mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-04 09:49:20 +08:00
Merge pull request #81 from qyc-98/main
add finetuning script in Huggigface Trainer
This commit is contained in:
0
finetune/__init__.py
Normal file
0
finetune/__init__.py
Normal file
290
finetune/dataset.py
Normal file
290
finetune/dataset.py
Normal file
@@ -0,0 +1,290 @@
|
||||
import os
|
||||
import math
|
||||
import json
|
||||
import copy
|
||||
import logging
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
from typing import Dict, Optional, List
|
||||
from PIL import Image
|
||||
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
from transformers import AutoTokenizer, AutoProcessor
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
|
||||
class SupervisedDataset(Dataset):
|
||||
"""Dataset for supervised fine-tuning."""
|
||||
def __init__(self, raw_data, transform, tokenizer, slice_config):
|
||||
super(SupervisedDataset, self).__init__()
|
||||
self.raw_data = raw_data
|
||||
self.tokenizer = tokenizer
|
||||
self.transform = transform
|
||||
self.slice_config = slice_config
|
||||
|
||||
def __len__(self):
|
||||
return len(self.raw_data)
|
||||
|
||||
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
||||
image = Image.open(self.raw_data[i]["image"]).convert("RGB")
|
||||
ret = preprocess(image, self.raw_data[i]["conversations"], self.tokenizer, self.transform, slice_config=self.slice_config)
|
||||
ret = dict(
|
||||
input_ids=ret["input_ids"],
|
||||
labels=ret["target"],
|
||||
attention_mask=ret["input_ids"].ne(self.tokenizer.pad_token_id),
|
||||
pixel_values=ret["pixel_values"],
|
||||
image_bound=ret["image_bound"],
|
||||
)
|
||||
|
||||
return ret
|
||||
|
||||
|
||||
def data_collator(examples, padding_value=0):
|
||||
input_ids = pad_sequence([example["input_ids"] for example in examples], batch_first=True, padding_value=padding_value)
|
||||
targets = pad_sequence([example["labels"] for example in examples], batch_first=True, padding_value=padding_value)
|
||||
attention_mask = pad_sequence([example["attention_mask"] for example in examples], batch_first=True, padding_value=padding_value)
|
||||
pixel_values = [example["pixel_values"] for example in examples]
|
||||
image_bound = [example["image_bound"] for example in examples]
|
||||
return {"input_ids": input_ids, "labels":targets, "attention_mask": attention_mask, "image_bound": image_bound, "pixel_values": pixel_values}
|
||||
|
||||
|
||||
def conversation_to_ids(conversation, tokenizer):
|
||||
"""
|
||||
for single image multi-turn conversation
|
||||
conversation: [{'role': 'user', 'content': 'Describe this image'},
|
||||
{'role': 'assistant', 'content': 'This is a cat.'}]
|
||||
"""
|
||||
raw_msg = ''
|
||||
input_ids = []
|
||||
context = []
|
||||
for idx, msg in enumerate(conversation):
|
||||
role = msg['role']
|
||||
message = msg['content']
|
||||
assert role in ['user', 'assistant']
|
||||
if role == 'user':
|
||||
prefix = '<用户>'
|
||||
else:
|
||||
prefix = '<AI>'
|
||||
# append eos
|
||||
if idx == len(conversation) - 1:
|
||||
message = message + tokenizer.eos_token
|
||||
prefix_ids = tokenizer.encode(prefix)[1:] # remove bos
|
||||
message_ids = tokenizer.encode(message)[1:]
|
||||
|
||||
input_ids.append(prefix_ids)
|
||||
input_ids.append(message_ids)
|
||||
|
||||
context.append(np.ones((len(prefix_ids),), dtype=np.int8))
|
||||
if role == 'assistant':
|
||||
context.append(np.zeros((len(message_ids),), dtype=np.int8))
|
||||
else:
|
||||
context.append(np.ones((len(message_ids),), dtype=np.int8))
|
||||
|
||||
raw_msg += (prefix + message)
|
||||
|
||||
ids = torch.from_numpy(np.hstack(input_ids, dtype=np.int32))
|
||||
context = torch.from_numpy(np.hstack(context, dtype=np.int8))
|
||||
|
||||
# build target
|
||||
target = torch.full_like(ids, -100, dtype=torch.int32)
|
||||
for i in range(1, len(ids)):
|
||||
if context[i] == 0:
|
||||
target[i - 1] = ids[i]
|
||||
if context[i] == 1 and context[i - 1] == 0:
|
||||
target[i - 1] = tokenizer.eos_id
|
||||
|
||||
# build image bound
|
||||
image_start_tokens = torch.where(ids == tokenizer.im_start_id)[0]
|
||||
image_start_tokens += 1
|
||||
image_end_tokens = torch.where(ids == tokenizer.im_end_id)[0]
|
||||
if len(image_start_tokens) != len(image_end_tokens):
|
||||
print('image start token != image end tokens')
|
||||
if len(image_start_tokens)>0:
|
||||
image_bound = torch.hstack([image_start_tokens.unsqueeze(-1), image_end_tokens.unsqueeze(-1)])
|
||||
else:
|
||||
image_bound = []
|
||||
|
||||
return {
|
||||
'input_ids': ids,
|
||||
'target': target,
|
||||
'image_bound': image_bound,
|
||||
'raw_msg': raw_msg,
|
||||
}
|
||||
|
||||
|
||||
def preprocess(image, conversation, tokenizer, transform, query_nums=64, slice_config=None):
|
||||
"""
|
||||
single image preprocess, the image will be placed at the top of the conversation
|
||||
"""
|
||||
conversation = copy.deepcopy(conversation)
|
||||
assert len(conversation) > 1, "conversation length must large than 2"
|
||||
assert conversation[0]['role'] == 'user', "the first role must be user"
|
||||
|
||||
if slice_config is not None:
|
||||
assert isinstance(slice_config, Dict)
|
||||
assert 'patch_size' in slice_config
|
||||
assert 'max_slice_nums' in slice_config
|
||||
assert 'scale_resolution' in slice_config
|
||||
default_image_placeholder = tokenizer.im_start + tokenizer.unk_token * query_nums + tokenizer.im_end
|
||||
if slice_config:
|
||||
images = []
|
||||
source_image, patches, best_grid = slice_image(
|
||||
image, slice_config['max_slice_nums'], slice_config['scale_resolution'], slice_config['patch_size']
|
||||
)
|
||||
images.append(source_image)
|
||||
image_placeholder = default_image_placeholder
|
||||
if len(patches) > 0:
|
||||
for i in range(len(patches)):
|
||||
for j in range(len(patches[0])):
|
||||
images.append(patches[i][j])
|
||||
|
||||
image_placeholder += get_grid_placeholder(
|
||||
tokenizer, best_grid, query_nums
|
||||
)
|
||||
images = [transform(i) for i in images]
|
||||
else:
|
||||
images = [transform(image)]
|
||||
image_placeholder = default_image_placeholder
|
||||
if '<image>' in conversation[0]['content']:
|
||||
conversation[0]['content'] = conversation[0]['content'].replace('<image>', image_placeholder)
|
||||
else:
|
||||
conversation[0]['content'] = image_placeholder + '\n' + conversation[0]['content']
|
||||
|
||||
input_dict = conversation_to_ids(conversation, tokenizer)
|
||||
input_dict['pixel_values'] = images
|
||||
return input_dict
|
||||
|
||||
|
||||
|
||||
def slice_image(
|
||||
image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False
|
||||
):
|
||||
original_size = image.size
|
||||
original_width, original_height = original_size
|
||||
log_ratio = math.log(original_width / original_height)
|
||||
ratio = original_width * original_height / (scale_resolution * scale_resolution)
|
||||
multiple = min(math.ceil(ratio), max_slice_nums)
|
||||
|
||||
source_image = None
|
||||
best_grid = None
|
||||
patches = []
|
||||
|
||||
if multiple <= 1 or never_split:
|
||||
# dont need to slice, upsample
|
||||
best_size = find_best_resize(
|
||||
original_size, scale_resolution, patch_size, allow_upscale=True
|
||||
)
|
||||
source_image = image.resize(best_size, Image.Resampling.BICUBIC)
|
||||
else:
|
||||
candidate_split_grids_nums = []
|
||||
for i in [multiple - 1, multiple, multiple + 1]:
|
||||
if i == 1 or i > max_slice_nums:
|
||||
continue
|
||||
candidate_split_grids_nums.append(i)
|
||||
|
||||
# source image, down-sampling and ensure divided by patch_size
|
||||
best_resize = find_best_resize(original_size, scale_resolution, patch_size)
|
||||
source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
|
||||
candidate_grids = []
|
||||
|
||||
# find best grid
|
||||
for split_grids_nums in candidate_split_grids_nums:
|
||||
m = 1
|
||||
while m <= split_grids_nums:
|
||||
if split_grids_nums % m == 0:
|
||||
candidate_grids.append([m, split_grids_nums // m])
|
||||
m += 1
|
||||
|
||||
best_grid = [1, 1]
|
||||
min_error = float("inf")
|
||||
for grid in candidate_grids:
|
||||
error = abs(log_ratio - math.log(grid[0] / grid[1]))
|
||||
if error < min_error:
|
||||
best_grid = grid
|
||||
min_error = error
|
||||
|
||||
refine_size = get_refine_size(
|
||||
original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
|
||||
)
|
||||
|
||||
refine_image = image.resize(refine_size, Image.Resampling.BICUBIC)
|
||||
patches = split_to_patches(refine_image, best_grid)
|
||||
|
||||
return source_image, patches, best_grid
|
||||
|
||||
|
||||
def ensure_divide(length, patch_size):
|
||||
return max(round(length / patch_size) * patch_size, patch_size)
|
||||
|
||||
|
||||
def find_best_resize(original_size, scale_resolution, patch_size, allow_upscale=False):
|
||||
width, height = original_size
|
||||
if (width * height > scale_resolution * scale_resolution) or allow_upscale:
|
||||
r = width / height
|
||||
height = int(scale_resolution / math.sqrt(r))
|
||||
width = int(height * r)
|
||||
best_width = ensure_divide(width, patch_size)
|
||||
best_height = ensure_divide(height, patch_size)
|
||||
return (best_width, best_height)
|
||||
|
||||
|
||||
def get_refine_size(
|
||||
original_size, grid, scale_resolution, patch_size, allow_upscale=False
|
||||
):
|
||||
width, height = original_size
|
||||
grid_x, grid_y = grid
|
||||
|
||||
refine_width = ensure_divide(width, grid_x)
|
||||
refine_height = ensure_divide(height, grid_y)
|
||||
|
||||
grid_width = refine_width / grid_x
|
||||
grid_height = refine_height / grid_y
|
||||
|
||||
best_grid_size = find_best_resize(
|
||||
(grid_width, grid_height),
|
||||
scale_resolution,
|
||||
patch_size,
|
||||
allow_upscale=allow_upscale,
|
||||
)
|
||||
|
||||
refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)
|
||||
|
||||
return refine_size
|
||||
|
||||
|
||||
def split_to_patches(image, grid):
|
||||
patches = []
|
||||
width, height = image.size
|
||||
grid_x = int(width / grid[0])
|
||||
grid_y = int(height / grid[1])
|
||||
|
||||
for i in range(0, height, grid_y):
|
||||
images = []
|
||||
for j in range(0, width, grid_x):
|
||||
box = (j, i, j + grid_x, i + grid_y)
|
||||
patch = image.crop(box)
|
||||
images.append(patch)
|
||||
patches.append(images)
|
||||
|
||||
return patches
|
||||
|
||||
|
||||
def get_grid_placeholder(tokenizer, grid, query_num):
|
||||
image_placeholder = (
|
||||
tokenizer.im_start + tokenizer.unk_token * query_num + tokenizer.im_end
|
||||
)
|
||||
|
||||
cols = grid[0]
|
||||
rows = grid[1]
|
||||
slices = []
|
||||
for i in range(rows):
|
||||
lines = []
|
||||
for j in range(cols):
|
||||
lines.append(image_placeholder)
|
||||
slices.append("".join(lines))
|
||||
slice_placeholder = tokenizer.slice_start + "\n".join(slices) + tokenizer.slice_end
|
||||
return slice_placeholder
|
||||
|
||||
54
finetune/ds_config_zero2.json
Normal file
54
finetune/ds_config_zero2.json
Normal file
@@ -0,0 +1,54 @@
|
||||
{
|
||||
"fp16": {
|
||||
"enabled": false,
|
||||
"loss_scale": 0,
|
||||
"loss_scale_window": 1000,
|
||||
"initial_scale_power": 16,
|
||||
"hysteresis": 2,
|
||||
"min_loss_scale": 1
|
||||
},
|
||||
|
||||
"bf16": {
|
||||
"enabled": true
|
||||
},
|
||||
|
||||
"optimizer": {
|
||||
"type": "AdamW",
|
||||
"params": {
|
||||
"lr": "auto",
|
||||
"betas": "auto",
|
||||
"eps": "auto",
|
||||
"weight_decay": "auto"
|
||||
}
|
||||
},
|
||||
|
||||
"scheduler": {
|
||||
"type": "WarmupLR",
|
||||
"params": {
|
||||
"warmup_min_lr": "auto",
|
||||
"warmup_max_lr": "auto",
|
||||
"warmup_num_steps": "auto"
|
||||
}
|
||||
},
|
||||
|
||||
"zero_optimization": {
|
||||
"stage": 2,
|
||||
"offload_optimizer": {
|
||||
"device": "none",
|
||||
"pin_memory": true
|
||||
},
|
||||
"allgather_partitions": true,
|
||||
"allgather_bucket_size": 2e8,
|
||||
"overlap_comm": true,
|
||||
"reduce_scatter": true,
|
||||
"reduce_bucket_size": 2e8,
|
||||
"contiguous_gradients": true
|
||||
},
|
||||
|
||||
"gradient_accumulation_steps": "auto",
|
||||
"gradient_clipping": "auto",
|
||||
"steps_per_print": 100,
|
||||
"train_batch_size": "auto",
|
||||
"train_micro_batch_size_per_gpu": "auto",
|
||||
"wall_clock_breakdown": false
|
||||
}
|
||||
61
finetune/ds_config_zero3.json
Normal file
61
finetune/ds_config_zero3.json
Normal file
@@ -0,0 +1,61 @@
|
||||
|
||||
{
|
||||
"fp16": {
|
||||
"enabled": "auto",
|
||||
"loss_scale": 0,
|
||||
"loss_scale_window": 1000,
|
||||
"initial_scale_power": 16,
|
||||
"hysteresis": 2,
|
||||
"min_loss_scale": 1
|
||||
},
|
||||
"bf16": {
|
||||
"enabled": "auto"
|
||||
},
|
||||
"optimizer": {
|
||||
"type": "AdamW",
|
||||
"params": {
|
||||
"lr": "auto",
|
||||
"betas": "auto",
|
||||
"eps": "auto",
|
||||
"weight_decay": "auto"
|
||||
}
|
||||
},
|
||||
|
||||
"scheduler": {
|
||||
"type": "WarmupLR",
|
||||
"params": {
|
||||
"warmup_min_lr": "auto",
|
||||
"warmup_max_lr": "auto",
|
||||
"warmup_num_steps": "auto"
|
||||
}
|
||||
},
|
||||
|
||||
"zero_optimization": {
|
||||
"stage": 3,
|
||||
"offload_optimizer": {
|
||||
"device": "none",
|
||||
"pin_memory": true
|
||||
},
|
||||
"offload_param": {
|
||||
"device": "none",
|
||||
"pin_memory": true
|
||||
},
|
||||
"overlap_comm": true,
|
||||
"contiguous_gradients": true,
|
||||
"sub_group_size": 1e9,
|
||||
"reduce_bucket_size": "auto",
|
||||
"stage3_prefetch_bucket_size": "auto",
|
||||
"stage3_param_persistence_threshold": "auto",
|
||||
"stage3_max_live_parameters": 1e9,
|
||||
"stage3_max_reuse_distance": 1e9,
|
||||
"stage3_gather_16bit_weights_on_model_save": true
|
||||
},
|
||||
|
||||
"gradient_accumulation_steps": "auto",
|
||||
"gradient_clipping": "auto",
|
||||
"steps_per_print": 100,
|
||||
"train_batch_size": "auto",
|
||||
"train_micro_batch_size_per_gpu": "auto",
|
||||
"wall_clock_breakdown": false
|
||||
}
|
||||
|
||||
125
finetune/finetune.py
Normal file
125
finetune/finetune.py
Normal file
@@ -0,0 +1,125 @@
|
||||
import os
|
||||
import glob
|
||||
import json
|
||||
import logging
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Dict, Optional, List
|
||||
import torch
|
||||
from torch.utils.data import Dataset
|
||||
import transformers
|
||||
from trainer import CPMTrainer
|
||||
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
|
||||
from deepspeed import zero
|
||||
|
||||
from dataset import data_collator, SupervisedDataset
|
||||
|
||||
|
||||
from PIL import Image
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
from accelerate.utils import DistributedType
|
||||
|
||||
@dataclass
|
||||
class ModelArguments:
|
||||
model_name_or_path: Optional[str] = field(default="openbmb/MiniCPM-V-2")
|
||||
|
||||
|
||||
@dataclass
|
||||
class DataArguments:
|
||||
data_path: str = field(
|
||||
default=None, metadata={"help": "Path to the training data."}
|
||||
)
|
||||
eval_data_path: str = field(
|
||||
default=None, metadata={"help": "Path to the evaluation data."}
|
||||
)
|
||||
lazy_preprocess: bool = False
|
||||
|
||||
|
||||
@dataclass
|
||||
class TrainingArguments(transformers.TrainingArguments):
|
||||
cache_dir: Optional[str] = field(default=None)
|
||||
optim: str = field(default="adamw_torch")
|
||||
model_max_length: int = field(
|
||||
default=2048,
|
||||
metadata={
|
||||
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def rank0_print(*args):
|
||||
if local_rank == 0:
|
||||
print(*args)
|
||||
|
||||
|
||||
def make_supervised_data_module(
|
||||
tokenizer: transformers.PreTrainedTokenizer, data_args, transform, data_collator=None, slice_config=None,
|
||||
) -> Dict:
|
||||
"""Make dataset and collator for supervised fine-tuning."""
|
||||
dataset_cls = SupervisedDataset
|
||||
|
||||
rank0_print("Loading data...")
|
||||
|
||||
train_json = json.load(open(data_args.data_path, "r"))
|
||||
train_dataset = dataset_cls(train_json, transform, tokenizer, slice_config=slice_config)
|
||||
|
||||
if data_args.eval_data_path:
|
||||
eval_json = json.load(open(data_args.eval_data_path, "r"))
|
||||
eval_dataset = dataset_cls(eval_json, transform, tokenizer, slice_config=slice_config)
|
||||
else:
|
||||
eval_dataset = None
|
||||
|
||||
return dict(train_dataset=train_dataset, eval_dataset=eval_dataset, data_collator=data_collator)
|
||||
|
||||
|
||||
local_rank = 0
|
||||
|
||||
def train():
|
||||
global local_rank
|
||||
|
||||
parser = transformers.HfArgumentParser(
|
||||
(ModelArguments, DataArguments, TrainingArguments)
|
||||
)
|
||||
|
||||
(
|
||||
model_args,
|
||||
data_args,
|
||||
training_args,
|
||||
) = parser.parse_args_into_dataclasses()
|
||||
|
||||
if getattr(training_args, 'deepspeed', None):
|
||||
training_args.distributed_state.distributed_type = DistributedType.DEEPSPEED
|
||||
|
||||
compute_dtype = (
|
||||
torch.float16
|
||||
if training_args.fp16
|
||||
else (torch.bfloat16 if training_args.bf16 else torch.float32)
|
||||
)
|
||||
|
||||
local_rank = training_args.local_rank
|
||||
|
||||
world_size = int(os.environ.get("WORLD_SIZE", 1))
|
||||
ddp = world_size != 1
|
||||
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} if ddp else None
|
||||
|
||||
model = AutoModel.from_pretrained(model_args.model_name_or_path, trust_remote_code=True, torch_dtype=compute_dtype, device_map=device_map)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, trust_remote_code=True)
|
||||
|
||||
#Load data
|
||||
data_module = make_supervised_data_module(
|
||||
tokenizer=tokenizer, data_args=data_args, transform=model.transform, data_collator=data_collator, slice_config=model.config.__dict__,
|
||||
)
|
||||
|
||||
trainer = CPMTrainer(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
args=training_args,
|
||||
**data_module,
|
||||
)
|
||||
|
||||
trainer.train()
|
||||
trainer.save_state()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
train()
|
||||
|
||||
53
finetune/finetune_ds.sh
Normal file
53
finetune/finetune_ds.sh
Normal file
@@ -0,0 +1,53 @@
|
||||
#!/bin/bash
|
||||
|
||||
GPUS_PER_NODE=8
|
||||
NNODES=1
|
||||
NODE_RANK=0
|
||||
MASTER_ADDR=localhost
|
||||
MASTER_PORT=6001
|
||||
|
||||
MODEL="path/to/minicpmv2"
|
||||
# ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations.
|
||||
# See the section for finetuning in README for more information.
|
||||
DATA="path/to/trainging_data"
|
||||
EVAL_DATA="path/to/test_data"
|
||||
|
||||
DISTRIBUTED_ARGS="
|
||||
--nproc_per_node $GPUS_PER_NODE \
|
||||
--nnodes $NNODES \
|
||||
--node_rank $NODE_RANK \
|
||||
--master_addr $MASTER_ADDR \
|
||||
--master_port $MASTER_PORT
|
||||
"
|
||||
torchrun $DISTRIBUTED_ARGS finetune.py \
|
||||
--model_name_or_path $MODEL \
|
||||
--data_path $DATA \
|
||||
--eval_data_path $EVAL_DATA \
|
||||
--remove_unused_columns false \
|
||||
--label_names "labels" \
|
||||
--prediction_loss_only false \
|
||||
--bf16 true \
|
||||
--bf16_full_eval true \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
--max_steps 80000 \
|
||||
--eval_steps 200 \
|
||||
--output_dir output/output_minicpmv2 \
|
||||
--logging_dir output/output_minicpmv2 \
|
||||
--logging_strategy "steps" \
|
||||
--per_device_train_batch_size 8 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 1 \
|
||||
--evaluation_strategy "steps" \
|
||||
--save_strategy "steps" \
|
||||
--save_steps 1000 \
|
||||
--save_total_limit 10 \
|
||||
--learning_rate 5e-7 \
|
||||
--weight_decay 0.1 \
|
||||
--adam_beta2 0.95 \
|
||||
--warmup_ratio 0.01 \
|
||||
--lr_scheduler_type "cosine" \
|
||||
--logging_steps 1 \
|
||||
--gradient_checkpointing True \
|
||||
--deepspeed ds_config_zero2.json \
|
||||
--report_to "tensorboard" # wandb
|
||||
66
finetune/readme.md
Normal file
66
finetune/readme.md
Normal file
@@ -0,0 +1,66 @@
|
||||
# Minicpm-V2 Finetuning
|
||||
|
||||
<div align="center">
|
||||
|
||||
[English](README.md)
|
||||
|
||||
</div>
|
||||
|
||||
We offer the official scripts for easy finetuning of the pretrained minicpm-v2 model on downstream tasks. Our finetune scripts use DeepSpeed by default.
|
||||
|
||||
### Data preparation
|
||||
|
||||
To prepare your finetuning data, you should (1) formulate each sample as a dictionary consisting of an id, an image path list with an image (optional, not required for pure-text example), and a list of conversations, and (2) save data samples in JSON files.
|
||||
|
||||
For the vision-language example with image, you are required to define placeholder(s) <ImageHere> to define the position to insert the image embeddings.
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
<b>vision-language example (vl_finetune_data.json) with 1 samples.</b>
|
||||
</summary>
|
||||
|
||||
```
|
||||
[
|
||||
{
|
||||
"id": "0",
|
||||
"image": 'path/to/image_0.jpg',
|
||||
"conversations": [
|
||||
{
|
||||
'role': 'user',
|
||||
'content': '<image>\nHow many desserts are on the white plate?'
|
||||
},
|
||||
{
|
||||
'role': 'assistant',
|
||||
'content': 'There are three desserts on the white plate.'
|
||||
},
|
||||
{
|
||||
'role': 'user',
|
||||
'content': 'What type of desserts are they?'
|
||||
},
|
||||
{
|
||||
'role': 'assistant',
|
||||
'content': 'The desserts are cakes with bananas and pecans on top. They share similarities with donuts, but the presence of bananas and pecans differentiates them.'
|
||||
},
|
||||
{
|
||||
'role': 'user',
|
||||
'content': 'What is the setting of the image?'},
|
||||
{
|
||||
'role': 'assistant',
|
||||
'content': 'The image is set on a table top with a plate containing the three desserts.'
|
||||
},
|
||||
]
|
||||
},
|
||||
]
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
### Full-parameter finetuning
|
||||
|
||||
Full-parameter parameter finetuning requires updating all parameters of LLM in the whole training process. To launch your training, run the following script:
|
||||
|
||||
```
|
||||
sh finetune_ds.sh
|
||||
```
|
||||
#### Customizing Hyperparameters
|
||||
To tailor the training process according to your specific requirements, you can adjust various hyperparameters. For comprehensive documentation on available hyperparameters and their functionalities, you can refer to the [official Transformers documentation](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments). Experimentation and fine-tuning of these parameters are essential for achieving optimal model performance tailored to your specific task and dataset.
|
||||
150
finetune/trainer.py
Normal file
150
finetune/trainer.py
Normal file
@@ -0,0 +1,150 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from typing import Tuple, Union, Optional, List, Dict, Any
|
||||
from transformers import Trainer
|
||||
from transformers.trainer_pt_utils import nested_detach
|
||||
from transformers.utils import is_sagemaker_mp_enabled
|
||||
class CPMTrainer(Trainer):
|
||||
def compute_loss(
|
||||
self,
|
||||
model,
|
||||
inputs,
|
||||
return_outputs=False
|
||||
):
|
||||
if "labels" in inputs:
|
||||
labels = inputs.pop("labels")
|
||||
else:
|
||||
labels = None
|
||||
|
||||
vllm_embedding, vision_hidden_states = self.model.get_vllm_embedding(inputs)
|
||||
|
||||
outputs = self.model.llm(
|
||||
inputs_embeds=vllm_embedding,
|
||||
use_cache=False,
|
||||
)
|
||||
|
||||
if labels is not None:
|
||||
# Flatten the tokens
|
||||
loss_fct = nn.CrossEntropyLoss()
|
||||
logits = outputs.logits.view(-1, self.model.config.vocab_size).contiguous()
|
||||
labels = labels.view(-1).long().contiguous()
|
||||
# Enable model parallelism
|
||||
labels = labels.to(logits.device)
|
||||
loss = loss_fct(logits, labels)
|
||||
else:
|
||||
if isinstance(outputs, dict) and "loss" not in outputs:
|
||||
raise ValueError(
|
||||
"The model did not return a loss from the inputs, only the following keys: "
|
||||
f"{','.join(outputs.keys())}. For reference, the inputs it received are {','.join(inputs.keys())}."
|
||||
)
|
||||
# We don't use .loss here since the model may return tuples instead of ModelOutput.
|
||||
loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]
|
||||
|
||||
return (loss, outputs) if return_outputs else loss
|
||||
|
||||
def prediction_step(
|
||||
self,
|
||||
model: nn.Module,
|
||||
inputs:Dict[str, Union[torch.Tensor, Any]],
|
||||
prediction_loss_only: bool,
|
||||
ignore_keys: Optional[List[str]] = None,
|
||||
) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]:
|
||||
"""
|
||||
Perform an evaluation step on `model` using `inputs`.
|
||||
|
||||
Subclass and override to inject custom behavior.
|
||||
|
||||
Args:
|
||||
model (`nn.Module`):
|
||||
The model to evaluate.
|
||||
inputs (`Dict[str, Union[torch.Tensor, Any]]`):
|
||||
The inputs and targets of the model.
|
||||
|
||||
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
|
||||
argument `labels`. Check your model's documentation for all accepted arguments.
|
||||
prediction_loss_only (`bool`):
|
||||
Whether or not to return the loss only.
|
||||
ignore_keys (`List[str]`, *optional*):
|
||||
A list of keys in the output of your model (if it is a dictionary) that should be ignored when
|
||||
gathering predictions.
|
||||
|
||||
Return:
|
||||
Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss,
|
||||
logits and labels (each being optional).
|
||||
"""
|
||||
has_labels = False if len(self.label_names) == 0 else all(inputs.get(k) is not None for k in self.label_names)
|
||||
# For CLIP-like models capable of returning loss values.
|
||||
# If `return_loss` is not specified or being `None` in `inputs`, we check if the default value of `return_loss`
|
||||
# is `True` in `model.forward`.
|
||||
return_loss = inputs.get("return_loss", None)
|
||||
if return_loss is None:
|
||||
return_loss = self.can_return_loss
|
||||
loss_without_labels = True if len(self.label_names) == 0 and return_loss else False
|
||||
|
||||
inputs = self._prepare_inputs(inputs)
|
||||
if ignore_keys is None:
|
||||
if hasattr(self.model, "config"):
|
||||
ignore_keys = getattr(self.model.config, "keys_to_ignore_at_inference", [])
|
||||
else:
|
||||
ignore_keys = []
|
||||
|
||||
# labels may be popped when computing the loss (label smoothing for instance) so we grab them first.
|
||||
if has_labels or loss_without_labels:
|
||||
labels = nested_detach(tuple(inputs.get(name) for name in self.label_names))
|
||||
if len(labels) == 1:
|
||||
labels = labels[0]
|
||||
else:
|
||||
labels = None
|
||||
|
||||
with torch.no_grad():
|
||||
if is_sagemaker_mp_enabled():
|
||||
raw_outputs = smp_forward_only(model, inputs)
|
||||
if has_labels or loss_without_labels:
|
||||
if isinstance(raw_outputs, dict):
|
||||
loss_mb = raw_outputs["loss"]
|
||||
logits_mb = tuple(v for k, v in raw_outputs.items() if k not in ignore_keys + ["loss"])
|
||||
else:
|
||||
loss_mb = raw_outputs[0]
|
||||
logits_mb = raw_outputs[1:]
|
||||
|
||||
loss = loss_mb.reduce_mean().detach().cpu()
|
||||
logits = smp_nested_concat(logits_mb)
|
||||
else:
|
||||
loss = None
|
||||
if isinstance(raw_outputs, dict):
|
||||
logits_mb = tuple(v for k, v in raw_outputs.items() if k not in ignore_keys)
|
||||
else:
|
||||
logits_mb = raw_outputs
|
||||
logits = smp_nested_concat(logits_mb)
|
||||
else:
|
||||
if has_labels or loss_without_labels:
|
||||
with self.compute_loss_context_manager():
|
||||
loss, outputs = self.compute_loss(model, inputs, return_outputs=True)
|
||||
loss = loss.mean().detach()
|
||||
|
||||
if isinstance(outputs, dict):
|
||||
logits = tuple(v for k, v in outputs.items() if k not in ignore_keys + ["loss"])
|
||||
else:
|
||||
logits = outputs[1:]
|
||||
else:
|
||||
loss = None
|
||||
with self.compute_loss_context_manager():
|
||||
outputs = model(**inputs)
|
||||
if isinstance(outputs, dict):
|
||||
logits = tuple(v for k, v in outputs.items() if k not in ignore_keys)
|
||||
else:
|
||||
logits = outputs
|
||||
# TODO: this needs to be fixed and made cleaner later.
|
||||
if self.args.past_index >= 0:
|
||||
self._past = outputs[self.args.past_index - 1]
|
||||
|
||||
if prediction_loss_only:
|
||||
return (loss, None, None)
|
||||
|
||||
logits = nested_detach(logits)
|
||||
if len(logits) == 1:
|
||||
logits = logits[0]
|
||||
|
||||
return (loss, logits, labels)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user