img_group = [
img.crop(
(offset_w,
offset_h,
offset_w + crop_w,
offset_h + crop_h)) for img in img_group]
ret_img_group = [img.resize((self.input_size[0], self.input_size[1]), self.interpolation)
for img in crop_img_group]
return ret_img_group
def _sample_crop_size(self, im_size):
image_w, image_h = im_size[0], im_size[1]
# find a crop size
base_size = min(image_w, image_h)
crop_sizes = [int(base_size * x) for x in self.scales]
crop_h = [
self.input_size[1] if abs(
x - self.input_size[1]) < 3 else x for x in crop_sizes]
crop_w = [
self.input_size[0] if abs(
x - self.input_size[0]) < 3 else x for x in crop_sizes]
pairs = []
for i, h in enumerate(crop_h):
for j, w in enumerate(crop_w):
if abs(i - j) <= self.max_distort:
pairs.append((w, h))
crop_pair = random.choice(pairs)
if not self.fix_crop:
w_offset = random.randint(0, image_w - crop_pair[0])
h_offset = random.randint(0, image_h - crop_pair[1])
else:
w_offset, h_offset = self._sample_fix_offset(
image_w, image_h, crop_pair[0], crop_pair[1])
return crop_pair[0], crop_pair[1], w_offset, h_offset
def _sample_fix_offset(self, image_w, image_h, crop_w, crop_h):
offsets = self.fill_fix_offset(
self.more_fix_crop, image_w, image_h, crop_w, crop_h)
return random.choice(offsets)
@staticmethod
def fill_fix_offset(more_fix_crop, image_w, image_h, crop_w, crop_h):
w_step = (image_w - crop_w) // 4
h_step = (image_h - crop_h) // 4
ret = list()
ret.append((0, 0)) # upper left
ret.append((4 * w_step, 0)) # upper right
ret.append((0, 4 * h_step)) # lower left
ret.append((4 * w_step, 4 * h_step)) # lower right
ret.append((2 * w_step, 2 * h_step)) # center
if more_fix_crop:
ret.append((0, 2 * h_step)) # center left
ret.append((4 * w_step, 2 * h_step)) # center right
ret.append((2 * w_step, 4 * h_step)) # lower center
ret.append((2 * w_step, 0 * h_step)) # upper center
ret.append((1 * w_step, 1 * h_step)) # upper left quarter
ret.append((3 * w_step, 1 * h_step)) # upper right quarter
ret.append((1 * w_step, 3 * h_step)) # lower left quarter
ret.append((3 * w_step, 3 * h_step)) # lower righ quarter
return ret
class GroupRandomSizedCrop(object):
"""Random crop the given PIL.Image to a random size of (0.08 to 1.0) of the original size
and and a random aspect ratio of 3/4 to 4/3 of the original aspect ratio
This is popularly used to train the Inception networks
size: size of the smaller edge
interpolation: Default: PIL.Image.BILINEAR
"""
def __init__(self, size, interpolation=Image.BILINEAR):
self.size = size
self.interpolation = interpolation
def __call__(self, img_group):
for attempt in range(10):
area = img_group[0].size[0] * img_group[0].size[1]
target_area = random.uniform(0.08, 1.0) * area
aspect_ratio = random.uniform(3. / 4, 4. / 3)
w = int(round(math.sqrt(target_area * aspect_ratio)))
h = int(round(math.sqrt(target_area / aspect_ratio)))
if random.random() < 0.5:
w, h = h, w
if w <= img_group[0].size[0] and h <= img_group[0].size[1]:
x1 = random.randint(0, img_group[0].size[0] - w)
y1 = random.randint(0, img_group[0].size[1] - h)
found = True
break
else:
found = False
x1 = 0
y1 = 0
if found:
out_group = list()
for img in img_group:
img = img.crop((x1, y1, x1 + w, y1 + h))
assert (img.size == (w, h))
out_group.append(
img.resize(
(self.size, self.size), self.interpolation))
return out_group
else:
# Fallback
scale = GroupScale(self.size, interpolation=self.interpolation)
crop = GroupRandomCrop(self.size)
return crop(scale(img_group))
class ConvertDataFormat(object):
def __init__(self, model_type):
self.model_type = model_type
def __call__(self, images):
if self.model_type == '2D':
return images
tc, h, w = images.size()
t = tc // 3
images = images.view(t, 3, h, w)
images = images.permute(1, 0, 2, 3)
return images
class Stack(object):
def __init__(self, roll=False):
self.roll = roll
def __call__(self, img_group):
if img_group[0].mode == 'L':
return np.concatenate([np.expand_dims(x, 2)
for x in img_group], axis=2)
elif img_group[0].mode == 'RGB':
if self.roll:
return np.concatenate([np.array(x)[:, :, ::-1]
for x in img_group], axis=2)
else:
# print(np.concatenate(img_group, axis=2).shape)
# print(img_group[0].shape)
return np.concatenate(img_group, axis=2)
class ToTorchFormatTensor(object):
""" Converts a PIL.Image (RGB) or numpy.ndarray (H x W x C) in the range [0, 255]
to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] """
def __init__(self, div=True):
self.div = div
def __call__(self, pic):
if isinstance(pic, np.ndarray):
# handle numpy array
img = torch.from_numpy(pic).permute(2, 0, 1).contiguous()
else:
# handle PIL Image
img = torch.ByteTensor(
torch.ByteStorage.from_buffer(
pic.tobytes()))
img = img.view(pic.size[1], pic.size[0], len(pic.mode))
# put it from HWC to CHW format
# yikes, this transpose takes 80% of the loading time/CPU
img = img.transpose(0, 1).transpose(0, 2).contiguous()
return img.float().div(255) if self.div else img.float()
class IdentityTransform(object):
def __call__(self, data):
return data

View File

@@ -1,4 +1,4 @@
from vlmeval.smp import * from ...smp import *
def OCRBench_eval(eval_file): def OCRBench_eval(eval_file):

View File

@@ -0,0 +1,140 @@
from ...smp import *
import numpy as np
import re
FAIL_MSG = 'Failed to obtain answer via API.'
DURATIONS = [
'short',
'medium',
'long',
]
DOMAINS = [
'Knowledge',
'Film & Television',
'Sports Competition',
'Artistic Performance',
'Life Record',
'Multilingual'
]
SUB_CATEGORIES = [
'Humanity & History',
'Literature & Art',
'Biology & Medicine',
'Finance & Commerce',
'Astronomy',
'Geography',
'Law',
'Life Tip',
'Technology',
'Animation',
'Movie & TV Show',
'Documentary',
'News Report',
'Esports',
'Basketball',
'Football',
'Athletics',
'Other Sports',
'Stage Play',
'Magic Show',
'Variety Show',
'Acrobatics',
'Handicraft',
'Food',
'Fashion',
'Daily Life',
'Travel',
'Pet & Animal',
'Exercise',
'Multilingual'
]
TASK_CATEGORIES = [
'Temporal Perception',
'Spatial Perception',
'Attribute Perception',
'Action Recognition',
'Object Recognition',
'OCR Problems',
'Counting Problem',
'Temporal Reasoning',
'Spatial Reasoning',
'Action Reasoning',
'Object Reasoning',
'Information Synopsis',
]
def get_dimension_rating(data_path):
data = load(data_path)
duration_rating = {k: {} for k in DURATIONS}
for duration in DURATIONS + ['overall']:
duration_rating[duration] = {
'overall': '',
'domain': {k: [] for k in DOMAINS},
'sub_category': {k: [] for k in SUB_CATEGORIES},
'task_type': {k: [] for k in TASK_CATEGORIES}
}
for i in range(len(data)):
domain = data.iloc[i]['domain']
sub_ctg = data.iloc[i]['sub_category']
task_ctg = data.iloc[i]['task_type']
duration = data.iloc[i]['duration']
duration_rating[duration]['domain'][domain].append(data.iloc[i]['score'])
duration_rating[duration]['sub_category'][sub_ctg].append(data.iloc[i]['score'])
duration_rating[duration]['task_type'][task_ctg].append(data.iloc[i]['score'])
duration_rating['overall']['domain'][domain].append(data.iloc[i]['score'])
duration_rating['overall']['sub_category'][sub_ctg].append(data.iloc[i]['score'])
duration_rating['overall']['task_type'][task_ctg].append(data.iloc[i]['score'])
for duration in DURATIONS + ['overall']:
overall_res_dur = f'{np.mean([x for x in sum(duration_rating[duration]["domain"].values(), []) if x >= 0]):.2f}'
duration_rating[duration]['overall'] = overall_res_dur
for domain in DOMAINS:
domain_res_dur = f'{np.mean([x for x in duration_rating[duration]["domain"][domain] if x >= 0]):.2f}'
duration_rating[duration]['domain'][domain] = domain_res_dur
for sub_ctg in SUB_CATEGORIES:
sub_res_dur = f'{np.mean([x for x in duration_rating[duration]["sub_category"][sub_ctg] if x >= 0]):.2f}'
duration_rating[duration]['sub_category'][sub_ctg] = sub_res_dur
for task_ctg in TASK_CATEGORIES:
task_res_dur = f'{np.mean([x for x in duration_rating[duration]["task_type"][task_ctg] if x >= 0]):.2f}'
duration_rating[duration]['task_type'][task_ctg] = task_res_dur
return duration_rating
def extract_characters_regex(s):
s = s.strip()
answer_prefixes = [
'The best answer is',
'The correct answer is',
'The answer is',
'The answer',
'The best option is'
'The correct option is',
'Best answer:'
'Best option:',
'Answer:',
'Option:',
]
for answer_prefix in answer_prefixes:
s = s.replace(answer_prefix, '')
if len(s.split()) > 10 and not re.search('[ABCD]', s):
return ''
matches = re.search(r'[ABCD]', s)
if matches is None:
return ''
return matches[0]

View File

@@ -2,10 +2,8 @@
# Partly adopted from https://github.com/GT-Vision-Lab/VQA # Partly adopted from https://github.com/GT-Vision-Lab/VQA
# Copyright (c) 2014, Aishwarya Agrawal # Copyright (c) 2014, Aishwarya Agrawal
import re from ...smp import *
from vlmeval.smp import *
from typing import Optional from typing import Optional
from functools import partial
def _process_digit_article(inText): def _process_digit_article(inText):
@@ -163,7 +161,6 @@ def hit_calculate(result, dataset_name, anls_threshold=0.5):
if listinstr(['TextVQA'], dataset_name): if listinstr(['TextVQA'], dataset_name):
return [np.mean(x['match']) for x in result] return [np.mean(x['match']) for x in result]
elif listinstr(['DocVQA', 'InfoVQA'], dataset_name): elif listinstr(['DocVQA', 'InfoVQA'], dataset_name):
# return [1 - np.min(x['match']) >= anls_threshold for x in result]
return [0.0 if 1 - np.min(x['match']) < anls_threshold else 1 - np.min(x['match']) for x in result] return [0.0 if 1 - np.min(x['match']) < anls_threshold else 1 - np.min(x['match']) for x in result]
elif listinstr(['ChartQA', 'OCRVQA'], dataset_name): elif listinstr(['ChartQA', 'OCRVQA'], dataset_name):
return [np.max(x['match']) for x in result] return [np.max(x['match']) for x in result]
@@ -286,55 +283,3 @@ def process_line(line, method='vqa_score'):
ret['match'] = [x == ret['pred'] for x in ret['gt']] ret['match'] = [x == ret['pred'] for x in ret['gt']]
return ret return ret
def VQAEval(eval_file, dataset_name, **kwargs):
logger = get_logger('Evaluation')
data = load(eval_file)
assert 'answer' in data and 'prediction' in data
data['prediction'] = [str(x) for x in data['prediction']]
data['answer'] = [str(x) for x in data['answer']]
lt = len(data)
pool = mp.Pool(16)
lines = [data.iloc[i] for i in range(lt)]
if listinstr(['TextVQA'], dataset_name):
res = pool.map(partial(process_line, method='vqa_score'), lines)
elif listinstr(['ChartQA'], dataset_name):
res = pool.map(partial(process_line, method='relaxed_accuracy'), lines)
elif listinstr(['OCRVQA'], dataset_name):
res = pool.map(partial(process_line, method='accuracy'), lines)
elif listinstr(['DocVQA', 'InfoVQA'], dataset_name):
res = pool.map(partial(process_line, method='anls'), lines)
else: # default using vqa_score to calculate score
res = pool.map(process_line, lines)
# [np.mean(x['match']) >= full_score_weight for x in res]
hit = hit_calculate(res, dataset_name)
ret = dict()
if 'split' in data:
splits = set(data['split'])
for sp in splits:
sub = [r for l, r in zip(lines, res) if l['split'] == sp]
# [np.mean(x['match']) >= full_score_weight for x in sub]
hit = hit_calculate(sub, dataset_name)
ret[sp] = np.mean(hit) * 100
sub = [r for l, r in zip(lines, res)]
hit = hit_calculate(sub, dataset_name)
ret['Overall'] = np.mean(hit) * 100
else:
ret['Overall'] = np.mean(hit) * 100
if 'category' in data:
cates = list(set(data['category']))
cates.sort()
for c in cates:
sub = [r for l, r in zip(lines, res) if l['category'] == c]
# [np.mean(x['match']) >= full_score_weight for x in sub]
hit = hit_calculate(sub, dataset_name)
ret[c] = np.mean(hit) * 100
ret = d2df(ret)
ret.round(2)
suffix = eval_file.split('.')[-1]
result_file = eval_file.replace(f'.{suffix}', '_acc.csv')
logger.info(f'VQA Eval Finished. Saved to {result_file}. ')
logger.info(ret)
dump(ret, result_file)

View File

@@ -1,8 +1,4 @@
from vlmeval.evaluate.misc import build_judge from ...smp import *
from vlmeval.smp import *
from vlmeval.utils import track_progress_rich
INTERNAL = os.environ.get('INTERNAL', 0)
def MME_rating(data_file): def MME_rating(data_file):
@@ -205,93 +201,3 @@ def YOrN_auxeval(model, line):
if ans != 'Unknown': if ans != 'Unknown':
return ans return ans
return 'Unknown' return 'Unknown'
def YOrN_eval(eval_file, dataset=None, **judge_kwargs):
logger = get_logger('Evaluation')
data = load(eval_file)
data['prediction'] = [str(x) for x in data['prediction']]
storage = eval_file.replace('.xlsx', '_auxmatch.xlsx')
tmp_file = eval_file.replace('.xlsx', '_tmp.pkl')
nproc = judge_kwargs.pop('nproc', 4)
if not osp.exists(storage):
ans_map = {k: YOrN_Extraction(v) for k, v in zip(data['index'], data['prediction'])}
if osp.exists(tmp_file):
tmp = load(tmp_file)
for k in tmp:
if ans_map[k] == 'Unknown' and tmp[k] != 'Unknown':
ans_map[k] = tmp[k]
data['extracted'] = [ans_map[x] for x in data['index']]
unknown = data[data['extracted'] == 'Unknown']
if INTERNAL or gpt_key_set():
model = build_judge(**judge_kwargs)
else:
logger.error('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
model = None
if model is not None:
lt = len(unknown)
lines = [unknown.iloc[i] for i in range(lt)]
tups = [(model, line) for line in lines]
indices = list(unknown['index'])
if len(tups):
res = track_progress_rich(
YOrN_auxeval, tups, nproc=nproc, chunksize=nproc, keys=indices, save=tmp_file)
for k, v in zip(indices, res):
ans_map[k] = v
data['extracted'] = [ans_map[x] for x in data['index']]
dump(data, storage)
else:
logger.warning(f'GPT matching file {storage} already exists, will reuse it in YOrN_eval. ')
data = load(storage)
data['score'] = (data['answer'] == data['extracted'])
dump(data, storage)
if dataset is not None and listinstr(['MME'], dataset):
score = MME_rating(storage)
elif dataset is not None and listinstr(['Hallusion'], dataset):
score = Hallusion_rating(storage)
elif dataset is not None and listinstr(['POPE'], dataset):
score = POPE_rating(storage)
else:
score = default_rating(storage)
score_tgt = eval_file.replace('.xlsx', '_score.csv')
dump(score, score_tgt)
logger.info(f'YOrN_eval successfully finished evaluating {eval_file}, results saved in {score_tgt}')
logger.info('Score: ')
logger.info(score)
return score
def parse_args():
parser = argparse.ArgumentParser(description='Inference LLM Answers. ')
parser.add_argument('data', type=str, help='The question set for inference, in excel / tsv / json format. ')
parser.add_argument(
'--model',
type=str,
help='The LLM (GPT) used for inference. ',
default='chatgpt-0613',
choices=['chatgpt-0613'])
parser.add_argument('--nproc', type=int, default=4)
parser.add_argument('--dataset', type=str, default=None)
parser.add_argument('--verbose', action='store_true')
args = parser.parse_args()
return args
if __name__ == '__main__':
load_env()
args = parse_args()
judge_kwargs = dict(model=args.model, nproc=args.nproc, verbose=args.verbose)
if 'OPENAI_API_KEY_JUDGE' in os.environ and os.environ['OPENAI_API_KEY_JUDGE']:
judge_kwargs['key'] = os.environ['OPENAI_API_KEY_JUDGE']
if 'OPENAI_API_BASE_JUDGE' in os.environ and os.environ['OPENAI_API_BASE_JUDGE']:
judge_kwargs['api_base'] = os.environ['OPENAI_API_BASE_JUDGE']
acc = YOrN_eval(eval_file=args.data, dataset=args.dataset, **judge_kwargs)

View File

@@ -0,0 +1,332 @@
import uuid
from functools import partial
from .image_base import ImageBaseDataset
from ..smp import *
rouge = None
nlp_en = None
nlp_zh = None
nlp = None
def initialize():
import evaluate
import spacy
global rouge, nlp_en, nlp_zh, nlp
try:
rouge = evaluate.load('rouge', experiment_id=str(uuid.uuid4()))
except:
warnings.warn('Please first `pip install rouge_score`.')
try:
nlp_en = spacy.load('en_core_web_sm')
except:
warnings.warn('Will automatically download en_core_web_sm via spacy.')
spacy.cli.download('en_core_web_sm')
nlp_en = spacy.load('en_core_web_sm')
try:
nlp_zh = spacy.load('zh_core_web_sm')
except:
warnings.warn('Will automatically download zh_core_web_sm via spacy.')
spacy.cli.download('zh_core_web_sm')
nlp_zh = spacy.load('zh_core_web_sm')
nlp = {'en': nlp_en, 'zh': nlp_zh}
def rough_filter(answer_text):
if "I can't" in answer_text:
return False
elif 'I cannot' in answer_text:
return False
elif 'sorry' in answer_text.lower():
return False
if '无法' in answer_text:
return False
elif '抱歉' in answer_text:
return False
else:
return True
def zero_template(crossed_text):
return {
'crossed_text': crossed_text,
'max_sim_val': 0,
'max_sim_string': '',
'precision': 0,
'recall': 0,
'f1': 0,
'jaccard': 0,
'rouge1': 0,
'exact_match': 0,
}
def tokenize(text, language):
"""
Tokenize the text and return the tokens.
Parameters:
text (str): The text to tokenize.
language (str): The language of the text.
Returns:
list: The list of tokens.
"""
assert language in ['en', 'zh']
nlp_language = nlp[language]
processed_text = nlp_language(text)
return [token.text for token in processed_text]
def find_best_match(needle, hay, language, rouge):
"""
Finds the best matching n-gram in the haystack for the given needle.
Parameters:
needle (str): The string to find.
hay (str): The text to search within.
Returns:
tuple: The highest similarity value and the best matching string.
"""
assert language in ['en', 'zh']
from nltk.util import ngrams
from difflib import SequenceMatcher as SM
tokens_hay = tokenize(hay, language)
tokens_needle = tokenize(needle, language)
splitter = '' if language == 'zh' else ' '
ngrams_ = ngrams(tokens_hay, len(tokens_needle))
max_sim_val = 0
max_sim_string = ''
max_sim_ngram = []
tokens_needle_set = set(tokens_needle)
ngrams_hasjoint = [
ngram
for ngram in ngrams_
if not set(ngram).isdisjoint(tokens_needle_set)
]
for ngram in ngrams_hasjoint:
hay_ngram = splitter.join(ngram)
similarity = SM(None, hay_ngram, needle).ratio()
if similarity > max_sim_val:
max_sim_val = similarity
max_sim_string = hay_ngram
max_sim_ngram = ngram
# Evaluate
if len(max_sim_ngram) == 0:
return {
'crossed_text': needle,
'max_sim_val': 0,
'max_sim_string': '',
'precision': 0,
'recall': 0,
'f1': 0,
'jaccard': 0,
'rouge1': 0,
'exact_match': 0,
}
pred_set = set(max_sim_ngram)
ref_set = set(tokens_needle)
correct_tokens = pred_set.intersection(ref_set)
len_correct_tokens = len(correct_tokens)
precision = len_correct_tokens / len(pred_set)
recall = len_correct_tokens / len(ref_set)
if (precision + recall) == 0:
f1 = 0
else:
f1 = 2 * precision * recall / (precision + recall)
union = pred_set.union(ref_set)
jaccard = len_correct_tokens / len(union) if len(union) > 0 else 0
rouge_1 = rouge.compute(
predictions=[max_sim_string],
references=[needle],
tokenizer=partial(tokenize, language=language),
rouge_types=['rouge1'],
)['rouge1']
exact_match = float(list(max_sim_ngram) == list(tokens_needle))
out = {
'crossed_text': needle,
'max_sim_string': max_sim_string,
'max_sim_val': max_sim_val,
'precision': precision,
'recall': recall,
'f1': f1,
'jaccard': jaccard,
'rouge1': rouge_1,
'exact_match': exact_match,
}
return out
def process_match_single_new(
image_id, prediction, answer, language, progress
):
"""
process the inference results for a single image and calculate the metrics
Parameters:
image_id (int): The image id (question id).
prediction (str): The prediction text.
answer (Union[str, List[str]]): The answer text, or a list of answer texts. The masked n-grams in the image.
language (str): The language of the text. Can be "en" or "zh".
rouge (rouge): The rouge metric object.
progress (multiprocessing.Queue): The progress queue.
Returns:
tuple: The image id (question_id, int) and the result per id (dict of dict of dict).
"""
result_per_id = {image_id: {}}
if isinstance(answer, str):
answer = eval(answer)
assert isinstance(answer, list)
result = prediction.split('Assistant: ')[-1]
for i, crossed_text in enumerate(answer):
if rough_filter(result):
find_best_match_result = find_best_match(
crossed_text, result, language, rouge
)
if i == 0:
result_per_id[image_id] = {str(i): find_best_match_result}
else:
result_per_id[image_id][str(i)] = find_best_match_result
else:
if i == 0:
result_per_id[image_id] = {str(i): zero_template(crossed_text)}
else:
result_per_id[image_id][str(i)] = zero_template(crossed_text)
progress.put(1)
return image_id, result_per_id
class VCRDataset(ImageBaseDataset):
TYPE = 'VQA'
URL_PREFIX = 'https://huggingface.co/datasets/vcr-org'
DATASET_URL = {
'VCR_EN_EASY_500': f'{URL_PREFIX}/VCR-wiki-en-easy-test-500/resolve/main/VCR-wiki-en-easy-test-500.tsv',
'VCR_EN_EASY_100': f'{URL_PREFIX}/VCR-wiki-en-easy-test-100/resolve/main/VCR-wiki-en-easy-test-100.tsv',
'VCR_EN_EASY_ALL': f'{URL_PREFIX}/VCR-wiki-en-easy-test/resolve/main/VCR-wiki-en-easy-test.tsv',
'VCR_EN_HARD_500': f'{URL_PREFIX}/VCR-wiki-en-hard-test-500/resolve/main/VCR-wiki-en-hard-test-500.tsv',
'VCR_EN_HARD_100': f'{URL_PREFIX}/VCR-wiki-en-hard-test-100/resolve/main/VCR-wiki-en-hard-test-100.tsv',
'VCR_EN_HARD_ALL': f'{URL_PREFIX}/VCR-wiki-en-hard-test/resolve/main/VCR-wiki-en-hard-test.tsv',
'VCR_ZH_EASY_500': f'{URL_PREFIX}/VCR-wiki-zh-easy-test-500/resolve/main/VCR-wiki-zh-easy-test-500.tsv',
'VCR_ZH_EASY_100': f'{URL_PREFIX}/VCR-wiki-zh-easy-test-100/resolve/main/VCR-wiki-zh-easy-test-100.tsv',
'VCR_ZH_EASY_ALL': f'{URL_PREFIX}/VCR-wiki-zh-easy-test/resolve/main/VCR-wiki-zh-easy-test.tsv',
'VCR_ZH_HARD_500': f'{URL_PREFIX}/VCR-wiki-zh-hard-test-500/resolve/main/VCR-wiki-zh-hard-test-500.tsv',
'VCR_ZH_HARD_100': f'{URL_PREFIX}/VCR-wiki-zh-hard-test-100/resolve/main/VCR-wiki-zh-hard-test-100.tsv',
'VCR_ZH_HARD_ALL': f'{URL_PREFIX}/VCR-wiki-zh-hard-test/resolve/main/VCR-wiki-zh-hard-test.tsv',
}
DATASET_MD5 = {
'VCR_EN_EASY_500': 'fd9258db52f8685dc710619a0ea0a261',
'VCR_EN_EASY_100': '9df5d7266683458621ecbe122beb72f0',
'VCR_EN_EASY_ALL': '8a9b96885f251d1c85f42f84073327f1',
'VCR_EN_HARD_500': '0a22a85080b6a1f52b1f95e302d43df4',
'VCR_EN_HARD_100': '1b20f5cbcbeae0b0bec77f7a36143958',
'VCR_EN_HARD_ALL': '2d8b8b1ee0eba0e0b618fd3aa7d9710e',
'VCR_ZH_EASY_500': 'beca5fd54176adf44cf94bd9b50cf048',
'VCR_ZH_EASY_100': '4a86a5678a79844d6d22ab0629c51cd5',
'VCR_ZH_EASY_ALL': '5050fe7f0027ad2068fd4c7f220edaea',
'VCR_ZH_HARD_500': '617e3360f75c54455625cb0a8da5c1e7',
'VCR_ZH_HARD_100': 'b0e38c85f5d5e63894a3b881c372a62b',
'VCR_ZH_HARD_ALL': '54bbfef448206518b03127ef8b61404c',
}
def __init__(self, dataset='VCR_EN_EASY_500', skip_noimg=True):
super().__init__(dataset, skip_noimg)
initialize()
self.language = 'en' if 'EN' in dataset else 'zh'
self.difficulty = 'easy' if 'EASY' in dataset else 'hard'
# def build_prompt(self, line):
# msgs = super().build_prompt(line)
# assert msgs[-1]['type'] == 'text'
# if self.language == 'zh':
# msgs[-1]['value'] += '图像中被覆盖的文本是什么?请在不输出解释的情况下还原被覆盖的文本。'
# else:
# msgs[-1]['value'] += ('What is the covered texts in the image? '
# 'Please restore the covered texts without outputting the explanations.')
# return msgs
def evaluate(self, eval_file, **judge_kwargs):
import multiprocessing
vcr_score_list = {'Exact_Match': [], 'Jaccard': []}
vcr_score = {'Exact_Match': 0, 'Jaccard': 0}
logger = get_logger('Evaluation')
data = load(eval_file)
lt = len(data)
lines = [data.iloc[i] for i in range(lt)]
pool = multiprocessing.Pool()
manager = multiprocessing.Manager()
progress_queue = manager.Queue()
results = []
overall_results = {str(image_id): {} for image_id in range(len(lines))}
for instance_id, instance in enumerate(lines):
results.append(
pool.apply_async(
process_match_single_new,
args=(
str(instance_id),
instance['prediction'],
instance['answer'],
self.language,
progress_queue,
),
)
)
pool.close()
# Display progress bar
for _ in tqdm(range(len(results))):
progress_queue.get()
pool.join()
# Merging results into overall_result
for result in results:
image_id, result_per_id = result.get()
overall_results[str(image_id)].update(result_per_id[image_id])
for blank_id_str in result_per_id[image_id].keys():
vcr_score_list['Exact_Match'].append(
result_per_id[image_id][blank_id_str]['exact_match']
)
vcr_score_list['Jaccard'].append(
result_per_id[image_id][blank_id_str]['jaccard']
)
vcr_score['Exact_Match'] = np.mean(vcr_score_list['Exact_Match'])
vcr_score['Jaccard'] = np.mean(vcr_score_list['Jaccard'])
results_out = {
k: v for i in range(len(results)) for k, v in results[i].get()[1].items()
}
results_with_metrics = {
'Exact_Match': vcr_score['Exact_Match'],
'Jaccard': vcr_score['Jaccard'],
'Predictions': results_out,
}
score_pth = eval_file.replace(
'.xlsx', f'{self.language}_{self.difficulty}_score.json'
)
dump(results_with_metrics, score_pth)
logger.info(
f'VCR successfully finished evaluating {eval_file}, results saved in {score_pth}'
)
logger.info('Score: ')
for key, value in vcr_score.items():
logger.info('{}:{}'.format(key, value))

View File

@@ -0,0 +1,87 @@
from abc import abstractmethod
from ..smp import *
class VideoBaseDataset:
MODALITY = 'VIDEO'
def __init__(self,
dataset='MMBench-Video',
pack=False):
try:
import decord
except:
warnings.warn('Please install decord via `pip install decord`.')
self.dataset_name = dataset
ret = self.prepare_dataset(dataset)
assert ret is not None
lmu_root = LMUDataRoot()
self.frame_root = osp.join(lmu_root, 'images', dataset)
os.makedirs(self.frame_root, exist_ok=True)
self.frame_tmpl = 'frame-{}-of-{}.jpg'
self.data_root = ret['root']
self.data_file = ret['data_file']
self.data = load(self.data_file)
assert 'question' in self.data and 'video' in self.data
videos = list(set(self.data['video']))
videos.sort()
self.videos = videos
self.pack = pack
def __len__(self):
return len(self.videos) if self.pack else len(self.data)
def __getitem__(self, idx):
if self.pack:
assert idx < len(self.videos)
sub_data = self.data[self.data['video'] == self.videos[idx]]
return sub_data
else:
assert idx < len(self.data)
return dict(self.data.iloc[idx])
def frame_paths(self, video, num_frames=8):
frame_root = osp.join(self.frame_root, video)
os.makedirs(frame_root, exist_ok=True)
return [osp.join(frame_root, self.frame_tmpl.format(i, num_frames)) for i in range(1, num_frames + 1)]
def save_video_frames(self, video, num_frames=8):
frame_paths = self.frame_paths(video, num_frames)
flag = np.all([osp.exists(p) for p in frame_paths])
if flag:
return frame_paths
vid_path = osp.join(self.data_root, video + '.mp4')
vid = decord.VideoReader(vid_path)
step_size = len(vid) / (num_frames + 1)
indices = [int(i * step_size) for i in range(1, num_frames + 1)]
images = [vid[i].numpy() for i in indices]
images = [Image.fromarray(arr) for arr in images]
for im, pth in zip(images, frame_paths):
if not osp.exists(pth):
im.save(pth)
return frame_paths
# Return a list of dataset names that are supported by this class, can override
@classmethod
def supported_datasets(cls):
return ['MMBench-Video', 'Video-MME', 'MVBench']
# Given the prediction file, return the evaluation results in the format of a dictionary or pandas dataframe
@abstractmethod
def evaluate(self, eval_file, **judge_kwargs):
pass
@abstractmethod
def build_prompt(self, idx, num_frames=8):
pass
@abstractmethod
def prepare_dataset(self, dataset):
# The prepare_dataset function should return a dictionary containing:
# `root` (directory that containing video files)
# `data_file` (the TSV dataset file)
pass

View File

@@ -0,0 +1,250 @@
from huggingface_hub import snapshot_download
from ..smp import *
from .video_base import VideoBaseDataset
FAIL_MSG = 'Failed to obtain answer via API.'
def unwrap_hf_pkl(pth, suffix='.mp4'):
base_dir = os.path.join(pth, 'video_pkl/')
target_dir = os.path.join(pth, 'video/')
pickle_files = [os.path.join(base_dir, file) for file in os.listdir(base_dir)]
pickle_files.sort()
if not os.path.exists(target_dir):
os.makedirs(target_dir, exist_ok=True)
for pickle_file in pickle_files:
with open(pickle_file, 'rb') as file:
video_data = pickle.load(file)
# For each video file in the pickle file, write its contents to a new mp4 file
for video_name, video_content in video_data.items():
output_path = os.path.join(target_dir, f'{video_name}{suffix}')
with open(output_path, 'wb') as output_file:
output_file.write(video_content)
print('The video file has been restored and stored from the pickle file.')
else:
print('The video file already exists.')
class VideoMME(VideoBaseDataset):
MD5 = '2f16cd40b1c125b67e661e59da2f6cd0'
SYS = ''
FRAMES_TMPL_NOSUB = """
These are the frames of a video. \
Select the best answer to the following multiple-choice question based on the video. \
Respond with only the letter (A, B, C, or D) of the correct option.
"""
FRAMES_TMPL_SUB = """
These are the frames of a video. \
This video's subtitles are listed below:
{}
Select the best answer to the following multiple-choice question based on the video. \
Respond with only the letter (A, B, C, or D) of the correct option.
"""
TYPE = 'MCQ'
def __init__(self, dataset='Video-MME', use_subtitle=False):
super().__init__(dataset=dataset)
self.use_subtitle = use_subtitle
@classmethod
def supported_datasets(cls):
return ['Video-MME']
def prepare_dataset(self, dataset_name='Video-MME', repo_id='lmms-lab/Video-MME'):
def check_integrity(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if not os.path.exists(data_file):
return False
if md5(data_file) != self.MD5:
return False
data = load(data_file)
for video_pth in data['video_path']:
if not osp.exists(osp.join(pth, video_pth)):
return False
return True
cache_path = get_cache_path(repo_id)
if cache_path is not None and check_integrity(cache_path):
dataset_path = cache_path
else:
def unzip_hf_zip(pth):
import zipfile
base_dir = pth
target_dir = os.path.join(pth, 'video/')
zip_files = [
os.path.join(base_dir, file) for file in os.listdir(base_dir)
if file.endswith('.zip') and file.startswith('video')
]
zip_files.sort()
if not os.path.exists(target_dir):
os.makedirs(target_dir, exist_ok=True)
for zip_file in zip_files:
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
for member in zip_ref.namelist():
# Check if the member is a file (not a directory)
if not member.endswith('/'):
# Extract the file to the specified directory
source = zip_ref.open(member)
target = open(os.path.join(target_dir, os.path.basename(member)), 'wb')
with source, target:
target.write(source.read())
print('The video file has been restored and stored from the zip file.')
else:
print('The video file already exists.')
subtitle_zip_file = os.path.join(base_dir, 'subtitle.zip')
subtitle_target_dir = os.path.join(base_dir, 'subtitle')
if not os.path.exists(subtitle_target_dir):
os.makedirs(subtitle_target_dir, exist_ok=True)
with zipfile.ZipFile(subtitle_zip_file, 'r') as zip_ref:
for member in zip_ref.namelist():
# Check if the member is a file (not a directory)
if not member.endswith('/'):
# Extract the file to the specified directory
source = zip_ref.open(member)
target = open(os.path.join(subtitle_target_dir, os.path.basename(member)), 'wb')
with source, target:
target.write(source.read())
print('The subtitle file has been restored and stored from the zip file.')
else:
print('The subtitle file already exists.')
def generate_tsv(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if os.path.exists(data_file) and md5(data_file) == self.MD5:
return
data_file = pd.read_parquet(os.path.join(pth, 'videomme/test-00000-of-00001.parquet'))
data_file = data_file.assign(index=range(len(data_file)))
data_file['video'] = data_file['videoID']
data_file['video_path'] = data_file['videoID'].apply(lambda x: f'./video/{x}.mp4')
data_file['subtitle_path'] = data_file['videoID'].apply(lambda x: f'./subtitle/{x}.srt')
data_file['question'] += '\n' + data_file['options'].apply(lambda x: '\n'.join(x))
data_file = data_file[['index', 'video', 'video_path', 'duration', 'domain',
'sub_category', 'task_type', 'subtitle_path', 'question', 'answer']]
data_file.to_csv(osp.join(pth, f'{dataset_name}.tsv'), sep='\t', index=False)
dataset_path = snapshot_download(repo_id=repo_id, repo_type='dataset')
unzip_hf_zip(dataset_path)
generate_tsv(dataset_path)
data_file = osp.join(dataset_path, f'{dataset_name}.tsv')
return dict(data_file=data_file, root=dataset_path)
def save_video_frames(self, video, num_frames=8):
vid_path = osp.join(self.data_root, 'video', video + '.mp4')
vid = decord.VideoReader(vid_path)
step_size = len(vid) / (num_frames + 1)
indices = [int(i * step_size) for i in range(1, num_frames + 1)]
video_info = {
'fps': vid.get_avg_fps(),
'n_frames': len(vid),
}
frame_paths = self.frame_paths(video, num_frames)
flag = np.all([osp.exists(p) for p in frame_paths])
if not flag:
images = [vid[i].numpy() for i in indices]
images = [Image.fromarray(arr) for arr in images]
for im, pth in zip(images, frame_paths):
if not osp.exists(pth):
im.save(pth)
return frame_paths, indices, video_info
def build_prompt(self, line, num_frames, video_llm):
if isinstance(line, int):
assert line < len(self)
line = self.data.iloc[line]
frames, indices, video_info = self.save_video_frames(line['video'], num_frames)
if self.use_subtitle and os.path.exists(osp.join(self.data_root, line['subtitle_path'])):
import pysubs2
subs = pysubs2.load(osp.join(self.data_root, line['subtitle_path']), encoding='utf-8')
subtitles = []
for seleced_frame_id in indices:
sub_text = ''
cur_time = pysubs2.make_time(fps=video_info['fps'], frames=seleced_frame_id)
for sub in subs:
if sub.start < cur_time and sub.end > cur_time:
sub_text = sub.text.replace('\\N', ' ')
break
if sub_text.strip():
subtitles.append(sub_text)
subtitles = '\n'.join(subtitles)
else:
subtitles = ''
message = [dict(type='text', value=self.SYS)]
if video_llm:
message.append(dict(type='video', value=osp.join(self.data_root, 'video', line['video'] + '.mp4')))
else:
for im in frames:
message.append(dict(type='image', value=im))
text_prompt = self.FRAMES_TMPL_NOSUB if not self.use_subtitle else self.FRAMES_TMPL_SUB.format(subtitles)
message.append(dict(type='text', value=text_prompt))
prompt = 'Question: {}\nAnswer: '.format(line['question'])
message.append(dict(type='text', value=prompt))
return message
# It returns a dictionary
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
from .utils.videomme import get_dimension_rating, extract_characters_regex
assert eval_file.endswith('.xlsx'), 'data file should be an xlsx file'
tmp_file = eval_file.replace('.xlsx', '_tmp.pkl')
tgt_file = eval_file.replace('.xlsx', '_rating.json')
score_file = eval_file.replace('.xlsx', '_score.xlsx')
if not osp.exists(score_file):
res = {} if not osp.exists(tmp_file) else load(tmp_file)
res = {k: v for k, v in res.items() if FAIL_MSG not in v}
data = load(eval_file)
data_un = data[~pd.isna(data['prediction'])]
for idx in data['index']:
ans = data.loc[data['index'] == idx, 'answer'].values[0]
pred = data.loc[data['index'] == idx, 'prediction'].values[0]
if extract_characters_regex(pred) == '':
data.loc[idx, 'score'] = -1
else:
data.loc[idx, 'score'] = int(extract_characters_regex(pred) == ans)
rejected = [x for x in data['score'] if x == -1]
print(
f'Among {len(data)} questions, failed to obtain prediction for {len(data) - len(data_un)} questions, '
f'failed to obtain the score for another {len(rejected)} questions. '
f'Those questions will be counted as -1 score in ALL rating, and will not be counted in VALID rating.'
)
dump(data, score_file)
rating = get_dimension_rating(score_file)
dump(rating, tgt_file)
return rating

View File

@@ -1,9 +0,0 @@
from .yes_or_no import default_rating, MME_rating, YOrN_eval
from .mmvet_eval import MMVet_eval
from .multiple_choice import multiple_choice_eval
from .coco_eval import COCO_eval
from .vqa_eval import VQAEval
from .mathvista_eval import MathVista_eval
from .llavabench import LLaVABench_eval
from .misc import build_judge
from .OCRBench import OCRBench_eval

View File

@@ -1,74 +0,0 @@
from vlmeval.smp import *
from pycocoevalcap.bleu.bleu import Bleu
from pycocoevalcap.rouge.rouge import Rouge
from pycocoevalcap.cider.cider import Cider
class COCO_Caption_Scorer():
def __init__(self, ref, gt):
self.ref = ref
self.gt = gt
print('setting up scorers...')
self.scorers = [
(Bleu(4), ['Bleu_1', 'Bleu_2', 'Bleu_3', 'Bleu_4']),
# (Meteor(), "METEOR"), # need java version 11.0.16+
(Rouge(), 'ROUGE_L'),
(Cider(), 'CIDEr'),
# (Spice(), "SPICE"), # need java version 11.0.16+
]
def compute_scores(self):
total_scores = {}
for scorer, method in self.scorers:
print('computing %s score...' % (scorer.method()))
score, scores = scorer.compute_score(self.gt, self.ref)
if type(method) == list:
for sc, scs, m in zip(score, scores, method):
print('%s: %0.3f' % (m, sc * 100))
total_scores['Bleu'] = [x * 100 for x in score]
else:
print('%s: %0.3f' % (method, score * 100))
total_scores[method] = score * 100
print('*****DONE*****')
for key, value in total_scores.items():
print('{}:{}'.format(key, value))
return total_scores
def COCO_eval(eval_file, nproc=4, verbose=False):
logger = get_logger('Evaluation')
data = load(eval_file)
lt = len(data)
lines = [data.iloc[i] for i in range(lt)]
ref = {}
gt = {}
for i, line in enumerate(lines):
ref[str(i)] = [str(line['prediction'])]
gt[str(i)] = eval(line['answer'])
scorer = COCO_Caption_Scorer(ref, gt)
coco_caption_score_dict = scorer.compute_scores()
score_pth = eval_file.replace('.xlsx', '_score.json')
dump(coco_caption_score_dict, score_pth)
logger.info(f'COCO_eval successfully finished evaluating {eval_file}, results saved in {score_pth}')
logger.info('Score: ')
for key, value in coco_caption_score_dict.items():
logger.info('{}:{}'.format(key, value))
def parse_args():
parser = argparse.ArgumentParser(description='Inference LLM Answers. ')
parser.add_argument('--data', type=str, help='The question set for inference, in excel / tsv / json format. ')
parser.add_argument('--nproc', type=int, default=4)
parser.add_argument('--verbose', action='store_true')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
COCO_eval(eval_file=args.data, nproc=args.nproc, verbose=args.verbose)

View File

@@ -1,29 +0,0 @@
import os
from vlmeval.api import OpenAIWrapper, OpenAIWrapperInternal
from vlmeval.smp import load_env
INTERNAL = os.environ.get('INTERNAL', 0)
def build_judge(**kwargs):
model = kwargs.pop('model', None)
load_env()
LOCAL_LLM = os.environ.get('LOCAL_LLM', None)
if LOCAL_LLM is None:
model_map = {
'gpt-4-turbo': 'gpt-4-1106-preview',
'gpt-4-0613': 'gpt-4-0613',
'gpt-4-0314': 'gpt-4-0314',
'gpt-4-0125': 'gpt-4-0125-preview',
'chatgpt-1106': 'gpt-3.5-turbo-1106',
'chatgpt-0613': 'gpt-3.5-turbo-0613',
'chatgpt-0125': 'gpt-3.5-turbo-0125'
}
model_version = model_map[model]
else:
model_version = LOCAL_LLM
if INTERNAL:
model = OpenAIWrapperInternal(model_version, **kwargs)
else:
model = OpenAIWrapper(model_version, **kwargs)
return model

View File

@@ -1,399 +0,0 @@
import os.path as osp
import pandas as pd
from tqdm import tqdm
from vlmeval.evaluate.misc import build_judge
from vlmeval.utils import can_infer, track_progress_rich, TSVDataset
from vlmeval.smp import *
import numpy as np
INTERNAL = os.environ.get('INTERNAL', 0)
abbrs = {
'coarse_perception': 'CP',
'finegrained_perception (instance-level)': 'FP-S',
'finegrained_perception (cross-instance)': 'FP-C',
'logic_reasoning': 'LR',
'relation_reasoning': 'RR',
'attribute_reasoning': 'AR'
}
def MMMU_preproc(data):
logger = get_logger('Evaluation')
cnt = 0
As, Bs, Ans = list(data['A']), list(data['B']), list(data['answer'])
lt = len(data)
for i in range(lt):
if pd.isna(As[i]):
As[i] = Ans[i]
Bs[i] = 'Other Answers'
cnt += 1
logger.info(f'During MMMU_preproc in Evaluation, {cnt} open questions are re-formulated to multi-choice ones. ')
data['A'] = As
data['B'] = Bs
return data
def report_acc(df):
# assert group in [None, 'category', 'l2-category']
res = defaultdict(list)
if 'split' in df:
splits = list(set(df['split']))
res['split'] = splits
else:
df['split'] = ['none'] * len(df)
res['split'] = ['none']
for group in [None, 'l2-category', 'category']:
if group is None:
res['Overall'] = [np.mean(df[df['split'] == sp]['hit']) for sp in res['split']]
elif group not in df:
continue
else:
abilities = list(set(df[group]))
abilities.sort()
for ab in abilities:
ab_name = abbrs[ab] if ab in abbrs else ab
sub_df = df[df[group] == ab]
res[ab_name] = [np.mean(sub_df[sub_df['split'] == sp]['hit']) for sp in res['split']]
return pd.DataFrame(res)
def build_prompt(question, options, prediction):
tmpl = (
'You are an AI assistant who will help me to match '
'an answer with several options of a single-choice question. '
'You are provided with a question, several options, and an answer, '
'and you need to find which option is most similar to the answer. '
'If the meaning of all options are significantly different from the answer, output Z. '
'Your should output a single uppercase character in A, B, C, D (if they are valid options), and Z. \n'
'Example 1: \n'
'Question: What is the main object in image?\nOptions: A. teddy bear B. rabbit C. cat D. dog\n'
'Answer: a cute teddy bear\nYour output: A\n'
'Example 2: \n'
'Question: What is the main object in image?\nOptions: A. teddy bear B. rabbit C. cat D. dog\n'
'Answer: Spider\nYour output: Z\n'
'Example 3: \n'
'Question: {}?\nOptions: {}\nAnswer: {}\nYour output: '
)
return tmpl.format(question, options, prediction)
def build_prompt_cn(question, options, prediction):
tmpl = (
'你是一个帮助我匹配答案与单选题中多个选项的 AI 助手。'
'你会被提供:一个问题,多个选项,一个答案。你的任务是找到与答案意义最相近的选项。'
'如果所有选项的意义都与答案显著不同,则输出 Z。'
'你应该输出一个单个的大写字母,例如 A, B, C, D如果它们是有效选项或 Z。'
'例 1:'
'问题: 图中最主要的物体是什么?\n选项: A. 泰迪熊 B. 兔子 C. 猫 D. 狗\n答案: 一只可爱的泰迪熊\n输出: A\n'
'例 2: \n'
'问题: 图中最主要的物体是什么?\n选项: A. 泰迪熊 B. 兔子 C. 猫 D. 狗\n答案: 蜘蛛\n输出: Z\n'
'例 3: \n'
'问题: {}?\n选项: {}\n答案: {}\n输出: '
)
return tmpl.format(question, options, prediction)
def build_choices(item):
ret = {}
for ch in string.ascii_uppercase:
if ch in item and (not pd.isna(item[ch])):
ret[ch] = item[ch]
return ret
def prefetch_answer(item):
choices = build_choices(item)
return can_infer(item['prediction'], choices)
def extract_answer_from_item(model, item):
logger = get_logger('Evaluation')
# It will return: (pred, raw, llm_time)
choices = build_choices(item)
option_str = build_option_str(choices)
if cn_string(item['question']):
prompt = build_prompt_cn(item['question'], option_str, item['prediction'])
else:
prompt = build_prompt(item['question'], option_str, item['prediction'])
retry = 3
ret = can_infer(item['prediction'], choices)
if ret:
return dict(opt=ret, log=item['prediction'])
while retry:
ans = model.generate(prompt)
if 'Failed to obtain answer via API' in ans:
logger.warning('GPT API failed to answer. ')
else:
ret = can_infer(ans, choices)
if ret:
return dict(opt=ret, log=ans)
else:
logger.warning(f'Output includes 0 / > 1 letter among candidates {set(choices)} and Z: {ans}')
retry -= 1
if retry == 0:
options = list(choices) + ['Z'] if 'Z' not in choices else []
return dict(opt=rd.choice(options), log='Failed to predict, thus randomly generate one. ')
def prefetch_sub_data(sub_data, answer_map, verbose=False):
lt = len(sub_data)
GT, PRED = [], []
for i in range(lt):
item = sub_data.iloc[i]
idx = item['index']
GT.append(answer_map[idx])
PRED.append(prefetch_answer(item))
if PRED[-1] and (GT[-1] != PRED[-1]):
log = (
f'Failed in Prefetching Rolling {i}: Answer is {GT[-1]}, '
f"Prediction is {item['prediction']}, Pre-fetched is {PRED[-1]}. "
)
return dict(hit=0, log=log)
flag = True
for g, p in zip(GT, PRED):
if g != p:
flag = False
ret = (dict(hit=1, log='Succeed During Pre-fetching'), ) if flag else (None, )
ret = ret + (GT, PRED) if verbose else ret
return ret if len(ret) > 1 else ret[0]
def eval_sub_data(model, sub_data, answer_map):
res, GT, PRED = prefetch_sub_data(sub_data, answer_map, verbose=True)
if res is not None:
return res
lt = len(sub_data)
log = ''
for i in range(lt):
if PRED[i]:
log += f'Rolling {i} Matched.\n'
else:
res = extract_answer_from_item(model, sub_data.iloc[i])
opt, match_log = res['opt'], res['log']
PRED[i] = opt
if PRED[i] != GT[i]:
log += (
f"Failed in Rolling {i}: Answer is {GT[i]}; Prediction is {sub_data.iloc[i]['prediction']}; "
f'Pre-fetched is {PRED[i]}; Match Log is {match_log}.\n'
)
return dict(hit=0, log=log)
else:
log += (
f"Rolling {i}: Answer is {GT[i]}, Prediction is {sub_data.iloc[i]['prediction']}, "
f'Pre-fetched is {PRED[i]}.\n'
)
return dict(hit=1, log=log)
def eval_data_groups(model, data_groups, answer_map, result, result_file, nproc=16):
prefetched = [prefetch_sub_data(g, answer_map, verbose=False) for g in data_groups]
remain = []
for dg, pf in zip(data_groups, prefetched):
if pf:
result[dg.iloc[0]['index'] % 1e6] = pf
else:
remain.append(dg)
dump(result, result_file)
tups = [(model, x, answer_map) for x in remain]
keys = [x.iloc[0]['index'] % 1e6 for x in remain]
if len(tups) == 0:
return
if model is None:
logger = get_logger('Evaluation')
logger.warning('Exact Matching mode, will not do GPT-based answer matching. ')
for k in keys:
result[k] = dict(
hit=0, log='Failed in Prefetch, no GPT-based answer matching under `exact_matching` policy.')
dump(result, result_file)
return
res = track_progress_rich(
eval_sub_data,
tups,
nproc=nproc,
chunksize=nproc,
save=result_file,
keys=keys)
result = load(result_file)
for k, v in zip(keys, res):
if k in result:
assert result[k]['hit'] == v['hit'] and result[k]['log'] == v['log']
else:
result[k] = v
dump(result, result_file)
def multiple_choice_eval(eval_file, dataset='default', **judge_kwargs):
logger = get_logger('Evaluation')
# assert dataset is not None
dataset_map = {
'MMBench_TEST_EN': 'MMBench', 'MMBench_TEST_EN_V11': 'MMBench_V11',
'MMBench_TEST_CN': 'MMBench_CN', 'MMBench_TEST_CN_V11': 'MMBench_CN_V11'
}
if dataset in dataset_map:
dataset = dataset_map[dataset]
nproc = judge_kwargs.pop('nproc', 4)
if listinstr(['mmbench', 'ccbench'], dataset.lower()):
data = load(eval_file)
data['index'] = [int(x) for x in data['index']]
dump(data, eval_file)
rd.seed(2680)
suffix = eval_file.split('.')[-1]
model = judge_kwargs['model']
assert model in ['chatgpt-0613', 'exact_matching', 'gpt-4-0125']
name_str_map = {
'chatgpt-0613': 'openai',
'gpt-4-0125': 'gpt4'
}
name_str = name_str_map[model] if model in name_str_map else model
if model == 'exact_matching':
model = None
else:
if INTERNAL or gpt_key_set():
model = build_judge(**judge_kwargs)
else:
logger.error('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
model = None
logger.info(f'Evaluating {eval_file}')
result_file = eval_file.replace(f'.{suffix}', f'_{name_str}_result.pkl')
result = {}
if osp.exists(result_file):
result = load(result_file)
data = load(eval_file)
data = data.sort_values(by='index')
data['prediction'] = [str(x) for x in data['prediction']]
for k in data.keys():
data[k.lower() if k not in list(string.ascii_uppercase) else k] = data.pop(k)
if dataset != 'default':
meta = TSVDataset(dataset).data
else:
logger.warning('Dataset is not provided, try to use the original `eval_file` as meta data. ')
meta = load(eval_file)
assert 'index' in meta and 'answer' in meta, 'Essentail columns missing in the eval_file.'
answer_map = {i: c for i, c in zip(meta['index'], meta['answer'])}
cate_map = {i: c for i, c in zip(meta['index'], meta['category'])} if 'category' in meta else None
l2_cate_map = {i: c for i, c in zip(meta['index'], meta['l2-category'])} if 'l2-category' in meta else None
split_map = {i: c for i, c in zip(meta['index'], meta['split'])} if 'split' in meta else None
if cate_map is not None and np.all([pd.isna(x) for x in cate_map.values()]):
cate_map = None
if l2_cate_map is not None and np.all([pd.isna(x) for x in l2_cate_map.values()]):
l2_cate_map = None
if split_map is not None and np.all([pd.isna(x) for x in split_map.values()]):
split_map = None
if listinstr(['MMMU'], dataset):
data = MMMU_preproc(data)
answer_map = {k: (v if v in list(string.ascii_uppercase) else 'A') for k, v in answer_map.items()}
data = data[data['index'].isin(answer_map)]
data_main = data[data['index'] < int(1e6)]
meta_idx_set = set(meta['index'])
data_main = data_main[data_main['index'].isin(meta_idx_set)]
lt = len(data_main)
hit, tot = 0, 0
data_groups = []
for i in tqdm(range(lt)):
# Dealing with the normal part
item_main = data_main.iloc[i]
idx = item_main['index']
if idx in result:
correct = result[idx]['hit']
assert correct in [0, 1]
hit += correct
tot += 1
continue
sub_data = data[data['index'] % int(1e6) == idx]
data_groups.append(sub_data)
if len(data_groups):
eval_data_groups(
model=model,
data_groups=data_groups,
answer_map=answer_map,
nproc=nproc,
result=result,
result_file=result_file)
tmp_pth = f'/tmp/{timestr()}.xlsx'
dump(data_main, tmp_pth)
data_main = load(tmp_pth)
res = load(result_file)
indices = data_main['index']
data_main['hit'] = [res[i]['hit'] for i in indices]
data_main['log'] = [res[i]['log'] for i in indices]
main_idx = data_main['index']
if cate_map is not None:
data_main['category'] = [cate_map[i] for i in main_idx]
if l2_cate_map is not None:
data_main['l2-category'] = [l2_cate_map[i] for i in main_idx]
if split_map is not None:
data_main['split'] = [split_map[i] for i in indices]
# load split
dump(data_main, eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
data_main = load(eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
acc = report_acc(data_main)
score_file = eval_file.replace(f'.{suffix}', '_acc.csv')
dump(acc, score_file)
logger.info(f'multiple_choice_eval successfully finished evaluating {eval_file}, results saved in {score_file}')
logger.info('Score: ')
logger.info(acc)
return acc
def parse_args():
parser = argparse.ArgumentParser(description='Inference LLM Answers. ')
parser.add_argument('data', type=str, help='The question set for inference, in excel / tsv / json format. ')
parser.add_argument(
'--model',
type=str,
help='The LLM (GPT) used for inference. ',
default='chatgpt-0613',
choices=['chatgpt-0613', 'exact_matching', 'gpt-4-0125'])
parser.add_argument(
'--dataset',
type=str,
default='default',
help='The dataset to evaluate')
parser.add_argument('--nproc', type=int, default=6)
parser.add_argument('--verbose', action='store_true')
args = parser.parse_args()
return args
if __name__ == '__main__':
load_env()
args = parse_args()
judge_kwargs = dict(model=args.model, nproc=args.nproc, verbose=args.verbose)
if 'OPENAI_API_KEY_JUDGE' in os.environ and os.environ['OPENAI_API_KEY_JUDGE']:
judge_kwargs['key'] = os.environ['OPENAI_API_KEY_JUDGE']
if 'OPENAI_API_BASE_JUDGE' in os.environ and os.environ['OPENAI_API_BASE_JUDGE']:
judge_kwargs['api_base'] = os.environ['OPENAI_API_BASE_JUDGE']
acc = multiple_choice_eval(eval_file=args.data, dataset=args.dataset, **judge_kwargs)

View File

@@ -1,8 +1,7 @@
import torch import torch
import torch.distributed as dist import torch.distributed as dist
import datetime from vlmeval.config import supported_VLM
from vlmeval.config import supported_VLM, api_models from vlmeval.utils import track_progress_rich
from vlmeval.utils import TSVDataset, track_progress_rich, split_MMMU
from vlmeval.smp import * from vlmeval.smp import *
FAIL_MSG = 'Failed to obtain answer via API.' FAIL_MSG = 'Failed to obtain answer via API.'
@@ -19,10 +18,10 @@ def parse_args():
# Only API model is accepted # Only API model is accepted
def infer_data_api(work_dir, model_name, dataset_name, index_set=None, api_nproc=4, ignore_failed=False): def infer_data_api(work_dir, model_name, dataset, index_set=None, api_nproc=4, ignore_failed=False):
rank, world_size = get_rank_and_world_size() rank, world_size = get_rank_and_world_size()
assert rank == 0 and world_size == 1 assert rank == 0 and world_size == 1
dataset = TSVDataset(dataset_name) dataset_name = dataset.dataset_name
data = dataset.data data = dataset.data
if index_set is not None: if index_set is not None:
data = data[data['index'].isin(index_set)] data = data[data['index'].isin(index_set)]
@@ -33,10 +32,6 @@ def infer_data_api(work_dir, model_name, dataset_name, index_set=None, api_nproc
lt, indices = len(data), list(data['index']) lt, indices = len(data), list(data['index'])
structs = [dataset.build_prompt(data.iloc[i]) for i in range(lt)] structs = [dataset.build_prompt(data.iloc[i]) for i in range(lt)]
# Corner Case
if listinstr(['MMMU'], dataset_name):
structs = [split_MMMU(s) for s in structs]
out_file = f'{work_dir}/{model_name}_{dataset_name}_supp.pkl' out_file = f'{work_dir}/{model_name}_{dataset_name}_supp.pkl'
res = {} res = {}
if osp.exists(out_file): if osp.exists(out_file):
@@ -48,7 +43,6 @@ def infer_data_api(work_dir, model_name, dataset_name, index_set=None, api_nproc
indices = [i for i in indices if i not in res] indices = [i for i in indices if i not in res]
gen_func = model.generate gen_func = model.generate
# For now, we do not use split_MMMU for MMMU dataset
structs = [dict(message=struct, dataset=dataset_name) for struct in structs] structs = [dict(message=struct, dataset=dataset_name) for struct in structs]
if len(structs): if len(structs):
@@ -61,19 +55,14 @@ def infer_data_api(work_dir, model_name, dataset_name, index_set=None, api_nproc
return res return res
def infer_data(model_name, work_dir, dataset_name, out_file, verbose=False, api_nproc=4): def infer_data(model_name, work_dir, dataset, out_file, verbose=False, api_nproc=4):
dataset_name = dataset.dataset_name
prev_file = f'{work_dir}/{model_name}_{dataset_name}_PREV.pkl' prev_file = f'{work_dir}/{model_name}_{dataset_name}_PREV.pkl'
res = load(prev_file) if osp.exists(prev_file) else {} res = load(prev_file) if osp.exists(prev_file) else {}
if osp.exists(out_file): if osp.exists(out_file):
res.update(load(out_file)) res.update(load(out_file))
rank, world_size = get_rank_and_world_size() rank, world_size = get_rank_and_world_size()
if rank == 0:
dataset = TSVDataset(dataset_name)
if world_size > 1:
dist.barrier()
dataset = TSVDataset(dataset_name)
sheet_indices = list(range(rank, len(dataset), world_size)) sheet_indices = list(range(rank, len(dataset), world_size))
lt = len(sheet_indices) lt = len(sheet_indices)
data = dataset.data.iloc[sheet_indices] data = dataset.data.iloc[sheet_indices]
@@ -102,7 +91,7 @@ def infer_data(model_name, work_dir, dataset_name, out_file, verbose=False, api_
supp = infer_data_api( supp = infer_data_api(
work_dir=work_dir, work_dir=work_dir,
model_name=model_name, model_name=model_name,
dataset_name=dataset_name, dataset=dataset,
index_set=set(indices), index_set=set(indices),
api_nproc=api_nproc) api_nproc=api_nproc)
for idx in indices: for idx in indices:
@@ -111,6 +100,8 @@ def infer_data(model_name, work_dir, dataset_name, out_file, verbose=False, api_
res = {k: res[k] for k in data_indices} res = {k: res[k] for k in data_indices}
dump(res, out_file) dump(res, out_file)
return model_name return model_name
else:
model.set_dump_image(dataset.dump_image)
for i in tqdm(range(lt)): for i in tqdm(range(lt)):
idx = data.iloc[i]['index'] idx = data.iloc[i]['index']
@@ -122,13 +113,8 @@ def infer_data(model_name, work_dir, dataset_name, out_file, verbose=False, api_
else: else:
struct = dataset.build_prompt(data.iloc[i]) struct = dataset.build_prompt(data.iloc[i])
# Corner Case
if listinstr(['MMMU'], dataset_name):
struct = split_MMMU(struct)
# For now, we do not use split_MMMU for MMMU dataset
response = model.generate(message=struct, dataset=dataset_name) response = model.generate(message=struct, dataset=dataset_name)
# torch.cuda.empty_cache() torch.cuda.empty_cache()
if verbose: if verbose:
print(response, flush=True) print(response, flush=True)
@@ -143,8 +129,9 @@ def infer_data(model_name, work_dir, dataset_name, out_file, verbose=False, api_
# A wrapper for infer_data, do the pre & post processing # A wrapper for infer_data, do the pre & post processing
def infer_data_job(model, work_dir, model_name, dataset_name, verbose=False, api_nproc=4, ignore_failed=False): def infer_data_job(model, work_dir, model_name, dataset, verbose=False, api_nproc=4, ignore_failed=False):
rank, world_size = get_rank_and_world_size() rank, world_size = get_rank_and_world_size()
dataset_name = dataset.dataset_name
result_file = osp.join(work_dir, f'{model_name}_{dataset_name}.xlsx') result_file = osp.join(work_dir, f'{model_name}_{dataset_name}.xlsx')
prev_file = f'{work_dir}/{model_name}_{dataset_name}_PREV.pkl' prev_file = f'{work_dir}/{model_name}_{dataset_name}_PREV.pkl'
@@ -162,7 +149,7 @@ def infer_data_job(model, work_dir, model_name, dataset_name, verbose=False, api
out_file = tmpl.format(rank) out_file = tmpl.format(rank)
model = infer_data( model = infer_data(
model, work_dir=work_dir, dataset_name=dataset_name, out_file=out_file, verbose=verbose, api_nproc=api_nproc) model, work_dir=work_dir, dataset=dataset, out_file=out_file, verbose=verbose, api_nproc=api_nproc)
if world_size > 1: if world_size > 1:
dist.barrier() dist.barrier()
@@ -171,7 +158,7 @@ def infer_data_job(model, work_dir, model_name, dataset_name, verbose=False, api
for i in range(world_size): for i in range(world_size):
data_all.update(load(tmpl.format(i))) data_all.update(load(tmpl.format(i)))
data = TSVDataset(dataset_name).data data = dataset.data
for x in data['index']: for x in data['index']:
assert x in data_all assert x in data_all
data['prediction'] = [str(data_all[x]) for x in data['index']] data['prediction'] = [str(data_all[x]) for x in data['index']]

View File

@@ -0,0 +1,180 @@
import torch
import torch.distributed as dist
from vlmeval.config import supported_VLM
from vlmeval.utils import track_progress_rich
from vlmeval.smp import *
FAIL_MSG = 'Failed to obtain answer via API.'
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, nargs='+', required=True)
parser.add_argument('--model', type=str, nargs='+', required=True)
parser.add_argument('--nproc', type=int, default=4, required=True)
parser.add_argument('--verbose', action='store_true')
args = parser.parse_args()
return args
def chat_mt(model, messages, dataset_name):
assert len(messages) % 2 == 0
nturn = len(messages) // 2
utter_stack = []
predictions = []
for i in range(nturn):
utter = messages[2 * i]
utter_stack.append(utter)
try:
resp = model.chat(utter_stack, dataset=dataset_name)
utter_stack.append(dict(role='assistant', content=resp))
except:
resp = FAIL_MSG
utter_stack.append(dict(role='assistant', content=resp))
predictions.append(resp)
return predictions
# Only API model is accepted
def infer_data_api(work_dir, model_name, dataset, index_set=None, api_nproc=4, ignore_failed=False):
rank, world_size = get_rank_and_world_size()
assert rank == 0 and world_size == 1
dataset_name = dataset.dataset_name
data = dataset.data
if index_set is not None:
data = data[data['index'].isin(index_set)]
model = supported_VLM[model_name]() if isinstance(model_name, str) else model_name
assert getattr(model, 'is_api', False)
assert hasattr(model, 'chat_inner')
lt, indices = len(data), list(data['index'])
structs = [dataset.build_prompt(data.iloc[i]) for i in range(lt)]
out_file = f'{work_dir}/{model_name}_{dataset_name}_supp.pkl'
res = {}
if osp.exists(out_file):
res = load(out_file)
if ignore_failed:
res = {k: v for k, v in res.items() if FAIL_MSG not in v}
structs = [s for i, s in zip(indices, structs) if i not in res]
indices = [i for i in indices if i not in res]
structs = [dict(model=model, messages=struct, dataset_name=dataset_name) for struct in structs]
if len(structs):
track_progress_rich(chat_mt, structs, nproc=api_nproc, chunksize=api_nproc, save=out_file, keys=indices)
res = load(out_file)
if index_set is not None:
res = {k: v for k, v in res.items() if k in index_set}
os.remove(out_file)
return res
def infer_data(model_name, work_dir, dataset, out_file, verbose=False, api_nproc=4):
dataset_name = dataset.dataset_name
res = {}
if osp.exists(out_file):
res.update(load(out_file))
rank, world_size = get_rank_and_world_size()
sheet_indices = list(range(rank, len(dataset), world_size))
lt = len(sheet_indices)
data = dataset.data.iloc[sheet_indices]
data_indices = [i for i in data['index']]
# If finished, will exit without building the model
all_finished = True
for i in range(lt):
idx = data.iloc[i]['index']
if idx not in res:
all_finished = False
if all_finished:
res = {k: res[k] for k in data_indices}
dump(res, out_file)
return
# Data need to be inferred
data = data[~data['index'].isin(res)]
lt = len(data)
model = supported_VLM[model_name]() if isinstance(model_name, str) else model_name
assert hasattr(model, 'chat_inner')
is_api = getattr(model, 'is_api', False)
if is_api:
lt, indices = len(data), list(data['index'])
supp = infer_data_api(
work_dir=work_dir,
model_name=model_name,
dataset=dataset,
index_set=set(indices),
api_nproc=api_nproc)
for idx in indices:
assert idx in supp
res.update(supp)
res = {k: res[k] for k in data_indices}
dump(res, out_file)
return model_name
else:
model.set_dump_image(dataset.dump_image)
for i in tqdm(range(lt)):
idx = data.iloc[i]['index']
if idx in res:
continue
if hasattr(model, 'use_custom_prompt') and model.use_custom_prompt(dataset_name):
struct = model.build_prompt(data.iloc[i], dataset=dataset_name)
else:
struct = dataset.build_prompt(data.iloc[i])
response = chat_mt(model, struct, dataset_name)
torch.cuda.empty_cache()
if verbose:
print(response, flush=True)
res[idx] = response
if (i + 1) % 20 == 0:
dump(res, out_file)
res = {k: res[k] for k in data_indices}
dump(res, out_file)
return model
# A wrapper for infer_data, do the pre & post processing
def infer_data_job_mt(model, work_dir, model_name, dataset, verbose=False, api_nproc=4, ignore_failed=False):
rank, world_size = get_rank_and_world_size()
dataset_name = dataset.dataset_name
result_file = osp.join(work_dir, f'{model_name}_{dataset_name}.tsv')
tmpl = osp.join(work_dir, '{}' + f'{world_size}_{dataset_name}.pkl')
out_file = tmpl.format(rank)
model = infer_data(
model, work_dir=work_dir, dataset=dataset, out_file=out_file, verbose=verbose, api_nproc=api_nproc)
if world_size > 1:
dist.barrier()
if rank == 0:
data_all = {}
for i in range(world_size):
data_all.update(load(tmpl.format(i)))
data = dataset.data
for x in data['index']:
assert x in data_all
data['prediction'] = [data_all[x] for x in data['index']]
if 'image' in data:
data.pop('image')
dump(data, result_file)
for i in range(world_size):
os.remove(tmpl.format(i))
return model

View File

@@ -0,0 +1,166 @@
import torch
import torch.distributed as dist
from vlmeval.config import supported_VLM
from vlmeval.utils import track_progress_rich
from vlmeval.smp import *
FAIL_MSG = 'Failed to obtain answer via API.'
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, nargs='+', required=True)
parser.add_argument('--model', type=str, nargs='+', required=True)
parser.add_argument('--nproc', type=int, default=4, required=True)
parser.add_argument('--verbose', action='store_true')
args = parser.parse_args()
return args
# Only API model is accepted
def infer_data_api(work_dir, model_name, dataset, nframe=8, pack=False, samples_dict={}, api_nproc=4):
rank, world_size = get_rank_and_world_size()
assert rank == 0 and world_size == 1
dataset_name = dataset.dataset_name
model = supported_VLM[model_name]() if isinstance(model_name, str) else model_name
assert getattr(model, 'is_api', False)
indices = list(samples_dict.keys())
structs = [dataset.build_prompt(samples_dict[idx], num_frames=nframe,
video_llm=getattr(model, 'VIDEO_LLM', False)) for idx in indices]
packstr = 'pack' if pack else 'nopack'
out_file = f'{work_dir}/{model_name}_{dataset_name}_{nframe}frame_{packstr}_supp.pkl'
res = load(out_file) if osp.exists(out_file) else {}
structs = [s for i, s in zip(indices, structs) if i not in res]
indices = [i for i in indices if i not in res]
gen_func = model.generate
structs = [dict(message=struct, dataset=dataset_name) for struct in structs]
if len(structs):
track_progress_rich(gen_func, structs, nproc=api_nproc, chunksize=api_nproc, save=out_file, keys=indices)
res = load(out_file)
return res
def infer_data(model_name, work_dir, dataset, out_file, nframe=8, pack=False, verbose=False, api_nproc=4):
res = load(out_file) if osp.exists(out_file) else {}
rank, world_size = get_rank_and_world_size()
dataset_name = dataset.dataset_name
sample_indices = list(dataset.videos) if pack else list(dataset.data['index'])
samples = list(dataset.videos) if pack else list(range(len(dataset.data)))
sample_map = {i: s for i, s in zip(sample_indices, samples)}
sample_indices_sub = sample_indices[rank::world_size]
if np.all([idx in res for idx in sample_indices_sub]):
return model_name
sample_indices_subrem = [x for x in sample_indices_sub if x not in res]
model = supported_VLM[model_name]() if isinstance(model_name, str) else model_name
is_api = getattr(model, 'is_api', False)
if is_api:
assert world_size == 1
supp = infer_data_api(
work_dir=work_dir,
model_name=model_name,
dataset=dataset,
nframe=nframe,
pack=pack,
samples_dict={k: sample_map[k] for k in sample_indices_subrem},
api_nproc=api_nproc)
for k in sample_indices_subrem:
assert k in supp
res.update(supp)
dump(res, out_file)
return model_name
for i, idx in tqdm(enumerate(sample_indices_subrem)):
if idx in res:
continue
# adapt to model frame sample number first
nframe = getattr(model, 'nframe', 0) if getattr(model, 'nframe', 0) > 0 else nframe
# when using video-llm, build prompt returns video+question; otherwise, several frames+question
struct = dataset.build_prompt(sample_map[idx], num_frames=nframe, video_llm=getattr(model, 'VIDEO_LLM', False))
response = model.generate(message=struct, dataset=dataset_name)
torch.cuda.empty_cache()
if verbose:
print(response, flush=True)
res[idx] = response
if (i + 1) % 20 == 0:
dump(res, out_file)
res = {k: res[k] for k in sample_indices_sub}
dump(res, out_file)
return model
# A wrapper for infer_data, do the pre & post processing
def infer_data_job_video(
model,
work_dir,
model_name,
dataset,
nframe=8,
pack=False,
verbose=False,
subtitle=False,
api_nproc=4):
dataset_name = dataset.dataset_name
packstr = 'pack' if pack else 'nopack'
rank, world_size = get_rank_and_world_size()
result_file = osp.join(work_dir, f'{model_name}_{dataset_name}_{nframe}frame_{packstr}.xlsx')
if dataset_name == 'Video-MME':
subtitle_str = 'subs' if subtitle else 'nosubs'
result_file = result_file.replace('.xlsx', f'_{subtitle_str}.xlsx')
# Dump Predictions to Prev File if result file exists
if osp.exists(result_file):
return model_name
tmpl = osp.join(work_dir, '{}' + f'{world_size}_{dataset_name}_{nframe}frame_{packstr}.pkl')
if dataset_name == 'Video-MME':
subtitle_str = 'subs' if subtitle else 'nosubs'
tmpl = tmpl.replace('.pkl', f'_{subtitle_str}.pkl')
out_file = tmpl.format(rank)
model = infer_data(
model,
work_dir=work_dir,
dataset=dataset,
nframe=nframe,
pack=pack,
out_file=out_file,
verbose=verbose,
api_nproc=api_nproc)
if world_size > 1:
dist.barrier()
if rank == 0:
data_all = {}
for i in range(world_size):
data_all.update(load(tmpl.format(i)))
meta = dataset.data
if dataset_name == 'MMBench-Video' and pack:
meta, vstats = dataset.load_pack_answers(data_all)
print(f'Statitics of Pack Video Inference: {vstats}')
else:
for x in meta['index']:
assert x in data_all
meta['prediction'] = [str(data_all[x]) for x in meta['index']]
if 'image' in meta:
meta.pop('image')
dump(meta, result_file)
for i in range(world_size):
os.remove(tmpl.format(i))
return model

View File

@@ -9,6 +9,60 @@ import time
import numpy as np import numpy as np
import validators import validators
import mimetypes import mimetypes
import multiprocessing as mp
from .misc import toliststr
from .vlm import decode_base64_to_image_file
def decode_img_omni(tup):
root, im, p = tup
images = toliststr(im)
paths = toliststr(p)
if len(images) > 1 and len(paths) == 1:
paths = [osp.splitext(p)[0] + f'_{i}' + osp.splitext(p)[1] for i in range(len(images))]
assert len(images) == len(paths)
paths = [osp.join(root, p) for p in paths]
for p, im in zip(paths, images):
if osp.exists(p):
continue
if isinstance(im, str) and len(im) > 64:
decode_base64_to_image_file(im, p)
return paths
def localize_df(data, dname, nproc=32):
assert 'image' in data
indices = list(data['index'])
indices_str = [str(x) for x in indices]
images = list(data['image'])
image_map = {x: y for x, y in zip(indices_str, images)}
root = LMUDataRoot()
root = osp.join(root, 'images', dname)
os.makedirs(root, exist_ok=True)
if 'image_path' in data:
img_paths = list(data['image_path'])
else:
img_paths = []
for i in indices_str:
if len(image_map[i]) <= 64:
idx = image_map[i]
assert idx in image_map and len(image_map[idx]) > 64
img_paths.append(f'{idx}.jpg')
else:
img_paths.append(f'{i}.jpg')
tups = [(root, im, p) for p, im in zip(img_paths, images)]
pool = mp.Pool(32)
ret = pool.map(decode_img_omni, tups)
pool.close()
data.pop('image')
if 'image_path' not in data:
data['image_path'] = [x[0] if len(x) == 1 else x for x in ret]
return data
def LMUDataRoot(): def LMUDataRoot():
@@ -17,10 +71,9 @@ def LMUDataRoot():
home = osp.expanduser('~') home = osp.expanduser('~')
root = osp.join(home, 'LMUData') root = osp.join(home, 'LMUData')
os.makedirs(root, exist_ok=True) os.makedirs(root, exist_ok=True)
# root = './LMUData'
# os.makedirs(root, exist_ok=True)
return root return root
def MMBenchOfficialServer(dataset_name): def MMBenchOfficialServer(dataset_name):
root = LMUDataRoot() root = LMUDataRoot()
@@ -92,7 +145,7 @@ def dump(data, f, **kwargs):
return handlers[suffix](data, f, **kwargs) return handlers[suffix](data, f, **kwargs)
def load(f): def load(f, fmt=None):
def load_pkl(pth): def load_pkl(pth):
return pickle.load(open(pth, 'rb')) return pickle.load(open(pth, 'rb'))
@@ -117,6 +170,9 @@ def load(f):
return pd.read_csv(f, sep='\t') return pd.read_csv(f, sep='\t')
handlers = dict(pkl=load_pkl, json=load_json, jsonl=load_jsonl, xlsx=load_xlsx, csv=load_csv, tsv=load_tsv) handlers = dict(pkl=load_pkl, json=load_json, jsonl=load_jsonl, xlsx=load_xlsx, csv=load_csv, tsv=load_tsv)
if fmt is not None:
return handlers[fmt](f)
suffix = f.split('.')[-1] suffix = f.split('.')[-1]
return handlers[suffix](f) return handlers[suffix](f)
@@ -134,9 +190,24 @@ def download_file(url, filename=None):
if filename is None: if filename is None:
filename = url.split('/')[-1] filename = url.split('/')[-1]
with DownloadProgressBar(unit='B', unit_scale=True, # If HF_ENDPOINT is set, replace huggingface.co with it
miniters=1, desc=url.split('/')[-1]) as t: if 'huggingface.co' in url and os.environ.get('HF_ENDPOINT', '') != '':
url = url.replace('huggingface.co', os.environ['HF_ENDPOINT'].split('://')[1])
try:
with DownloadProgressBar(unit='B', unit_scale=True, miniters=1, desc=url.split('/')[-1]) as t:
urllib.request.urlretrieve(url, filename=filename, reporthook=t.update_to) urllib.request.urlretrieve(url, filename=filename, reporthook=t.update_to)
except:
# Handle Failed Downloads from huggingface.co
if 'huggingface.co' in url:
url_new = url.replace('huggingface.co', 'hf-mirror.com')
try:
os.system(f'wget {url_new} -O {filename}')
except:
raise Exception(f'Failed to download {url}')
else:
raise Exception(f'Failed to download {url}')
return filename return filename
@@ -210,7 +281,7 @@ def last_modified(pth):
def parse_file(s): def parse_file(s):
if osp.exists(s): if osp.exists(s) and s != '.':
assert osp.isfile(s) assert osp.isfile(s)
suffix = osp.splitext(s)[1].lower() suffix = osp.splitext(s)[1].lower()
mime = mimetypes.types_map.get(suffix, 'unknown') mime = mimetypes.types_map.get(suffix, 'unknown')
@@ -228,3 +299,20 @@ def parse_file(s):
return ('url', s) return ('url', s)
else: else:
return (None, s) return (None, s)
def file_size(f, unit='GB'):
stats = os.stat(f)
div_map = {
'GB': 2 ** 30,
'MB': 2 ** 20,
'KB': 2 ** 10,
}
return stats.st_size / div_map[unit]
def parquet_to_tsv(file_path):
data = pd.read_parquet(file_path)
pth = '/'.join(file_path.split('/')[:-1])
data_name = file_path.split('/')[-1].split('.')[0]
data.to_csv(osp.join(pth, f'{data_name}.tsv'), sep='\t', index=False)

View File

@@ -18,8 +18,8 @@ from multiprocessing import Pool, current_process
from tqdm import tqdm from tqdm import tqdm
import datetime import datetime
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import seaborn as sns from tabulate import tabulate
from tabulate import tabulate_formats, tabulate from json import JSONDecoder
from huggingface_hub import scan_cache_dir from huggingface_hub import scan_cache_dir
from sty import fg, bg, ef, rs from sty import fg, bg, ef, rs
@@ -71,7 +71,7 @@ def bincount(lst):
bins[item] += 1 bins[item] += 1
return bins return bins
def get_cache_path(repo_id): def get_cache_path(repo_id, branch=None):
hf_cache_info = scan_cache_dir() hf_cache_info = scan_cache_dir()
repos = list(hf_cache_info.repos) repos = list(hf_cache_info.repos)
repo = None repo = None
@@ -82,6 +82,8 @@ def get_cache_path(repo_id):
if repo is None: if repo is None:
return None return None
revs = list(repo.revisions) revs = list(repo.revisions)
if branch is not None:
revs = [r for r in revs if r.refs == frozenset({branch})]
rev2keep, last_modified = None, 0 rev2keep, last_modified = None, 0
for rev in revs: for rev in revs:
if rev.last_modified > last_modified: if rev.last_modified > last_modified:
@@ -189,3 +191,26 @@ def version_cmp(v1, v2, op='eq'):
import operator import operator
op_func = getattr(operator, op) op_func = getattr(operator, op)
return op_func(version.parse(v1), version.parse(v2)) return op_func(version.parse(v1), version.parse(v2))
def toliststr(s):
if isinstance(s, str) and (s[0] == '[') and (s[-1] == ']'):
return [str(x) for x in eval(s)]
elif isinstance(s, str):
return [s]
elif isinstance(s, list):
return [str(x) for x in s]
raise NotImplementedError
def extract_json_objects(text, decoder=JSONDecoder()):
pos = 0
while True:
match = text.find('{', pos)
if match == -1: break
try:
result, index = decoder.raw_decode(text[match:])
yield result
pos = match + index
except ValueError:
pos = match + 1

View File

@@ -7,10 +7,53 @@ from uuid import uuid4
import os.path as osp import os.path as osp
import base64 import base64
from PIL import Image from PIL import Image
from .file import load, dump import sys
Image.MAX_IMAGE_PIXELS = 1e9 Image.MAX_IMAGE_PIXELS = 1e9
def rescale_img(img, tgt=None):
assert isinstance(tgt, tuple) and -1 in tgt
w, h = img.size
if tgt[0] != -1:
new_w, new_h = tgt[0], int(tgt[0] / w * h)
elif tgt[1] != -1:
new_w, new_h = int(tgt[1] / h * w), tgt[1]
img = img.resize((new_w, new_h))
return img
def concat_images_vlmeval(images, target_size=-1, mode='h', return_image=False):
from .file import md5
ims = [Image.open(im) for im in images]
if target_size != -1:
ims = [
rescale_img(im, (-1, target_size) if mode == 'h' else (target_size, -1))
for im in ims
]
ws, hs = [x.width for x in ims], [x.height for x in ims]
if mode == 'h':
new_w, new_h = sum(ws), max(hs)
dst = Image.new('RGB', (new_w, new_h))
for i, im in enumerate(ims):
dst.paste(im, (sum(ws[:i]), 0))
elif mode == 'v':
new_w, new_h = max(ws), sum(hs)
dst = Image.new('RGB', (new_w, new_h))
for i, im in enumerate(ims):
dst.paste(im, (sum(ws[:i], 0)))
if return_image:
return dst
else:
_str = '\n'.join(images)
str_md5 = md5(_str)
tgt = osp.join('/tmp', str_md5 + '.jpg')
dst.save(tgt)
return tgt
def mmqa_display(question, target_size=512): def mmqa_display(question, target_size=512):
question = {k.lower(): v for k, v in question.items()} question = {k.lower(): v for k, v in question.items()}
keys = list(question.keys()) keys = list(question.keys())
@@ -41,14 +84,12 @@ def encode_image_to_base64(img, target_size=-1):
# else, will set the max_size ot (target_size, target_size) # else, will set the max_size ot (target_size, target_size)
if img.mode in ('RGBA', 'P'): if img.mode in ('RGBA', 'P'):
img = img.convert('RGB') img = img.convert('RGB')
tmp = osp.join('/tmp', str(uuid4()) + '.jpg')
if target_size > 0: if target_size > 0:
img.thumbnail((target_size, target_size)) img.thumbnail((target_size, target_size))
img.save(tmp) img_buffer = io.BytesIO()
with open(tmp, 'rb') as image_file: img.save(img_buffer, format='JPEG')
image_data = image_file.read() image_data = img_buffer.getvalue()
ret = base64.b64encode(image_data).decode('utf-8') ret = base64.b64encode(image_data).decode('utf-8')
os.remove(tmp)
return ret return ret
@@ -110,6 +151,7 @@ def circular_pred(df, extract_func=None):
extract_func = lambda x: x # noqa: E731 extract_func = lambda x: x # noqa: E731
df = df.sort_values('index') df = df.sort_values('index')
from vlmeval.utils import can_infer_option from vlmeval.utils import can_infer_option
shift = int(1e6) shift = int(1e6)
choices = [extract_func(x) for x in df['prediction']] choices = [extract_func(x) for x in df['prediction']]
@@ -118,9 +160,12 @@ def circular_pred(df, extract_func=None):
valid_map = {i: True for i in pred_map if i < 1e6} valid_map = {i: True for i in pred_map if i < 1e6}
for i in df['index']: for i in df['index']:
if i >= shift and pred_map[i] and pred_map[i - shift]: if i >= shift and pred_map[i] and pred_map[i - shift]:
if ( if pred_map[i] not in list(
pred_map[i] not in list(string.ascii_uppercase) or # noqa: W504 string.ascii_uppercase
pred_map[i - shift] not in list(string.ascii_uppercase) ) or pred_map[ # noqa: W504
i - shift
] not in list(
string.ascii_uppercase
): ):
valid_map[i % shift] = False valid_map[i % shift] = False

View File

@@ -0,0 +1,421 @@
import sys
from vlmeval.config import *
from vlmeval.smp import *
# Define valid modes
MODES = ('dlist', 'mlist', 'missing', 'circular', 'localize', 'check', 'run', 'eval')
CLI_HELP_MSG = \
f"""
Arguments received: {str(['vlmutil'] + sys.argv[1:])}. vlmutil commands use the following syntax:
vlmutil MODE MODE_ARGS
Where MODE (required) is one of {MODES}
MODE_ARG (optional) is the argument for specific mode
Some usages for xtuner commands: (See more by using -h for specific command!)
1. List all the dataset by levels: l1, l2, l3, etc.:
vlmutil dlist [l1/l2/l3/...]
2. List all the models by categories: 4.33.0, 4.37.0, api, etc.:
vlmutil mlist 4.33.0 [all/small/large]
3. Report missing results:
vlmutil missing [l1/l2/l3/...]
4. Create circular questions (only for multiple-choice questions with no more than 4 choices):
vlmutil circular input.tsv
5. Create a localized version of the dataset (for very large tsv files):
vlmutil localize input.tsv
6. Check the validity of a model:
vlmutil check [model_name/model_series]
7. Run evaluation for missing results:
vlmutil run l2 hf
8. Evaluate data file:
vlmutil eval [dataset_name] [prediction_file]
GitHub: https://github.com/open-compass/VLMEvalKit
""" # noqa: E501
dataset_levels = {
'l1': [
('MMVet', 'gpt-4-turbo_score.csv'), ('MMMU_DEV_VAL', 'acc.csv'),
('MathVista_MINI', 'gpt-4-turbo_score.csv'), ('HallusionBench', 'score.csv'),
('OCRBench', 'score.json'), ('AI2D_TEST', 'acc.csv'), ('MMStar', 'acc.csv'),
('MMBench_V11', 'acc.csv'), ('MMBench_CN_V11', 'acc.csv')
],
'l2': [
('MME', 'score.csv'), ('LLaVABench', 'score.csv'), ('RealWorldQA', 'acc.csv'),
('MMBench', 'acc.csv'), ('MMBench_CN', 'acc.csv'), ('CCBench', 'acc.csv'),
('SEEDBench_IMG', 'acc.csv'), ('COCO_VAL', 'score.json'), ('POPE', 'score.csv'),
('ScienceQA_VAL', 'acc.csv'), ('ScienceQA_TEST', 'acc.csv'), ('MMT-Bench_VAL', 'acc.csv'),
('SEEDBench2_Plus', 'acc.csv'), ('BLINK', 'acc.csv'), ('MTVQA_TEST', 'acc.json'),
('Q-Bench1_VAL', 'acc.csv'), ('A-Bench_VAL', 'acc.csv')
],
'l3': [
('OCRVQA_TESTCORE', 'acc.csv'), ('TextVQA_VAL', 'acc.csv'),
('ChartQA_TEST', 'acc.csv'), ('DocVQA_VAL', 'acc.csv'), ('InfoVQA_VAL', 'acc.csv'),
('SEEDBench2', 'acc.csv')
]
}
dataset_levels['l12'] = dataset_levels['l1'] + dataset_levels['l2']
dataset_levels['l23'] = dataset_levels['l2'] + dataset_levels['l3']
dataset_levels['l123'] = dataset_levels['l12'] + dataset_levels['l3']
models = {
'4.33.0': list(qwen_series) + list(xcomposer_series) + [
'mPLUG-Owl2', 'flamingov2', 'VisualGLM_6b', 'MMAlaya', 'PandaGPT_13B', 'VXVERSE'
] + list(idefics_series) + list(minigpt4_series) + list(instructblip_series),
'4.37.0': [x for x in llava_series if 'next' not in x] + list(internvl_series) + [
'TransCore_M', 'emu2_chat', 'MiniCPM-V', 'MiniCPM-V-2', 'OmniLMM_12B',
'cogvlm-grounding-generalist', 'cogvlm-chat', 'cogvlm2-llama3-chat-19B',
] + list(xtuner_series) + list(yivl_series) + list(deepseekvl_series) + list(cambrian_series),
'4.40.0': [
'idefics2_8b', 'Bunny-llama3-8B', 'MiniCPM-Llama3-V-2_5', '360VL-70B', 'Phi-3-Vision',
] + list(wemm_series),
'latest': ['paligemma-3b-mix-448', 'MiniCPM-V-2_6', 'glm-4v-9b'] + [x for x in llava_series if 'next' in x]
+ list(chameleon_series) + list(ovis_series) + list(mantis_series),
'api': list(api_models)
}
# SKIP_MODELS will be skipped in report_missing and run APIs
SKIP_MODELS = [
'MGM_7B', 'GPT4V_HIGH', 'GPT4V', 'flamingov2', 'PandaGPT_13B',
'GeminiProVision', 'Step1V-0701', 'SenseChat-5-Vision',
'llava_v1_7b', 'sharegpt4v_7b', 'sharegpt4v_13b',
'llava-v1.5-7b-xtuner', 'llava-v1.5-13b-xtuner',
'cogvlm-grounding-generalist', 'InternVL-Chat-V1-1',
'InternVL-Chat-V1-2', 'InternVL-Chat-V1-2-Plus', 'RekaCore',
'llava_next_72b', 'llava_next_110b', 'MiniCPM-V', 'sharecaptioner', 'XComposer',
'VisualGLM_6b', 'idefics_9b_instruct', 'idefics_80b_instruct',
'mPLUG-Owl2', 'MMAlaya', 'OmniLMM_12B', 'emu2_chat', 'VXVERSE'
] + list(minigpt4_series) + list(instructblip_series) + list(xtuner_series) + list(chameleon_series) + list(vila_series)
LARGE_MODELS = [
'idefics_80b_instruct', '360VL-70B', 'emu2_chat', 'InternVL2-76B',
]
def completed(m, d, suf):
score_file = f'outputs/{m}/{m}_{d}_{suf}'
if osp.exists(score_file):
return True
if d == 'MMBench':
s1, s2 = f'outputs/{m}/{m}_MMBench_DEV_EN_{suf}', f'outputs/{m}/{m}_MMBench_TEST_EN_{suf}'
return osp.exists(s1) and osp.exists(s2)
elif d == 'MMBench_CN':
s1, s2 = f'outputs/{m}/{m}_MMBench_DEV_CN_{suf}', f'outputs/{m}/{m}_MMBench_TEST_CN_{suf}'
return osp.exists(s1) and osp.exists(s2)
return False
def DLIST(lvl):
lst = [x[0] for x in dataset_levels[lvl]]
return lst
def MLIST(lvl, size='all'):
model_list = models[lvl]
if size == 'small':
model_list = [m for m in model_list if m not in LARGE_MODELS]
elif size == 'large':
model_list = [m for m in model_list if m in LARGE_MODELS]
return [x[0] for x in model_list]
def MISSING(lvl):
from vlmeval.config import supported_VLM
models = list(supported_VLM)
models = [m for m in models if m not in SKIP_MODELS and osp.exists(osp.join('outputs', m))]
if lvl in dataset_levels.keys():
data_list = dataset_levels[lvl]
else:
data_list = [(D, suff) for (D, suff) in dataset_levels['l123'] if D == lvl]
missing_list = []
for f in models:
for D, suff in data_list:
if not completed(f, D, suff):
missing_list.append((f, D))
return missing_list
def CIRCULAR(inp):
assert inp.endswith('.tsv')
data = load(inp)
OFFSET = 1e6
while max(data['index']) >= OFFSET:
OFFSET *= 10
assert 'E' not in data, 'Currently build_circular only works for up to 4-choice questions'
data_2c = data[pd.isna(data['C'])]
data_3c = data[~pd.isna(data['C']) & pd.isna(data['D'])]
data_4c = data[~pd.isna(data['D'])]
map_2c = [('AB', 'BA')]
map_3c = [('ABC', 'BCA'), ('ABC', 'CAB')]
map_4c = [('ABCD', 'BCDA'), ('ABCD', 'CDAB'), ('ABCD', 'DABC')]
def okn(o, n=4):
ostr = o.replace(',', ' ')
osplits = ostr.split()
if sum([c in osplits for c in string.ascii_uppercase[:n - 1]]) == n - 1:
return False
olower = o.lower()
olower = olower.replace(',', ' ')
olower_splits = olower.split()
if 'all' in olower_splits or 'none' in olower_splits:
return False
return True
yay4, nay4 = [], []
lt4 = len(data_4c)
for i in range(lt4):
if okn(data_4c.iloc[i]['D'], 4):
yay4.append(i)
else:
nay4.append(i)
data_4c_y = data_4c.iloc[yay4]
data_4c_n = data_4c.iloc[nay4]
data_3c = pd.concat([data_4c_n, data_3c])
yay3, nay3 = [], []
lt3 = len(data_3c)
for i in range(lt3):
if okn(data_3c.iloc[i]['C'], 3):
yay3.append(i)
else:
nay3.append(i)
data_3c_y = data_3c.iloc[yay3]
data_3c_n = data_3c.iloc[nay3]
data_2c = pd.concat([data_3c_n, data_2c])
def remap(data_in, tup, off):
off = int(off)
data = data_in.copy()
char_map = {k: v for k, v in zip(*tup)}
idx = data.pop('index')
answer = data.pop('answer')
answer_new = [char_map[x] if x in char_map else x for x in answer]
data['answer'] = answer_new
options = {}
for c in char_map:
options[char_map[c]] = data.pop(c)
for c in options:
data[c] = options[c]
data.pop('image')
data['image'] = idx
idx = [x + off for x in idx]
data['index'] = idx
return data
data_all = pd.concat([
data_2c,
data_3c_y,
data_4c_y,
remap(data_2c, map_2c[0], OFFSET),
remap(data_3c_y, map_3c[0], OFFSET),
remap(data_4c_y, map_4c[0], OFFSET),
remap(data_3c_y, map_3c[1], OFFSET * 2),
remap(data_4c_y, map_4c[1], OFFSET * 2),
remap(data_4c_y, map_4c[2], OFFSET * 3),
])
tgt_file = inp.replace('.tsv', '_CIRC.tsv')
dump(data_all, tgt_file)
print(f'The circularized data is saved to {tgt_file}')
assert osp.exists(tgt_file)
print(f'The MD5 for the circularized data is {md5(tgt_file)}')
PTH = osp.realpath(__file__)
IMAGE_PTH = osp.join(osp.dirname(PTH), '../assets/apple.jpg')
msg1 = [
IMAGE_PTH,
'What is in this image?'
]
msg2 = [
dict(type='image', value=IMAGE_PTH),
dict(type='text', value='What is in this image?')
]
msg3 = [
IMAGE_PTH,
IMAGE_PTH,
'How many apples are there in these images?'
]
msg4 = [
dict(type='image', value=IMAGE_PTH),
dict(type='image', value=IMAGE_PTH),
dict(type='text', value='How many apples are there in these images?')
]
def CHECK(val):
if val in supported_VLM:
model = supported_VLM[val]()
print(f'Model: {val}')
for i, msg in enumerate([msg1, msg2, msg3, msg4]):
if i > 1 and not model.INTERLEAVE:
continue
res = model.generate(msg)
print(f'Test {i + 1}: {res}')
elif val in models:
model_list = models[val]
for m in model_list:
CHECK(m)
def LOCALIZE(fname, new_fname=None):
if new_fname is None:
new_fname = fname.replace('.tsv', '_local.tsv')
base_name = osp.basename(fname)
dname = osp.splitext(base_name)[0]
data = load(fname)
data_new = localize_df(data, dname)
dump(data_new, new_fname)
print(f'The localized version of data file is {new_fname}')
return new_fname
def RUN(lvl, model):
import torch
NGPU = torch.cuda.device_count()
SCRIPT = osp.join(osp.dirname(__file__), '../run.py')
logger = get_logger('Run Missing')
def get_env(name):
assert name in ['433', '437', '440', 'latest']
load_env()
env_key = f'ENV_{name}'
return os.environ.get(env_key, None)
missing = MISSING(lvl)
if model == 'all':
pass
elif model == 'api':
missing = [x for x in missing if x[0] in models['api']]
elif model == 'hf':
missing = [x for x in missing if x[0] not in models['api']]
elif model in models:
missing = [x for x in missing if x[0] in models[missing]]
elif model in supported_VLM:
missing = [x for x in missing if x[0] == model]
else:
warnings.warn(f'Invalid model {model}.')
missing.sort(key=lambda x: x[0])
groups = defaultdict(list)
for m, D in missing:
groups[m].append(D)
for m in groups:
if m in SKIP_MODELS:
continue
for dataset in groups[m]:
logger.info(f'Running {m} on {dataset}')
exe = 'python' if m in LARGE_MODELS or m in models['api'] else 'torchrun'
if m not in models['api']:
env = None
env = 'latest' if m in models['latest'] else env
env = '433' if m in models['4.33.0'] else env
env = '437' if m in models['4.37.0'] else env
env = '440' if m in models['4.40.0'] else env
if env is None:
# Not found, default to latest
env = 'latest'
logger.warning(
f"Model {m} does not have a specific environment configuration. Defaulting to 'latest'.")
pth = get_env(env)
if pth is not None:
exe = osp.join(pth, 'bin', exe)
else:
logger.warning(f'Cannot find the env path {env} for model {m}')
if exe.endswith('torchrun'):
cmd = f'{exe} --nproc-per-node={NGPU} {SCRIPT} --model {m} --data {dataset}'
elif exe.endswith('python'):
cmd = f'{exe} {SCRIPT} --model {m} --data {dataset}'
os.system(cmd)
def EVAL(dataset_name, data_file):
from vlmeval.dataset import build_dataset
logger = get_logger('VLMEvalKit Tool-Eval')
dataset = build_dataset(dataset_name)
# Set the judge kwargs first before evaluation or dumping
judge_kwargs = {'nproc': 4, 'verbose': True}
if dataset.TYPE in ['MCQ', 'Y/N']:
judge_kwargs['model'] = 'chatgpt-0125'
elif listinstr(['MMVet', 'MathVista', 'LLaVABench', 'MMBench-Video', 'MathVision'], dataset_name):
judge_kwargs['model'] = 'gpt-4-turbo'
elif listinstr(['MMLongBench', 'MMDU'], dataset_name):
judge_kwargs['model'] = 'gpt-4o'
eval_results = dataset.evaluate(data_file, **judge_kwargs)
if eval_results is not None:
assert isinstance(eval_results, dict) or isinstance(eval_results, pd.DataFrame)
logger.info('Evaluation Results:')
if isinstance(eval_results, dict):
logger.info('\n' + json.dumps(eval_results, indent=4))
elif isinstance(eval_results, pd.DataFrame):
if len(eval_results) < len(eval_results.columns):
eval_results = eval_results.T
logger.info('\n' + tabulate(eval_results))
def cli():
logger = get_logger('VLMEvalKit Tools')
args = sys.argv[1:]
if not args: # no arguments passed
logger.info(CLI_HELP_MSG)
return
if args[0].lower() in MODES:
if args[0].lower() == 'dlist':
assert len(args) >= 2
lst = DLIST(args[1])
print(' '.join(lst))
elif args[0].lower() == 'mlist':
assert len(args) >= 2
size = 'all'
if len(args) > 2:
size = args[2].lower()
lst = MLIST(args[1], size)
print(' '.join(lst))
elif args[0].lower() == 'missing':
assert len(args) >= 2
missing_list = MISSING(args[1])
logger = get_logger('Find Missing')
logger.info(colored(f'Level {args[1]} Missing Results: ', 'red'))
lines = []
for m, D in missing_list:
line = f'Model {m}, Dataset {D}'
logger.info(colored(line, 'red'))
lines.append(line)
mwlines(lines, f'{args[1]}_missing.txt')
elif args[0].lower() == 'circular':
assert len(args) >= 2
CIRCULAR(args[1])
elif args[0].lower() == 'localize':
assert len(args) >= 2
LOCALIZE(args[1])
elif args[0].lower() == 'check':
assert len(args) >= 2
model_list = args[1:]
for m in model_list:
CHECK(m)
elif args[0].lower() == 'run':
assert len(args) >= 2
lvl = args[1]
if len(args) == 2:
model = 'all'
RUN(lvl, model)
else:
for model in args[2:]:
RUN(lvl, model)
elif args[0].lower() == 'eval':
assert len(args) == 3
dataset, data_file = args[1], args[2]
EVAL(dataset, data_file)
else:
logger.error('WARNING: command error!')
logger.info(CLI_HELP_MSG)
return

View File

@@ -1,12 +1,7 @@
from .matching_util import can_infer, can_infer_option, can_infer_text from .matching_util import can_infer, can_infer_option, can_infer_text
from .mp_util import track_progress_rich from .mp_util import track_progress_rich
from .custom_prompt import CustomPrompt
from .dataset_config import dataset_URLs, img_root_map, DATASET_TYPE, abbr2full
from .dataset import TSVDataset, split_MMMU, MMMU_result_transfer
__all__ = [ __all__ = [
'can_infer', 'can_infer_option', 'can_infer_text', 'track_progress_rich', 'can_infer', 'can_infer_option', 'can_infer_text', 'track_progress_rich',
'TSVDataset', 'dataset_URLs', 'img_root_map', 'DATASET_TYPE', 'CustomPrompt',
'split_MMMU', 'abbr2full'
] ]

View File

@@ -1,33 +0,0 @@
from ..smp import *
from .dataset_config import img_root_map
from abc import abstractmethod
class CustomPrompt:
@abstractmethod
def use_custom_prompt(self, dataset):
raise NotImplementedError
@abstractmethod
def build_prompt(self, line, dataset):
raise NotImplementedError
def dump_image(self, line, dataset):
ROOT = LMUDataRoot()
assert isinstance(dataset, str)
img_root = osp.join(ROOT, 'images', img_root_map[dataset] if dataset in img_root_map else dataset)
os.makedirs(img_root, exist_ok=True)
if isinstance(line['image'], list):
tgt_path = []
assert 'image_path' in line
for img, im_name in zip(line['image'], line['image_path']):
path = osp.join(img_root, im_name)
if not read_ok(path):
decode_base64_to_image_file(img, path)
tgt_path.append(path)
else:
tgt_path = osp.join(img_root, f"{line['index']}.jpg")
if not read_ok(tgt_path):
decode_base64_to_image_file(line['image'], tgt_path)
return tgt_path

View File

@@ -1,190 +0,0 @@
import pandas as pd
import hashlib
from ..smp import *
from .dataset_config import dataset_URLs, dataset_md5_dict, DATASET_TYPE
from .custom_prompt import CustomPrompt
from .matching_util import can_infer
def isliststr(s):
return (s[0] == '[') and (s[-1] == ']')
def check_md5(data_path, dataset):
if dataset not in dataset_md5_dict:
warnings.warn(f'We do not have an md5 record for dataset {dataset}, skip the md5 check. ')
return True
assert osp.exists(data_path)
with open(data_path, 'rb') as f:
hash = hashlib.new('md5')
for chunk in iter(lambda: f.read(2**20), b''):
hash.update(chunk)
if str(hash.hexdigest()) == dataset_md5_dict[dataset]:
return True
else:
warnings.warn('this data file is incomplete, so it needs to be downloaded again.')
return False
def split_MMMU(msgs):
text, images = None, []
for s in msgs:
if s['type'] == 'image':
images.append(s['value'])
elif s['type'] == 'text':
assert text is None
text = s['value']
text_segs = text.split('<image ')
segs = [dict(type='text', value=text_segs[0])]
for i, seg in enumerate(text_segs):
if i == 0:
continue
assert istype(seg[0], int) and seg[1] == '>'
image_idx = int(seg[0]) - 1
segs.append(dict(type='image', value=images[image_idx]))
segs.append(dict(type='text', value=seg[2:]))
return segs
def MMMU_result_transfer(result_path):
res = {}
result_data = load(result_path)
mcq = result_data['A'].notna()
lt = len(result_data)
for i in range(lt):
line = result_data.iloc[i]
if mcq[i]:
options = {
cand: line[cand]
for cand in string.ascii_uppercase
if cand in line and not pd.isna(line[cand])
}
prediction = line['prediction']
infer_prediction = can_infer(prediction, options)
res[line['id']] = infer_prediction
else:
res[line['id']] = line['prediction']
result_json = result_path.replace('.xlsx', '.json')
dump(res, result_json)
return result_json
class TSVDataset(CustomPrompt):
def __init__(self, dataset='MMBench', skip_noimg=True):
self.data_root = LMUDataRoot()
assert osp.exists(self.data_root)
self.dataset = dataset
self.dataset_type = DATASET_TYPE(dataset)
if dataset in dataset_URLs:
url = dataset_URLs[dataset]
file_name = url.split('/')[-1]
data_path = osp.join(self.data_root, file_name)
if osp.exists(data_path) and check_md5(data_path, dataset):
pass
elif osp.isfile(url):
# If url is actually a file path, use it directly
data_path = url
else:
warnings.warn('The dataset tsv is not downloaded')
download_file(url, data_path)
else:
data_path = osp.join(self.data_root, dataset + '.tsv')
assert osp.exists(data_path)
data = load(data_path)
self.skip_noimg = skip_noimg
if skip_noimg and 'image' in data:
data = data[~pd.isna(data['image'])]
# Prompt for Captioning
if listinstr(['COCO'], dataset):
data['question'] = [(
'Please describe this image in general. Directly provide the description, '
'do not include prefix like "This image depicts". '
)] * len(data)
data['index'] = [str(x) for x in data['index']]
self.meta_only = True
if 'image' in data:
data['image'] = [str(x) for x in data['image']]
image_map = {x: y for x, y in zip(data['index'], data['image'])}
for k in image_map:
if len(image_map[k]) <= 64:
idx = image_map[k]
assert idx in image_map and len(image_map[idx]) > 64
image_map[k] = image_map[idx]
data['image'] = [
eval(image_map[k]) if isliststr(image_map[k]) else image_map[k]
for k in data['index']
]
self.meta_only = False
if 'image_path' in data:
data['image_path'] = [
eval(pths) if isliststr(pths) else pths for pths in data['image_path']
]
if np.all([istype(x, int) for x in data['index']]):
data['index'] = [int(x) for x in data['index']]
self.data = data
def __len__(self):
return len(self.data)
def build_prompt(self, line, dataset=None):
if dataset is None:
dataset = self.dataset
if isinstance(line, int):
line = self.data.iloc[line]
if self.meta_only:
tgt_path = line['image_path']
else:
tgt_path = self.dump_image(line, dataset)
prompt = line['question']
if DATASET_TYPE(dataset) == 'multi-choice':
question = line['question']
options = {
cand: line[cand]
for cand in string.ascii_uppercase
if cand in line and not pd.isna(line[cand])
}
options_prompt = 'Options:\n'
for key, item in options.items():
options_prompt += f'{key}. {item}\n'
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
prompt = ''
if hint is not None:
prompt += f'Hint: {hint}\n'
prompt += f'Question: {question}\n'
if len(options):
prompt += options_prompt
prompt += 'Please select the correct answer from the options above. \n'
elif DATASET_TYPE(dataset) == 'VQA':
if listinstr(['ocrvqa', 'textvqa', 'chartqa', 'docvqa'], dataset.lower()):
prompt += '\nPlease try to answer the question with short words or phrases if possible\n.'
msgs = []
if isinstance(tgt_path, list):
msgs.extend([dict(type='image', value=p) for p in tgt_path])
else:
msgs = [dict(type='image', value=tgt_path)]
msgs.append(dict(type='text', value=prompt))
return msgs
def display(self, line):
if isinstance(line, int):
line = self.data.iloc[line]
mmqa_display(line)

View File

@@ -1,158 +0,0 @@
from ..smp import listinstr
dataset_URLs = {
# MMBench v1.0
'MMBench_DEV_EN': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_DEV_EN.tsv',
'MMBench_TEST_EN': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_TEST_EN.tsv',
'MMBench_DEV_CN': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_DEV_CN.tsv',
'MMBench_TEST_CN': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_TEST_CN.tsv',
'MMBench': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench.tsv', # Internal Only
'MMBench_CN': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_CN.tsv', # Internal Only
# MMBench v1.1
'MMBench_DEV_EN_V11': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_DEV_EN_V11.tsv',
'MMBench_TEST_EN_V11': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_TEST_EN_V11.tsv',
'MMBench_DEV_CN_V11': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_DEV_CN_V11.tsv',
'MMBench_TEST_CN_V11': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_TEST_CN_V11.tsv',
'MMBench_V11': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_V11.tsv', # Internal Only
'MMBench_CN_V11': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_CN_V11.tsv', # Internal Only
# CCBench
'CCBench': 'https://opencompass.openxlab.space/utils/VLMEval/CCBench.tsv',
'MME': 'https://opencompass.openxlab.space/utils/VLMEval/MME.tsv',
'SEEDBench_IMG': 'https://opencompass.openxlab.space/utils/VLMEval/SEEDBench_IMG.tsv',
'CORE_MM': 'https://opencompass.openxlab.space/utils/VLMEval/CORE_MM.tsv',
'MMVet': 'https://opencompass.openxlab.space/utils/VLMEval/MMVet.tsv',
'COCO_VAL': 'https://opencompass.openxlab.space/utils/VLMEval/COCO_VAL.tsv',
'OCRVQA_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/OCRVQA_TEST.tsv',
'OCRVQA_TESTCORE': 'https://opencompass.openxlab.space/utils/VLMEval/OCRVQA_TESTCORE.tsv',
'TextVQA_VAL': 'https://opencompass.openxlab.space/utils/VLMEval/TextVQA_VAL.tsv',
'MMMU_DEV_VAL': 'https://opencompass.openxlab.space/utils/VLMEval/MMMU_DEV_VAL.tsv',
'MMMU_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/MMMU_TEST.tsv',
'MathVista_MINI': 'https://opencompass.openxlab.space/utils/VLMEval/MathVista_MINI.tsv',
'ScienceQA_VAL': 'https://opencompass.openxlab.space/utils/VLMEval/ScienceQA_VAL.tsv',
'ScienceQA_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/ScienceQA_TEST.tsv',
'HallusionBench': 'https://opencompass.openxlab.space/utils/VLMEval/HallusionBench.tsv',
'DocVQA_VAL': 'https://opencompass.openxlab.space/utils/VLMEval/DocVQA_VAL.tsv',
'DocVQA_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/DocVQA_TEST.tsv',
'InfoVQA_VAL': 'https://opencompass.openxlab.space/utils/VLMEval/InfoVQA_VAL.tsv',
'InfoVQA_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/InfoVQA_TEST.tsv',
'AI2D_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/AI2D_TEST.tsv',
'LLaVABench': 'https://opencompass.openxlab.space/utils/VLMEval/LLaVABench.tsv',
'OCRBench': 'https://opencompass.openxlab.space/utils/VLMEval/OCRBench.tsv',
'ChartQA_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/ChartQA_TEST.tsv',
'MMStar': 'https://opencompass.openxlab.space/utils/VLMEval/MMStar.tsv',
'RealWorldQA': 'https://opencompass.openxlab.space/utils/VLMEval/RealWorldQA.tsv',
'POPE': 'https://opencompass.openxlab.space/utils/VLMEval/POPE.tsv',
}
dataset_md5_dict = {
# MMBench v1.0
'MMBench_DEV_EN': 'b6caf1133a01c6bb705cf753bb527ed8',
'MMBench_TEST_EN': '6939fadb0ce626fefc0bdc9c64efc528',
'MMBench_DEV_CN': '08b8fc3324a5ed74155350f57be69fbd',
'MMBench_TEST_CN': '7e1239baf0ee4c8b513e19705a0f317e',
'MMBench': '4115aea3383f3dd0083be6a633e0f820', # Internal Only
'MMBench_CN': '2e053ffc90ea598b1feae13c36dc13ee', # Internal Only
# MMBench v1.1
'MMBench_DEV_EN_V11': '30c05be8f2f347a50be25aa067248184',
'MMBench_TEST_EN_V11': '26f0f15381a21720255091d3e0316ce6',
'MMBench_DEV_CN_V11': '593f9b5f6bea453d870a798b34ae4f37',
'MMBench_TEST_CN_V11': '74bbe4556dac745613c7cbe5ad787050',
'MMBench_V11': 'b9276414f57af1308dcc4d0cd9b42e7c', # Internal Only
'MMBench_CN_V11': '95f6980dd1b4de38e3cbffe0305a3f25', # Internal Only
# CCBench
'CCBench': '1de88b4257e7eee3f60b18d45eda6f07',
'MME': 'b36b43c3f09801f5d368627fb92187c3',
'SEEDBench_IMG': '68017231464752261a2526d6ca3a10c0',
'CORE_MM': '8a8da2f2232e79caf98415bfdf0a202d',
'MMVet': '748aa6d4aa9d4de798306a63718455e3',
'COCO_VAL': '72a5079dead060269ac222c5aa5128af',
'OCRVQA_TEST': 'ca46a6d74b403e9d6c0b670f6fc00db9',
'OCRVQA_TESTCORE': 'c5239fe77db8bdc1f2ad8e55e0d1fe97',
'TextVQA_VAL': 'b233b31f551bbf4056f2f955da3a92cd',
'MMMU_DEV_VAL': '521afc0f3bf341e6654327792781644d',
'MMMU_TEST': 'c19875d11a2d348d07e5eb4bdf33166d',
'MathVista_MINI': 'f199b98e178e5a2a20e7048f5dcb0464',
'ScienceQA_VAL': '96320d05e142e585e7204e72affd29f3',
'ScienceQA_TEST': 'e42e9e00f9c59a80d8a5db35bc32b71f',
'HallusionBench': '0c23ac0dc9ef46832d7a24504f2a0c7c',
'DocVQA_VAL': 'd5ee77e1926ff10690d469c56b73eabf',
'DocVQA_TEST': '6a2f28cac26ef2d3447374e8c6f6c8e9',
'InfoVQA_VAL': '2342e9c225222f0ef4dec545ebb126fe',
'InfoVQA_TEST': 'df535bf51b88dc9718252c34131a6227',
'AI2D_TEST': '0f593e0d1c7df9a3d69bf1f947e71975',
'LLaVABench': 'd382a093f749a697820d3dadd61c8428',
'OCRBench': 'e953d98a987cc6e26ef717b61260b778',
'ChartQA_TEST': 'c902e0aa9be5582a7aad6dcf52734b42',
'MMStar': 'e1ecd2140806c1b1bbf54b43372efb9e',
'RealWorldQA': '92321028d2bc29040284b6674721e48f',
'POPE': 'c12f5acb142f2ef1f85a26ba2fbe41d5',
}
img_root_map = {k: k for k in dataset_URLs}
img_root_map.update({
# MMBench v1.0
'MMBench_DEV_EN': 'MMBench',
'MMBench_TEST_EN': 'MMBench',
'MMBench_DEV_CN': 'MMBench',
'MMBench_TEST_CN': 'MMBench',
'MMBench': 'MMBench', # Internal Only
'MMBench_CN': 'MMBench', # Internal Only
# MMBench v1.1
'MMBench_DEV_EN_V11': 'MMBench_V11',
'MMBench_TEST_EN_V11': 'MMBench_V11',
'MMBench_DEV_CN_V11': 'MMBench_V11',
'MMBench_TEST_CN_V11': 'MMBench_V11',
'MMBench_V11': 'MMBench_V11', # Internal Only
'MMBench_CN_V11': 'MMBench_V11', # Internal Only
'COCO_VAL': 'COCO',
'OCRVQA_TEST': 'OCRVQA',
'OCRVQA_TESTCORE': 'OCRVQA',
'TextVQA_VAL': 'TextVQA',
'MMMU_DEV_VAL': 'MMMU',
'MMMU_TEST': 'MMMU',
'MathVista_MINI': 'MathVista',
'HallusionBench': 'Hallusion',
'DocVQA_VAL': 'DocVQA',
'DocVQA_TEST': 'DocVQA_TEST',
'OCRBench': 'OCRBench',
'ChartQA_TEST': 'ChartQA_TEST',
'InfoVQA_VAL': 'InfoVQA_VAL',
'InfoVQA_TEST': 'InfoVQA_TEST',
'MMStar': 'MMStar',
'RealWorldQA': 'RealWorldQA',
'POPE': 'POPE',
})
assert set(dataset_URLs) == set(img_root_map)
def DATASET_TYPE(dataset):
# Dealing with Custom Dataset
dataset = dataset.lower()
if listinstr(['mmbench', 'seedbench', 'ccbench', 'mmmu', 'scienceqa', 'ai2d', 'mmstar', 'realworldqa'], dataset):
return 'multi-choice'
elif listinstr(['mme', 'hallusion', 'pope'], dataset):
return 'Y/N'
elif 'coco' in dataset:
return 'Caption'
elif listinstr(['ocrvqa', 'textvqa', 'chartqa', 'mathvista', 'docvqa', 'infovqa', 'llavabench',
'mmvet', 'ocrbench'], dataset):
return 'VQA'
else:
if dataset not in dataset_URLs:
import warnings
warnings.warn(f"Dataset {dataset} not found in dataset_URLs, will use 'multi-choice' as the default TYPE.")
return 'multi-choice'
else:
return 'QA'
def abbr2full(s):
datasets = [x for x in img_root_map]
ins = [s in d for d in datasets]
if sum(ins) == 1:
for d in datasets:
if s in d:
return d
else:
return s

View File

@@ -145,7 +145,7 @@ def track_progress_rich(func: Callable,
results = [] results = []
for task in tasks: for task in tasks:
result, idx = worker(task) result, idx = worker(task)
results.append(worker(task)[0]) results.append(result)
if save is not None: if save is not None:
with portalocker.Lock(save, timeout=5) as fh: with portalocker.Lock(save, timeout=5) as fh:
ans = load(save) ans = load(save)

View File

@@ -0,0 +1,97 @@
from ..smp import *
from ..dataset.utils.judge_util import build_judge
from ..dataset.utils.multiple_choice import extract_answer_from_item
from .matching_util import can_infer
from .mp_util import track_progress_rich
def MMMU_result_transfer(result_path):
res = {}
result_data = load(result_path)
mcq = result_data['A'].notna()
lt = len(result_data)
for i in range(lt):
line = result_data.iloc[i]
if mcq[i]:
options = {
cand: line[cand]
for cand in string.ascii_uppercase
if cand in line and not pd.isna(line[cand])
}
prediction = line['prediction']
infer_prediction = can_infer(prediction, options)
res[line['id']] = infer_prediction
else:
res[line['id']] = line['prediction']
result_json = result_path.replace('.xlsx', '.json')
dump(res, result_json)
return result_json
def MMTBench_result_transfer(eval_file, dataset='default', **judge_kwargs):
logger = get_logger('Evaluation')
nproc = judge_kwargs.pop('nproc', 4)
rd.seed(2680)
suffix = eval_file.split('.')[-1]
model = judge_kwargs['model']
assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125']
name_str_map = {
'chatgpt-0125': 'openai',
'gpt-4-0125': 'gpt4'
}
name_str = name_str_map[model] if model in name_str_map else model
if model == 'exact_matching':
model = None
elif gpt_key_set():
model = build_judge(**judge_kwargs)
if not model.working():
logger.error('The OPENAI API is not working properly, will use exact matching for evaluation')
model = None
else:
logger.error('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
model = None
logger.info(f'Evaluating {eval_file}')
result_file = eval_file.replace(f'.{suffix}', f'_{name_str}_option.pkl')
result = {}
if osp.exists(result_file):
result = load(result_file)
data = load(eval_file)
assert 'index' in data, 'Essentail columns missing in the eval_file.'
data = data.sort_values(by='index')
data['prediction'] = [str(x) for x in data['prediction']]
for k in data.keys():
data[k.lower() if k not in list(string.ascii_uppercase) else k] = data.pop(k)
idx2lines = {data.iloc[i]['index']: data.iloc[i] for i in range(len(data))}
idx2lines = {k: v for k, v in idx2lines.items() if k not in result}
indices = list(idx2lines.keys())
lines = [idx2lines[i] for i in indices]
tups = [(model, line) for line in lines]
res = track_progress_rich(
extract_answer_from_item,
tups,
nproc=nproc,
chunksize=nproc,
save=result_file,
keys=indices)
for i, r in zip(indices, res):
if i in result:
assert result[i]['opt'] == r['opt'] and result[i]['log'] == r['log']
else:
result[i] = r
indices = list(data['index'])
data['opt'] = [result[i]['opt'] for i in data['index']]
data['log'] = [result[i]['log'] for i in data['index']]
# load split
output_path = eval_file.replace(f'.{suffix}', f'_{name_str}_submission.tsv')
dump(data, eval_file.replace(f'.{suffix}', f'_{name_str}_submission.tsv'))
return output_path

View File

@@ -3,5 +3,4 @@ import torch
torch.set_grad_enabled(False) torch.set_grad_enabled(False)
torch.manual_seed(1234) torch.manual_seed(1234)
from .base import BaseModel from .base import BaseModel
from .minicpm_llama3_v_2_5 import MiniCPM_Llama3_V from .minicpm_v import MiniCPM_V, MiniCPM_Llama3_V, MiniCPM_V_2_6
from .minicpm_v import MiniCPM_V

View File

@@ -1,12 +1,15 @@
from ..smp import * from ..smp import *
from ..utils.dataset_config import img_root_map from ..dataset import img_root_map
from abc import abstractmethod from abc import abstractmethod
class BaseModel: class BaseModel:
INTERLEAVE = False INTERLEAVE = False
allowed_types = ['text', 'image'] allowed_types = ['text', 'image', 'video']
def __init__(self):
self.dump_image_func = None
def use_custom_prompt(self, dataset): def use_custom_prompt(self, dataset):
"""Whether to use custom prompt for the given dataset. """Whether to use custom prompt for the given dataset.
@@ -33,34 +36,11 @@ class BaseModel:
""" """
raise NotImplementedError raise NotImplementedError
def set_dump_image(self, dump_image_func):
self.dump_image_func = dump_image_func
def dump_image(self, line, dataset): def dump_image(self, line, dataset):
"""Dump the image(s) of the input line to the corresponding dataset folder. return self.dump_image_func(line)
Args:
line (line of pd.DataFrame): The raw input line.
dataset (str): The name of the dataset.
Returns:
str | list[str]: The paths of the dumped images.
"""
ROOT = LMUDataRoot()
assert isinstance(dataset, str)
img_root = osp.join(ROOT, 'images', img_root_map[dataset] if dataset in img_root_map else dataset)
os.makedirs(img_root, exist_ok=True)
if isinstance(line['image'], list):
tgt_path = []
assert 'image_path' in line
for img, im_name in zip(line['image'], line['image_path']):
path = osp.join(img_root, im_name)
if not read_ok(path):
decode_base64_to_image_file(img, path)
tgt_path.append(path)
else:
tgt_path = osp.join(img_root, f"{line['index']}.jpg")
if not read_ok(tgt_path):
decode_base64_to_image_file(line['image'], tgt_path)
tgt_path = [tgt_path]
return tgt_path
@abstractmethod @abstractmethod
def generate_inner(self, message, dataset=None): def generate_inner(self, message, dataset=None):
@@ -134,7 +114,25 @@ class BaseModel:
assert item['type'] in self.allowed_types, f'Invalid input type: {item["type"]}' assert item['type'] in self.allowed_types, f'Invalid input type: {item["type"]}'
return self.generate_inner(message, dataset) return self.generate_inner(message, dataset)
def message_to_promptimg(self, message): def chat(self, messages, dataset=None):
"""The main function for multi-turn chatting. Will call `chat_inner` with the preprocessed input messages."""
assert hasattr(self, 'chat_inner'), 'The API model should has the `chat_inner` method. '
for msg in messages:
assert isinstance(msg, dict) and 'role' in msg and 'content' in msg, msg
assert self.check_content(msg['content']) in ['str', 'dict', 'liststr', 'listdict'], msg
msg['content'] = self.preproc_content(msg['content'])
while len(messages):
try:
return self.chat_inner(messages, dataset=dataset)
except:
messages = messages[1:]
while len(messages) and messages[0]['role'] != 'user':
messages = messages[1:]
continue
return 'Chat Mode: Failed with all possible conversation turns.'
def message_to_promptimg(self, message, dataset=None):
assert not self.INTERLEAVE assert not self.INTERLEAVE
model_name = self.__class__.__name__ model_name = self.__class__.__name__
warnings.warn( warnings.warn(
@@ -146,5 +144,24 @@ class BaseModel:
image = None image = None
else: else:
prompt = '\n'.join([x['value'] for x in message if x['type'] == 'text']) prompt = '\n'.join([x['value'] for x in message if x['type'] == 'text'])
image = [x['value'] for x in message if x['type'] == 'image'][0] images = [x['value'] for x in message if x['type'] == 'image']
if 'BLINK' == dataset:
image = concat_images_vlmeval(images, target_size=512)
else:
image = images[0]
return prompt, image return prompt, image
def message_to_promptvideo(self, message):
if self.VIDEO_LLM:
num_videos = len([x for x in message if x['type'] == 'video'])
if num_videos == 0:
prompt = '\n'.join([x['value'] for x in message if x['type'] == 'text'])
video = None
else:
prompt = '\n'.join([x['value'] for x in message if x['type'] == 'text'])
video = [x['value'] for x in message if x['type'] == 'video'][0]
return prompt, video
else:
import sys
warnings.warn('Model does not support video input.')
sys.exit(-1)

View File

@@ -1,155 +0,0 @@
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer
from ..smp import *
from ..utils import DATASET_TYPE
from .base import BaseModel
class MiniCPM_Llama3_V(BaseModel):
INSTALL_REQ = False
INTERLEAVE = True
def __init__(self, model_path='openbmb/MiniCPM-V', **kwargs):
assert model_path is not None
self.model_path = model_path
self.ckpt = model_path
print(f'load from {self.model_path}')
self.model = AutoModel.from_pretrained(self.model_path, trust_remote_code=True)
if '.pt' in model_path:
print(f'load from {model_path}')
self.state_dict = torch.load(self.ckpt, map_location='cpu')
self.model.load_state_dict(self.state_dict, strict=False)
self.model = self.model.to(dtype=torch.float16)
self.model.eval().cuda()
self.kwargs = kwargs
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True)
torch.cuda.empty_cache()
self.num_beams = 1 if self.model_path == 'openbmb/MiniCPM-V' else 3
self.options_system_prompt = ('Carefully read the following question and select the letter corresponding '
'to the correct answer. Highlight the applicable choices without giving '
'explanations.')
self.wo_options_system_prompt = 'Carefully read the following question Answer the question directly.'
self.detail_system_prompt = 'Answer this question in detail.'
self.vqa_prompt = 'Answer the question using a single word or phrase.'
def use_custom_prompt(self, dataset):
if listinstr(['multi-choice', 'VQA'], DATASET_TYPE(dataset)):
return True
elif dataset is not None and listinstr(['HallusionBench'], dataset):
return True
return False
def build_prompt(self, line, dataset=None):
if dataset is None:
dataset = self.dataset
if isinstance(line, int):
line = self.data.iloc[line]
tgt_path = self.dump_image(line, dataset)
system_prompt = ''
question = line['question']
if DATASET_TYPE(dataset) == 'multi-choice':
options = {
cand: line[cand]
for cand in string.ascii_uppercase
if cand in line and not pd.isna(line[cand])
}
options_prompt = 'Options:\n'
for key, item in options.items():
options_prompt += f'{key}. {item}\n'
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
prompt = ''
if hint is not None:
prompt += f'Hint: {hint}\n'
prompt += f'Question: {question}\n'
if len(options):
prompt += options_prompt
system_prompt = self.options_system_prompt + "\nPlease just indicate your choice."
else:
system_prompt = self.wo_options_system_prompt
if 'MMMU' in dataset: # Corner Case
prompt = system_prompt + '\n' + prompt
system_prompt = ''
elif dataset is not None and listinstr(['HallusionBench'], dataset):
question = line['question'] + " Yes or No?"
prompt = question
elif dataset is not None and listinstr(['OCRBench'], dataset):
system_prompt = self.vqa_prompt
question = line['question']
prompt = question
elif DATASET_TYPE(dataset) == 'VQA':
if listinstr(['LLaVABench'], dataset):
system_prompt = ""
prompt = question
elif listinstr(['MMVet'], dataset):
system_prompt = self.detail_system_prompt
prompt = question
else:
system_prompt = self.vqa_prompt
prompt = question
msgs = []
if system_prompt:
msgs.append(dict(type='text', value=system_prompt))
if isinstance(tgt_path, list):
msgs.extend([dict(type='image', value=p) for p in tgt_path])
else:
msgs = [dict(type='image', value=tgt_path)]
msgs.append(dict(type='text', value=prompt))
return msgs
def generate_inner(self, message, dataset=None):
if DATASET_TYPE(dataset) == 'multi-choice':
max_new_tokens = 200
elif DATASET_TYPE(dataset) == 'Y/N':
max_new_tokens = 3
else:
max_new_tokens = 1024
'''
nums_beams = 3
'''
default_kwargs = dict(
max_new_tokens=max_new_tokens,
sampling=False,
num_beams=self.num_beams,
)
default_kwargs.update(self.kwargs)
content = []
# message = [
# {'type': 'text', 'value': 'sys prompt'},
# {'type': 'image', 'value': '/path/to/image1.jpg'},
# {'type': 'text', 'value': 'Here is an image:'},
# ]
for x in message:
if x['type'] == 'text':
content.append(x['value'])
elif x['type'] == 'image':
image = Image.open(x['value']).convert('RGB')
content.append(image)
msgs = [{'role': 'user', 'content': content}]
res = self.model.chat(
image = None,
msgs=msgs,
context=None,
tokenizer=self.tokenizer,
**default_kwargs
)
if isinstance(res, tuple) and len(res) > 0:
res = res[0]
# print(f"content: {content}, res: {res}")
return res

View File

@@ -1,10 +1,13 @@
import math
import torch import torch
import random
import numpy as np
from PIL import Image from PIL import Image
from transformers import AutoModel, AutoTokenizer from transformers import AutoModel, AutoTokenizer
from .base import BaseModel from .base import BaseModel
from ..smp import * from ..smp import *
from ..utils import DATASET_TYPE from ..dataset import DATASET_TYPE
class MiniCPM_V(BaseModel): class MiniCPM_V(BaseModel):
@@ -59,10 +62,10 @@ class MiniCPM_V(BaseModel):
return message return message
def generate_inner(self, message, dataset=None): def generate_inner(self, message, dataset=None):
prompt, image_path = self.message_to_promptimg(message) prompt, image_path = self.message_to_promptimg(message, dataset=dataset)
image = Image.open(image_path).convert('RGB') image = Image.open(image_path).convert('RGB')
msgs = [{'role': 'user', 'content': prompt}] msgs = [{'role': 'user', 'content': prompt}]
if DATASET_TYPE(dataset) == 'multi-choice': if DATASET_TYPE(dataset) == 'MCQ':
max_new_tokens = 20 max_new_tokens = 20
elif DATASET_TYPE(dataset) == 'Y/N': elif DATASET_TYPE(dataset) == 'Y/N':
max_new_tokens = 100 max_new_tokens = 100
@@ -83,3 +86,374 @@ class MiniCPM_V(BaseModel):
**default_kwargs **default_kwargs
) )
return res return res
class MiniCPM_Llama3_V(BaseModel):
INSTALL_REQ = False
INTERLEAVE = True
def __init__(self, model_path='openbmb/MiniCPM-Llama3-V-2_5', **kwargs):
assert model_path is not None
self.model_path = model_path
print(f'load from {self.model_path}')
self.model = AutoModel.from_pretrained(self.model_path, trust_remote_code=True)
self.model = self.model.to(dtype=torch.float16)
self.model.eval().cuda()
self.kwargs = kwargs
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True)
torch.cuda.empty_cache()
self.num_beams = 1 if self.model_path == 'openbmb/MiniCPM-V' else 3
self.options_system_prompt = ('Carefully read the following question and select the letter corresponding '
'to the correct answer. Highlight the applicable choices without giving '
'explanations.')
self.wo_options_system_prompt = 'Carefully read the following question Answer the question directly.'
self.detail_system_prompt = 'Answer this question in detail.'
self.vqa_prompt = 'Answer the question using a single word or phrase.'
def use_custom_prompt(self, dataset):
if listinstr(['MCQ', 'VQA'], DATASET_TYPE(dataset)):
return True
elif dataset is not None and listinstr(['HallusionBench'], dataset):
return True
return False
def build_prompt(self, line, dataset=None):
if isinstance(line, int):
line = self.data.iloc[line]
tgt_path = self.dump_image(line, dataset)
system_prompt = ''
question = line['question']
if DATASET_TYPE(dataset) == 'MCQ':
options = {
cand: line[cand]
for cand in string.ascii_uppercase
if cand in line and not pd.isna(line[cand])
}
options_prompt = 'Options:\n'
for key, item in options.items():
options_prompt += f'{key}. {item}\n'
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
prompt = ''
if hint is not None:
prompt += f'Hint: {hint}\n'
prompt += f'Question: {question}\n'
if len(options):
prompt += options_prompt
system_prompt = self.options_system_prompt + '\nPlease just indicate your choice.'
else:
system_prompt = self.wo_options_system_prompt
if 'MMMU' in dataset: # Corner Case
prompt = system_prompt + '\n' + prompt
system_prompt = ''
elif dataset is not None and listinstr(['HallusionBench'], dataset):
question = line['question'] + ' Yes or No?'
prompt = question
elif dataset is not None and listinstr(['MME'], dataset):
question = line['question'] + ' Yes or No?'
prompt = question
elif dataset is not None and listinstr(['OCRBench'], dataset):
system_prompt = self.vqa_prompt
question = line['question']
prompt = question
elif DATASET_TYPE(dataset) == 'VQA':
if listinstr(['LLaVABench', 'MMLongBench_DOC'], dataset):
system_prompt = ''
prompt = question
elif listinstr(['MMVet'], dataset):
system_prompt = self.detail_system_prompt
prompt = question
else:
system_prompt = self.vqa_prompt
prompt = question
msgs = []
if system_prompt:
msgs.append(dict(type='text', value=system_prompt))
if isinstance(tgt_path, list):
msgs.extend([dict(type='image', value=p) for p in tgt_path])
else:
msgs = [dict(type='image', value=tgt_path)]
msgs.append(dict(type='text', value=prompt))
return msgs
def generate_inner(self, message, dataset=None):
if DATASET_TYPE(dataset) == 'MCQ':
max_new_tokens = 200
elif DATASET_TYPE(dataset) == 'Y/N':
max_new_tokens = 3
else:
max_new_tokens = 1024
default_kwargs = dict(
max_new_tokens=max_new_tokens,
sampling=False,
num_beams=self.num_beams,
)
default_kwargs.update(self.kwargs)
content = []
for x in message:
if x['type'] == 'text':
content.append(x['value'])
elif x['type'] == 'image':
image = Image.open(x['value']).convert('RGB')
content.append(image)
msgs = [{'role': 'user', 'content': content}]
res = self.model.chat(
msgs=msgs,
context=None,
image=None,
tokenizer=self.tokenizer,
**default_kwargs
)
if isinstance(res, tuple) and len(res) > 0:
res = res[0]
return res
def chat_inner(self, message, dataset=None):
max_new_tokens = 1024
default_kwargs = dict(
max_new_tokens=max_new_tokens,
sampling=False,
num_beams=self.num_beams,
)
default_kwargs.update(self.kwargs)
msgs = []
for msg in message:
content = []
if len(msg['content']) == 1 and msg['content'][0]['type'] == 'text':
msg_new = {'role': msg['role'], 'content': msg['content'][0]['value']}
msgs.append(msg_new)
continue
for x in msg['content']:
if x['type'] == 'text':
content.append(x['value'])
elif x['type'] == 'image':
image = Image.open(x['value']).convert('RGB')
content.append(image)
msg_new = {'role': msg['role'], 'content': content}
msgs.append(msg_new)
res = self.model.chat(
msgs=msgs,
context=None,
image=None,
tokenizer=self.tokenizer,
**default_kwargs)
if isinstance(res, tuple) and len(res) > 0:
res = res[0]
return res
class MiniCPM_V_2_6(BaseModel):
INSTALL_REQ = False
INTERLEAVE = True
def __init__(self, model_path='openbmb/MiniCPM-V', **kwargs):
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)
assert model_path is not None
self.model_path = model_path
print(f'load from path {self.model_path}')
self.model = AutoModel.from_pretrained(self.model_path, trust_remote_code=True)
self.model = self.model.to(dtype=torch.bfloat16)
self.model.eval().cuda()
self.kwargs = kwargs
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True)
torch.cuda.empty_cache()
self.num_beams = 1 if self.model_path == 'openbmb/MiniCPM-V' else 3
self.options_suffix_prompt = '''\nAnswer with the option's letter from the given choices directly.'''
self.wo_options_system_prompt = 'Carefully read the following question Answer the question directly.'
self.detail_system_prompt = 'Answer this question in detail.'
self.vqa_prompt = 'Answer the question using a single word or phrase.'
self.multi_choice_cot_prompt = ('''Carefully read the following multichoice question, solve it step '''
'''by step and finally pick the option associated with the correct '''
'''answer in the format of "Answer: selected option\n\n''')
self.short_ans_cot_prompt = ('''Read the following question carefully, solve it step by step, and '''
'''then output the final answer in the format of "Answer: single number '''
'''or single word or phrase".\n\n''')
def use_custom_prompt(self, dataset=None):
if dataset is None:
return False
if listinstr(['MCQ', 'VQA', 'Y/N'], DATASET_TYPE(dataset)):
return True
return False
def use_cot(self, dataset=None):
if dataset is None:
return False
if listinstr(['MMMU', 'HallusionBench', 'OCRBench', 'ChartQA'], dataset):
return True
elif listinstr(['MathVista', 'MMVet', 'MMBench', 'MMStar', 'AI2D', 'RealWorldQA',
'POPE', 'ScienceQA', 'TextVQA', 'DocVQA'], dataset):
return False
else:
return False
def use_upsize(self, dataset=None):
if dataset is None:
return False
if listinstr(['MMVet', 'MMBench', 'MMStar', 'AI2D', 'OCRBench'], dataset):
return True
else:
return False
def build_prompt(self, line, dataset=None):
if isinstance(line, int):
line = self.data.iloc[line]
tgt_path = self.dump_image(line, dataset)
system_prompt, prompt = '', ''
question = line['question']
if not self.use_cot(dataset):
if DATASET_TYPE(dataset) == 'MCQ':
options = {
cand: line[cand]
for cand in string.ascii_uppercase
if cand in line and not pd.isna(line[cand])
}
options_prompt = 'Options:\n'
for key, item in options.items():
options_prompt += f'{key}. {item}\n'
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
if hint is not None:
prompt += f'Hint: {hint}\n'
prompt += f'Question: {question}\n'
if len(options):
prompt += options_prompt
prompt += self.options_suffix_prompt
else:
system_prompt = self.wo_options_system_prompt
if 'MMMU' in dataset:
if len(system_prompt) > 0:
prompt = system_prompt + '\n' + prompt
system_prompt = ''
elif dataset is not None and listinstr(['HallusionBench'], dataset):
question += ' Yes or No?'
prompt = question
elif dataset is not None and listinstr(['OCRBench'], dataset):
system_prompt = self.vqa_prompt
prompt = question
elif DATASET_TYPE(dataset) == 'VQA':
if listinstr(['LLaVABench'], dataset):
system_prompt = ''
elif listinstr(['MMVet'], dataset):
system_prompt = self.detail_system_prompt
else:
system_prompt = self.vqa_prompt
prompt = question
else:
prompt = question
else:
has_options = True
if DATASET_TYPE(dataset) == 'MCQ':
options = {
cand: line[cand]
for cand in string.ascii_uppercase
if cand in line and not pd.isna(line[cand])
}
options_prompt = ''
for key, item in options.items():
options_prompt += f'{key}. {item}\n'
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
if hint is not None:
prompt += f'Hint: {hint}\n'
prompt += f'{question}\n'
if len(options):
prompt += options_prompt
else:
has_options = False
if 'MMMU' in dataset:
if len(system_prompt) > 0:
prompt = system_prompt + '\n' + prompt
system_prompt = ''
else:
prompt = question
if DATASET_TYPE(dataset) in ['MCQ', 'Y/N', 'VQA']:
if DATASET_TYPE(dataset) == 'MCQ':
if has_options:
prompt = self.multi_choice_cot_prompt + prompt
else:
prompt = self.short_ans_cot_prompt + prompt
elif DATASET_TYPE(dataset) == 'Y/N':
prompt = self.short_ans_cot_prompt + prompt
else:
prompt = self.short_ans_cot_prompt + prompt
msgs = []
if system_prompt:
msgs.append(dict(type='text', value=system_prompt))
if isinstance(tgt_path, list):
msgs.extend([dict(type='image', value=p) for p in tgt_path])
else:
msgs = [dict(type='image', value=tgt_path)]
msgs.append(dict(type='text', value=prompt))
return msgs
def generate_inner(self, message, dataset=None):
max_new_tokens = 2048
default_kwargs = dict(
max_new_tokens=max_new_tokens,
sampling=False,
num_beams=self.num_beams,
)
default_kwargs.update(self.kwargs)
content = []
for x in message:
if x['type'] == 'text':
content.append(x['value'])
elif x['type'] == 'image':
image = Image.open(x['value']).convert('RGB')
if not self.use_upsize(dataset):
content.append(image)
else:
img_width, img_height = image.width, image.height
if (img_width * img_height) >= (1344 * 1344):
content.append(image)
else:
ratio = math.sqrt((1344 * 1344) / (img_width * img_height))
max_img_width = int(img_width * ratio)
new_img_width = random.randint(img_width, max_img_width)
new_img_height = int(new_img_width / img_width * img_height)
resized_image = image.resize((new_img_width, new_img_height))
content.append(resized_image)
msgs = [{'role': 'user', 'content': content}]
res = self.model.chat(
image=None,
msgs=msgs,
context=None,
tokenizer=self.tokenizer,
max_inp_length=8192,
**default_kwargs
)
if isinstance(res, tuple) and len(res) > 0:
res = res[0]
return res

View File

@@ -22,10 +22,16 @@ from eval_utils.vqa_evaluate import *
def get_model(args): def get_model(args):
if args.model_name == '': if args.model_name == '':
raise Exception('Model name cannot be empty str!') raise Exception('Model name cannot be empty str!')
from models.MiniCPM.minicpmv import MiniCPM_V from models.MiniCPM.minicpmv import MiniCPM_V, MiniCPM_V_2_6
model_path = args.model_path model_path = args.model_path
ckpt = args.ckpt ckpt = args.ckpt
if args.model_name == 'minicpmv':
model = MiniCPM_V(model_path=model_path, ckpt=ckpt, device=args.device) model = MiniCPM_V(model_path=model_path, ckpt=ckpt, device=args.device)
elif args.model_name == 'minicpmv26':
model = MiniCPM_V_2_6(model_path=model_path, ckpt=ckpt, device=args.device)
else:
raise Exception(f"Unexpected Moedel Name {args.model_name}!")
return model return model

View File

@@ -4,7 +4,7 @@ import argparse
def parse_args(): def parse_args():
parser = argparse.ArgumentParser(description="Demo") parser = argparse.ArgumentParser(description="Demo")
parser.add_argument('--local-rank', type=int, default=0, help='Local rank for distributed training') parser.add_argument('--local-rank', type=int, default=0, help='Local rank for distributed training.')
# textVQA # textVQA
parser.add_argument("--textVQA_image_dir", type=str, default="") parser.add_argument("--textVQA_image_dir", type=str, default="")

View File

@@ -2,6 +2,9 @@
import torch import torch
from PIL import Image from PIL import Image
from transformers import AutoModel, AutoTokenizer from transformers import AutoModel, AutoTokenizer
import random
import math
import numpy as np
Image.MAX_IMAGE_PIXELS = 1000000000 Image.MAX_IMAGE_PIXELS = 1000000000
@@ -95,3 +98,104 @@ class MiniCPM_V:
res = res[0] res = res[0]
print(f"Q: {content}, \nA: {res}") print(f"Q: {content}, \nA: {res}")
return [res] return [res]
class MiniCPM_V_2_6:
def __init__(self, model_path, ckpt, device=None)->None:
seed = 0
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
self.model_path = model_path
self.ckpt = ckpt
self.model = AutoModel.from_pretrained(self.model_path, trust_remote_code=True).eval()
if self.ckpt is not None:
self.ckpt = ckpt
self.state_dict = torch.load(self.ckpt, map_location=torch.device('cpu'))
self.model.load_state_dict(self.state_dict)
self.model = self.model.to(dtype=torch.bfloat16)
self.model.to(device)
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True)
torch.cuda.empty_cache()
def generate(self, images, questions, datasetname):
image = Image.open(images[0]).convert('RGB')
try:
max_new_tokens = max_token[datasetname]
except:
max_new_tokens = 1024
if (datasetname == 'docVQA') or (datasetname == "docVQATest") :
prompt = "Answer the question directly with single word." + "\n" + questions[0]
elif (datasetname == 'textVQA') :
prompt = "Answer the question directly with single word." + '\n'+ questions[0]
msgs = [{'role': 'user', 'content': prompt}]
default_kwargs = dict(
max_new_tokens=max_new_tokens,
sampling=False,
num_beams=3
)
res = self.model.chat(
image=image,
msgs=msgs,
context=None,
tokenizer=self.tokenizer,
**default_kwargs
)
return [res]
def generate_with_interleaved(self, images, questions, datasetname):
try:
max_new_tokens = max_token[datasetname]
except:
max_new_tokens = 1024
prompt = "Answer the question directly with single word."
default_kwargs = dict(
max_new_tokens=max_new_tokens,
sampling=False,
num_beams=3
)
content = []
message = [
{'type': 'text', 'value': prompt},
{'type': 'image', 'value': images[0]},
{'type': 'text', 'value': questions[0]}
]
for x in message:
if x['type'] == 'text':
content.append(x['value'])
elif x['type'] == 'image':
image = Image.open(x['value']).convert('RGB')
img_width, img_height = image.width, image.height
if (img_width * img_height) >= (1344 * 1344):
content.append(image)
else:
ratio = math.sqrt((1344 * 1344) / (img_width * img_height))
max_img_width = int(img_width * ratio)
new_img_width = random.randint(img_width, max_img_width)
new_img_height = int(new_img_width / img_width * img_height)
resized_image = image.resize((new_img_width, new_img_height))
content.append(resized_image)
msgs = [{'role': 'user', 'content': content}]
res = self.model.chat(
image=None,
msgs=msgs,
context=None,
tokenizer=self.tokenizer,
**default_kwargs
)
if isinstance(res, tuple) and len(res) > 0:
res = res[0]
print(f"Q: {content}, \nA: {res}")
return [res]

View File

@@ -6,7 +6,7 @@ python -m torch.distributed.launch \
--master_addr=${MASTER_ADDR:-127.0.0.1} \ --master_addr=${MASTER_ADDR:-127.0.0.1} \
--master_port=${MASTER_PORT:-12345} \ --master_port=${MASTER_PORT:-12345} \
./eval.py \ ./eval.py \
--model_name minicpm \ --model_name minicpmv26 \
--model_path \ --model_path \
--generate_method interleave \ --generate_method interleave \
--eval_textVQA \ --eval_textVQA \