mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-04 09:49:20 +08:00
Merge pull request #81 from qyc-98/main
add finetuning script in Huggigface Trainer
This commit is contained in:
0
finetune/__init__.py
Normal file
0
finetune/__init__.py
Normal file
290
finetune/dataset.py
Normal file
290
finetune/dataset.py
Normal file
@@ -0,0 +1,290 @@
|
|||||||
|
import os
|
||||||
|
import math
|
||||||
|
import json
|
||||||
|
import copy
|
||||||
|
import logging
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
from typing import Dict, Optional, List
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
|
|
||||||
|
from dataclasses import dataclass, field
|
||||||
|
from transformers import AutoTokenizer, AutoProcessor
|
||||||
|
from torch.utils.data import Dataset
|
||||||
|
|
||||||
|
|
||||||
|
class SupervisedDataset(Dataset):
|
||||||
|
"""Dataset for supervised fine-tuning."""
|
||||||
|
def __init__(self, raw_data, transform, tokenizer, slice_config):
|
||||||
|
super(SupervisedDataset, self).__init__()
|
||||||
|
self.raw_data = raw_data
|
||||||
|
self.tokenizer = tokenizer
|
||||||
|
self.transform = transform
|
||||||
|
self.slice_config = slice_config
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.raw_data)
|
||||||
|
|
||||||
|
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
||||||
|
image = Image.open(self.raw_data[i]["image"]).convert("RGB")
|
||||||
|
ret = preprocess(image, self.raw_data[i]["conversations"], self.tokenizer, self.transform, slice_config=self.slice_config)
|
||||||
|
ret = dict(
|
||||||
|
input_ids=ret["input_ids"],
|
||||||
|
labels=ret["target"],
|
||||||
|
attention_mask=ret["input_ids"].ne(self.tokenizer.pad_token_id),
|
||||||
|
pixel_values=ret["pixel_values"],
|
||||||
|
image_bound=ret["image_bound"],
|
||||||
|
)
|
||||||
|
|
||||||
|
return ret
|
||||||
|
|
||||||
|
|
||||||
|
def data_collator(examples, padding_value=0):
|
||||||
|
input_ids = pad_sequence([example["input_ids"] for example in examples], batch_first=True, padding_value=padding_value)
|
||||||
|
targets = pad_sequence([example["labels"] for example in examples], batch_first=True, padding_value=padding_value)
|
||||||
|
attention_mask = pad_sequence([example["attention_mask"] for example in examples], batch_first=True, padding_value=padding_value)
|
||||||
|
pixel_values = [example["pixel_values"] for example in examples]
|
||||||
|
image_bound = [example["image_bound"] for example in examples]
|
||||||
|
return {"input_ids": input_ids, "labels":targets, "attention_mask": attention_mask, "image_bound": image_bound, "pixel_values": pixel_values}
|
||||||
|
|
||||||
|
|
||||||
|
def conversation_to_ids(conversation, tokenizer):
|
||||||
|
"""
|
||||||
|
for single image multi-turn conversation
|
||||||
|
conversation: [{'role': 'user', 'content': 'Describe this image'},
|
||||||
|
{'role': 'assistant', 'content': 'This is a cat.'}]
|
||||||
|
"""
|
||||||
|
raw_msg = ''
|
||||||
|
input_ids = []
|
||||||
|
context = []
|
||||||
|
for idx, msg in enumerate(conversation):
|
||||||
|
role = msg['role']
|
||||||
|
message = msg['content']
|
||||||
|
assert role in ['user', 'assistant']
|
||||||
|
if role == 'user':
|
||||||
|
prefix = '<用户>'
|
||||||
|
else:
|
||||||
|
prefix = '<AI>'
|
||||||
|
# append eos
|
||||||
|
if idx == len(conversation) - 1:
|
||||||
|
message = message + tokenizer.eos_token
|
||||||
|
prefix_ids = tokenizer.encode(prefix)[1:] # remove bos
|
||||||
|
message_ids = tokenizer.encode(message)[1:]
|
||||||
|
|
||||||
|
input_ids.append(prefix_ids)
|
||||||
|
input_ids.append(message_ids)
|
||||||
|
|
||||||
|
context.append(np.ones((len(prefix_ids),), dtype=np.int8))
|
||||||
|
if role == 'assistant':
|
||||||
|
context.append(np.zeros((len(message_ids),), dtype=np.int8))
|
||||||
|
else:
|
||||||
|
context.append(np.ones((len(message_ids),), dtype=np.int8))
|
||||||
|
|
||||||
|
raw_msg += (prefix + message)
|
||||||
|
|
||||||
|
ids = torch.from_numpy(np.hstack(input_ids, dtype=np.int32))
|
||||||
|
context = torch.from_numpy(np.hstack(context, dtype=np.int8))
|
||||||
|
|
||||||
|
# build target
|
||||||
|
target = torch.full_like(ids, -100, dtype=torch.int32)
|
||||||
|
for i in range(1, len(ids)):
|
||||||
|
if context[i] == 0:
|
||||||
|
target[i - 1] = ids[i]
|
||||||
|
if context[i] == 1 and context[i - 1] == 0:
|
||||||
|
target[i - 1] = tokenizer.eos_id
|
||||||
|
|
||||||
|
# build image bound
|
||||||
|
image_start_tokens = torch.where(ids == tokenizer.im_start_id)[0]
|
||||||
|
image_start_tokens += 1
|
||||||
|
image_end_tokens = torch.where(ids == tokenizer.im_end_id)[0]
|
||||||
|
if len(image_start_tokens) != len(image_end_tokens):
|
||||||
|
print('image start token != image end tokens')
|
||||||
|
if len(image_start_tokens)>0:
|
||||||
|
image_bound = torch.hstack([image_start_tokens.unsqueeze(-1), image_end_tokens.unsqueeze(-1)])
|
||||||
|
else:
|
||||||
|
image_bound = []
|
||||||
|
|
||||||
|
return {
|
||||||
|
'input_ids': ids,
|
||||||
|
'target': target,
|
||||||
|
'image_bound': image_bound,
|
||||||
|
'raw_msg': raw_msg,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def preprocess(image, conversation, tokenizer, transform, query_nums=64, slice_config=None):
|
||||||
|
"""
|
||||||
|
single image preprocess, the image will be placed at the top of the conversation
|
||||||
|
"""
|
||||||
|
conversation = copy.deepcopy(conversation)
|
||||||
|
assert len(conversation) > 1, "conversation length must large than 2"
|
||||||
|
assert conversation[0]['role'] == 'user', "the first role must be user"
|
||||||
|
|
||||||
|
if slice_config is not None:
|
||||||
|
assert isinstance(slice_config, Dict)
|
||||||
|
assert 'patch_size' in slice_config
|
||||||
|
assert 'max_slice_nums' in slice_config
|
||||||
|
assert 'scale_resolution' in slice_config
|
||||||
|
default_image_placeholder = tokenizer.im_start + tokenizer.unk_token * query_nums + tokenizer.im_end
|
||||||
|
if slice_config:
|
||||||
|
images = []
|
||||||
|
source_image, patches, best_grid = slice_image(
|
||||||
|
image, slice_config['max_slice_nums'], slice_config['scale_resolution'], slice_config['patch_size']
|
||||||
|
)
|
||||||
|
images.append(source_image)
|
||||||
|
image_placeholder = default_image_placeholder
|
||||||
|
if len(patches) > 0:
|
||||||
|
for i in range(len(patches)):
|
||||||
|
for j in range(len(patches[0])):
|
||||||
|
images.append(patches[i][j])
|
||||||
|
|
||||||
|
image_placeholder += get_grid_placeholder(
|
||||||
|
tokenizer, best_grid, query_nums
|
||||||
|
)
|
||||||
|
images = [transform(i) for i in images]
|
||||||
|
else:
|
||||||
|
images = [transform(image)]
|
||||||
|
image_placeholder = default_image_placeholder
|
||||||
|
if '<image>' in conversation[0]['content']:
|
||||||
|
conversation[0]['content'] = conversation[0]['content'].replace('<image>', image_placeholder)
|
||||||
|
else:
|
||||||
|
conversation[0]['content'] = image_placeholder + '\n' + conversation[0]['content']
|
||||||
|
|
||||||
|
input_dict = conversation_to_ids(conversation, tokenizer)
|
||||||
|
input_dict['pixel_values'] = images
|
||||||
|
return input_dict
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def slice_image(
|
||||||
|
image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False
|
||||||
|
):
|
||||||
|
original_size = image.size
|
||||||
|
original_width, original_height = original_size
|
||||||
|
log_ratio = math.log(original_width / original_height)
|
||||||
|
ratio = original_width * original_height / (scale_resolution * scale_resolution)
|
||||||
|
multiple = min(math.ceil(ratio), max_slice_nums)
|
||||||
|
|
||||||
|
source_image = None
|
||||||
|
best_grid = None
|
||||||
|
patches = []
|
||||||
|
|
||||||
|
if multiple <= 1 or never_split:
|
||||||
|
# dont need to slice, upsample
|
||||||
|
best_size = find_best_resize(
|
||||||
|
original_size, scale_resolution, patch_size, allow_upscale=True
|
||||||
|
)
|
||||||
|
source_image = image.resize(best_size, Image.Resampling.BICUBIC)
|
||||||
|
else:
|
||||||
|
candidate_split_grids_nums = []
|
||||||
|
for i in [multiple - 1, multiple, multiple + 1]:
|
||||||
|
if i == 1 or i > max_slice_nums:
|
||||||
|
continue
|
||||||
|
candidate_split_grids_nums.append(i)
|
||||||
|
|
||||||
|
# source image, down-sampling and ensure divided by patch_size
|
||||||
|
best_resize = find_best_resize(original_size, scale_resolution, patch_size)
|
||||||
|
source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
|
||||||
|
candidate_grids = []
|
||||||
|
|
||||||
|
# find best grid
|
||||||
|
for split_grids_nums in candidate_split_grids_nums:
|
||||||
|
m = 1
|
||||||
|
while m <= split_grids_nums:
|
||||||
|
if split_grids_nums % m == 0:
|
||||||
|
candidate_grids.append([m, split_grids_nums // m])
|
||||||
|
m += 1
|
||||||
|
|
||||||
|
best_grid = [1, 1]
|
||||||
|
min_error = float("inf")
|
||||||
|
for grid in candidate_grids:
|
||||||
|
error = abs(log_ratio - math.log(grid[0] / grid[1]))
|
||||||
|
if error < min_error:
|
||||||
|
best_grid = grid
|
||||||
|
min_error = error
|
||||||
|
|
||||||
|
refine_size = get_refine_size(
|
||||||
|
original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
|
||||||
|
)
|
||||||
|
|
||||||
|
refine_image = image.resize(refine_size, Image.Resampling.BICUBIC)
|
||||||
|
patches = split_to_patches(refine_image, best_grid)
|
||||||
|
|
||||||
|
return source_image, patches, best_grid
|
||||||
|
|
||||||
|
|
||||||
|
def ensure_divide(length, patch_size):
|
||||||
|
return max(round(length / patch_size) * patch_size, patch_size)
|
||||||
|
|
||||||
|
|
||||||
|
def find_best_resize(original_size, scale_resolution, patch_size, allow_upscale=False):
|
||||||
|
width, height = original_size
|
||||||
|
if (width * height > scale_resolution * scale_resolution) or allow_upscale:
|
||||||
|
r = width / height
|
||||||
|
height = int(scale_resolution / math.sqrt(r))
|
||||||
|
width = int(height * r)
|
||||||
|
best_width = ensure_divide(width, patch_size)
|
||||||
|
best_height = ensure_divide(height, patch_size)
|
||||||
|
return (best_width, best_height)
|
||||||
|
|
||||||
|
|
||||||
|
def get_refine_size(
|
||||||
|
original_size, grid, scale_resolution, patch_size, allow_upscale=False
|
||||||
|
):
|
||||||
|
width, height = original_size
|
||||||
|
grid_x, grid_y = grid
|
||||||
|
|
||||||
|
refine_width = ensure_divide(width, grid_x)
|
||||||
|
refine_height = ensure_divide(height, grid_y)
|
||||||
|
|
||||||
|
grid_width = refine_width / grid_x
|
||||||
|
grid_height = refine_height / grid_y
|
||||||
|
|
||||||
|
best_grid_size = find_best_resize(
|
||||||
|
(grid_width, grid_height),
|
||||||
|
scale_resolution,
|
||||||
|
patch_size,
|
||||||
|
allow_upscale=allow_upscale,
|
||||||
|
)
|
||||||
|
|
||||||
|
refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)
|
||||||
|
|
||||||
|
return refine_size
|
||||||
|
|
||||||
|
|
||||||
|
def split_to_patches(image, grid):
|
||||||
|
patches = []
|
||||||
|
width, height = image.size
|
||||||
|
grid_x = int(width / grid[0])
|
||||||
|
grid_y = int(height / grid[1])
|
||||||
|
|
||||||
|
for i in range(0, height, grid_y):
|
||||||
|
images = []
|
||||||
|
for j in range(0, width, grid_x):
|
||||||
|
box = (j, i, j + grid_x, i + grid_y)
|
||||||
|
patch = image.crop(box)
|
||||||
|
images.append(patch)
|
||||||
|
patches.append(images)
|
||||||
|
|
||||||
|
return patches
|
||||||
|
|
||||||
|
|
||||||
|
def get_grid_placeholder(tokenizer, grid, query_num):
|
||||||
|
image_placeholder = (
|
||||||
|
tokenizer.im_start + tokenizer.unk_token * query_num + tokenizer.im_end
|
||||||
|
)
|
||||||
|
|
||||||
|
cols = grid[0]
|
||||||
|
rows = grid[1]
|
||||||
|
slices = []
|
||||||
|
for i in range(rows):
|
||||||
|
lines = []
|
||||||
|
for j in range(cols):
|
||||||
|
lines.append(image_placeholder)
|
||||||
|
slices.append("".join(lines))
|
||||||
|
slice_placeholder = tokenizer.slice_start + "\n".join(slices) + tokenizer.slice_end
|
||||||
|
return slice_placeholder
|
||||||
|
|
||||||
54
finetune/ds_config_zero2.json
Normal file
54
finetune/ds_config_zero2.json
Normal file
@@ -0,0 +1,54 @@
|
|||||||
|
{
|
||||||
|
"fp16": {
|
||||||
|
"enabled": false,
|
||||||
|
"loss_scale": 0,
|
||||||
|
"loss_scale_window": 1000,
|
||||||
|
"initial_scale_power": 16,
|
||||||
|
"hysteresis": 2,
|
||||||
|
"min_loss_scale": 1
|
||||||
|
},
|
||||||
|
|
||||||
|
"bf16": {
|
||||||
|
"enabled": true
|
||||||
|
},
|
||||||
|
|
||||||
|
"optimizer": {
|
||||||
|
"type": "AdamW",
|
||||||
|
"params": {
|
||||||
|
"lr": "auto",
|
||||||
|
"betas": "auto",
|
||||||
|
"eps": "auto",
|
||||||
|
"weight_decay": "auto"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
|
||||||
|
"scheduler": {
|
||||||
|
"type": "WarmupLR",
|
||||||
|
"params": {
|
||||||
|
"warmup_min_lr": "auto",
|
||||||
|
"warmup_max_lr": "auto",
|
||||||
|
"warmup_num_steps": "auto"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
|
||||||
|
"zero_optimization": {
|
||||||
|
"stage": 2,
|
||||||
|
"offload_optimizer": {
|
||||||
|
"device": "none",
|
||||||
|
"pin_memory": true
|
||||||
|
},
|
||||||
|
"allgather_partitions": true,
|
||||||
|
"allgather_bucket_size": 2e8,
|
||||||
|
"overlap_comm": true,
|
||||||
|
"reduce_scatter": true,
|
||||||
|
"reduce_bucket_size": 2e8,
|
||||||
|
"contiguous_gradients": true
|
||||||
|
},
|
||||||
|
|
||||||
|
"gradient_accumulation_steps": "auto",
|
||||||
|
"gradient_clipping": "auto",
|
||||||
|
"steps_per_print": 100,
|
||||||
|
"train_batch_size": "auto",
|
||||||
|
"train_micro_batch_size_per_gpu": "auto",
|
||||||
|
"wall_clock_breakdown": false
|
||||||
|
}
|
||||||
61
finetune/ds_config_zero3.json
Normal file
61
finetune/ds_config_zero3.json
Normal file
@@ -0,0 +1,61 @@
|
|||||||
|
|
||||||
|
{
|
||||||
|
"fp16": {
|
||||||
|
"enabled": "auto",
|
||||||
|
"loss_scale": 0,
|
||||||
|
"loss_scale_window": 1000,
|
||||||
|
"initial_scale_power": 16,
|
||||||
|
"hysteresis": 2,
|
||||||
|
"min_loss_scale": 1
|
||||||
|
},
|
||||||
|
"bf16": {
|
||||||
|
"enabled": "auto"
|
||||||
|
},
|
||||||
|
"optimizer": {
|
||||||
|
"type": "AdamW",
|
||||||
|
"params": {
|
||||||
|
"lr": "auto",
|
||||||
|
"betas": "auto",
|
||||||
|
"eps": "auto",
|
||||||
|
"weight_decay": "auto"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
|
||||||
|
"scheduler": {
|
||||||
|
"type": "WarmupLR",
|
||||||
|
"params": {
|
||||||
|
"warmup_min_lr": "auto",
|
||||||
|
"warmup_max_lr": "auto",
|
||||||
|
"warmup_num_steps": "auto"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
|
||||||
|
"zero_optimization": {
|
||||||
|
"stage": 3,
|
||||||
|
"offload_optimizer": {
|
||||||
|
"device": "none",
|
||||||
|
"pin_memory": true
|
||||||
|
},
|
||||||
|
"offload_param": {
|
||||||
|
"device": "none",
|
||||||
|
"pin_memory": true
|
||||||
|
},
|
||||||
|
"overlap_comm": true,
|
||||||
|
"contiguous_gradients": true,
|
||||||
|
"sub_group_size": 1e9,
|
||||||
|
"reduce_bucket_size": "auto",
|
||||||
|
"stage3_prefetch_bucket_size": "auto",
|
||||||
|
"stage3_param_persistence_threshold": "auto",
|
||||||
|
"stage3_max_live_parameters": 1e9,
|
||||||
|
"stage3_max_reuse_distance": 1e9,
|
||||||
|
"stage3_gather_16bit_weights_on_model_save": true
|
||||||
|
},
|
||||||
|
|
||||||
|
"gradient_accumulation_steps": "auto",
|
||||||
|
"gradient_clipping": "auto",
|
||||||
|
"steps_per_print": 100,
|
||||||
|
"train_batch_size": "auto",
|
||||||
|
"train_micro_batch_size_per_gpu": "auto",
|
||||||
|
"wall_clock_breakdown": false
|
||||||
|
}
|
||||||
|
|
||||||
125
finetune/finetune.py
Normal file
125
finetune/finetune.py
Normal file
@@ -0,0 +1,125 @@
|
|||||||
|
import os
|
||||||
|
import glob
|
||||||
|
import json
|
||||||
|
import logging
|
||||||
|
from dataclasses import dataclass, field
|
||||||
|
from typing import Dict, Optional, List
|
||||||
|
import torch
|
||||||
|
from torch.utils.data import Dataset
|
||||||
|
import transformers
|
||||||
|
from trainer import CPMTrainer
|
||||||
|
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
|
||||||
|
from deepspeed import zero
|
||||||
|
|
||||||
|
from dataset import data_collator, SupervisedDataset
|
||||||
|
|
||||||
|
|
||||||
|
from PIL import Image
|
||||||
|
from transformers import AutoModel, AutoTokenizer
|
||||||
|
from accelerate.utils import DistributedType
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class ModelArguments:
|
||||||
|
model_name_or_path: Optional[str] = field(default="openbmb/MiniCPM-V-2")
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class DataArguments:
|
||||||
|
data_path: str = field(
|
||||||
|
default=None, metadata={"help": "Path to the training data."}
|
||||||
|
)
|
||||||
|
eval_data_path: str = field(
|
||||||
|
default=None, metadata={"help": "Path to the evaluation data."}
|
||||||
|
)
|
||||||
|
lazy_preprocess: bool = False
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class TrainingArguments(transformers.TrainingArguments):
|
||||||
|
cache_dir: Optional[str] = field(default=None)
|
||||||
|
optim: str = field(default="adamw_torch")
|
||||||
|
model_max_length: int = field(
|
||||||
|
default=2048,
|
||||||
|
metadata={
|
||||||
|
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def rank0_print(*args):
|
||||||
|
if local_rank == 0:
|
||||||
|
print(*args)
|
||||||
|
|
||||||
|
|
||||||
|
def make_supervised_data_module(
|
||||||
|
tokenizer: transformers.PreTrainedTokenizer, data_args, transform, data_collator=None, slice_config=None,
|
||||||
|
) -> Dict:
|
||||||
|
"""Make dataset and collator for supervised fine-tuning."""
|
||||||
|
dataset_cls = SupervisedDataset
|
||||||
|
|
||||||
|
rank0_print("Loading data...")
|
||||||
|
|
||||||
|
train_json = json.load(open(data_args.data_path, "r"))
|
||||||
|
train_dataset = dataset_cls(train_json, transform, tokenizer, slice_config=slice_config)
|
||||||
|
|
||||||
|
if data_args.eval_data_path:
|
||||||
|
eval_json = json.load(open(data_args.eval_data_path, "r"))
|
||||||
|
eval_dataset = dataset_cls(eval_json, transform, tokenizer, slice_config=slice_config)
|
||||||
|
else:
|
||||||
|
eval_dataset = None
|
||||||
|
|
||||||
|
return dict(train_dataset=train_dataset, eval_dataset=eval_dataset, data_collator=data_collator)
|
||||||
|
|
||||||
|
|
||||||
|
local_rank = 0
|
||||||
|
|
||||||
|
def train():
|
||||||
|
global local_rank
|
||||||
|
|
||||||
|
parser = transformers.HfArgumentParser(
|
||||||
|
(ModelArguments, DataArguments, TrainingArguments)
|
||||||
|
)
|
||||||
|
|
||||||
|
(
|
||||||
|
model_args,
|
||||||
|
data_args,
|
||||||
|
training_args,
|
||||||
|
) = parser.parse_args_into_dataclasses()
|
||||||
|
|
||||||
|
if getattr(training_args, 'deepspeed', None):
|
||||||
|
training_args.distributed_state.distributed_type = DistributedType.DEEPSPEED
|
||||||
|
|
||||||
|
compute_dtype = (
|
||||||
|
torch.float16
|
||||||
|
if training_args.fp16
|
||||||
|
else (torch.bfloat16 if training_args.bf16 else torch.float32)
|
||||||
|
)
|
||||||
|
|
||||||
|
local_rank = training_args.local_rank
|
||||||
|
|
||||||
|
world_size = int(os.environ.get("WORLD_SIZE", 1))
|
||||||
|
ddp = world_size != 1
|
||||||
|
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} if ddp else None
|
||||||
|
|
||||||
|
model = AutoModel.from_pretrained(model_args.model_name_or_path, trust_remote_code=True, torch_dtype=compute_dtype, device_map=device_map)
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, trust_remote_code=True)
|
||||||
|
|
||||||
|
#Load data
|
||||||
|
data_module = make_supervised_data_module(
|
||||||
|
tokenizer=tokenizer, data_args=data_args, transform=model.transform, data_collator=data_collator, slice_config=model.config.__dict__,
|
||||||
|
)
|
||||||
|
|
||||||
|
trainer = CPMTrainer(
|
||||||
|
model=model,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
args=training_args,
|
||||||
|
**data_module,
|
||||||
|
)
|
||||||
|
|
||||||
|
trainer.train()
|
||||||
|
trainer.save_state()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
train()
|
||||||
|
|
||||||
53
finetune/finetune_ds.sh
Normal file
53
finetune/finetune_ds.sh
Normal file
@@ -0,0 +1,53 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
GPUS_PER_NODE=8
|
||||||
|
NNODES=1
|
||||||
|
NODE_RANK=0
|
||||||
|
MASTER_ADDR=localhost
|
||||||
|
MASTER_PORT=6001
|
||||||
|
|
||||||
|
MODEL="path/to/minicpmv2"
|
||||||
|
# ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations.
|
||||||
|
# See the section for finetuning in README for more information.
|
||||||
|
DATA="path/to/trainging_data"
|
||||||
|
EVAL_DATA="path/to/test_data"
|
||||||
|
|
||||||
|
DISTRIBUTED_ARGS="
|
||||||
|
--nproc_per_node $GPUS_PER_NODE \
|
||||||
|
--nnodes $NNODES \
|
||||||
|
--node_rank $NODE_RANK \
|
||||||
|
--master_addr $MASTER_ADDR \
|
||||||
|
--master_port $MASTER_PORT
|
||||||
|
"
|
||||||
|
torchrun $DISTRIBUTED_ARGS finetune.py \
|
||||||
|
--model_name_or_path $MODEL \
|
||||||
|
--data_path $DATA \
|
||||||
|
--eval_data_path $EVAL_DATA \
|
||||||
|
--remove_unused_columns false \
|
||||||
|
--label_names "labels" \
|
||||||
|
--prediction_loss_only false \
|
||||||
|
--bf16 true \
|
||||||
|
--bf16_full_eval true \
|
||||||
|
--do_train \
|
||||||
|
--do_eval \
|
||||||
|
--max_steps 80000 \
|
||||||
|
--eval_steps 200 \
|
||||||
|
--output_dir output/output_minicpmv2 \
|
||||||
|
--logging_dir output/output_minicpmv2 \
|
||||||
|
--logging_strategy "steps" \
|
||||||
|
--per_device_train_batch_size 8 \
|
||||||
|
--per_device_eval_batch_size 1 \
|
||||||
|
--gradient_accumulation_steps 1 \
|
||||||
|
--evaluation_strategy "steps" \
|
||||||
|
--save_strategy "steps" \
|
||||||
|
--save_steps 1000 \
|
||||||
|
--save_total_limit 10 \
|
||||||
|
--learning_rate 5e-7 \
|
||||||
|
--weight_decay 0.1 \
|
||||||
|
--adam_beta2 0.95 \
|
||||||
|
--warmup_ratio 0.01 \
|
||||||
|
--lr_scheduler_type "cosine" \
|
||||||
|
--logging_steps 1 \
|
||||||
|
--gradient_checkpointing True \
|
||||||
|
--deepspeed ds_config_zero2.json \
|
||||||
|
--report_to "tensorboard" # wandb
|
||||||
66
finetune/readme.md
Normal file
66
finetune/readme.md
Normal file
@@ -0,0 +1,66 @@
|
|||||||
|
# Minicpm-V2 Finetuning
|
||||||
|
|
||||||
|
<div align="center">
|
||||||
|
|
||||||
|
[English](README.md)
|
||||||
|
|
||||||
|
</div>
|
||||||
|
|
||||||
|
We offer the official scripts for easy finetuning of the pretrained minicpm-v2 model on downstream tasks. Our finetune scripts use DeepSpeed by default.
|
||||||
|
|
||||||
|
### Data preparation
|
||||||
|
|
||||||
|
To prepare your finetuning data, you should (1) formulate each sample as a dictionary consisting of an id, an image path list with an image (optional, not required for pure-text example), and a list of conversations, and (2) save data samples in JSON files.
|
||||||
|
|
||||||
|
For the vision-language example with image, you are required to define placeholder(s) <ImageHere> to define the position to insert the image embeddings.
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
<b>vision-language example (vl_finetune_data.json) with 1 samples.</b>
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
```
|
||||||
|
[
|
||||||
|
{
|
||||||
|
"id": "0",
|
||||||
|
"image": 'path/to/image_0.jpg',
|
||||||
|
"conversations": [
|
||||||
|
{
|
||||||
|
'role': 'user',
|
||||||
|
'content': '<image>\nHow many desserts are on the white plate?'
|
||||||
|
},
|
||||||
|
{
|
||||||
|
'role': 'assistant',
|
||||||
|
'content': 'There are three desserts on the white plate.'
|
||||||
|
},
|
||||||
|
{
|
||||||
|
'role': 'user',
|
||||||
|
'content': 'What type of desserts are they?'
|
||||||
|
},
|
||||||
|
{
|
||||||
|
'role': 'assistant',
|
||||||
|
'content': 'The desserts are cakes with bananas and pecans on top. They share similarities with donuts, but the presence of bananas and pecans differentiates them.'
|
||||||
|
},
|
||||||
|
{
|
||||||
|
'role': 'user',
|
||||||
|
'content': 'What is the setting of the image?'},
|
||||||
|
{
|
||||||
|
'role': 'assistant',
|
||||||
|
'content': 'The image is set on a table top with a plate containing the three desserts.'
|
||||||
|
},
|
||||||
|
]
|
||||||
|
},
|
||||||
|
]
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
### Full-parameter finetuning
|
||||||
|
|
||||||
|
Full-parameter parameter finetuning requires updating all parameters of LLM in the whole training process. To launch your training, run the following script:
|
||||||
|
|
||||||
|
```
|
||||||
|
sh finetune_ds.sh
|
||||||
|
```
|
||||||
|
#### Customizing Hyperparameters
|
||||||
|
To tailor the training process according to your specific requirements, you can adjust various hyperparameters. For comprehensive documentation on available hyperparameters and their functionalities, you can refer to the [official Transformers documentation](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments). Experimentation and fine-tuning of these parameters are essential for achieving optimal model performance tailored to your specific task and dataset.
|
||||||
150
finetune/trainer.py
Normal file
150
finetune/trainer.py
Normal file
@@ -0,0 +1,150 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from typing import Tuple, Union, Optional, List, Dict, Any
|
||||||
|
from transformers import Trainer
|
||||||
|
from transformers.trainer_pt_utils import nested_detach
|
||||||
|
from transformers.utils import is_sagemaker_mp_enabled
|
||||||
|
class CPMTrainer(Trainer):
|
||||||
|
def compute_loss(
|
||||||
|
self,
|
||||||
|
model,
|
||||||
|
inputs,
|
||||||
|
return_outputs=False
|
||||||
|
):
|
||||||
|
if "labels" in inputs:
|
||||||
|
labels = inputs.pop("labels")
|
||||||
|
else:
|
||||||
|
labels = None
|
||||||
|
|
||||||
|
vllm_embedding, vision_hidden_states = self.model.get_vllm_embedding(inputs)
|
||||||
|
|
||||||
|
outputs = self.model.llm(
|
||||||
|
inputs_embeds=vllm_embedding,
|
||||||
|
use_cache=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
if labels is not None:
|
||||||
|
# Flatten the tokens
|
||||||
|
loss_fct = nn.CrossEntropyLoss()
|
||||||
|
logits = outputs.logits.view(-1, self.model.config.vocab_size).contiguous()
|
||||||
|
labels = labels.view(-1).long().contiguous()
|
||||||
|
# Enable model parallelism
|
||||||
|
labels = labels.to(logits.device)
|
||||||
|
loss = loss_fct(logits, labels)
|
||||||
|
else:
|
||||||
|
if isinstance(outputs, dict) and "loss" not in outputs:
|
||||||
|
raise ValueError(
|
||||||
|
"The model did not return a loss from the inputs, only the following keys: "
|
||||||
|
f"{','.join(outputs.keys())}. For reference, the inputs it received are {','.join(inputs.keys())}."
|
||||||
|
)
|
||||||
|
# We don't use .loss here since the model may return tuples instead of ModelOutput.
|
||||||
|
loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]
|
||||||
|
|
||||||
|
return (loss, outputs) if return_outputs else loss
|
||||||
|
|
||||||
|
def prediction_step(
|
||||||
|
self,
|
||||||
|
model: nn.Module,
|
||||||
|
inputs:Dict[str, Union[torch.Tensor, Any]],
|
||||||
|
prediction_loss_only: bool,
|
||||||
|
ignore_keys: Optional[List[str]] = None,
|
||||||
|
) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]:
|
||||||
|
"""
|
||||||
|
Perform an evaluation step on `model` using `inputs`.
|
||||||
|
|
||||||
|
Subclass and override to inject custom behavior.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model (`nn.Module`):
|
||||||
|
The model to evaluate.
|
||||||
|
inputs (`Dict[str, Union[torch.Tensor, Any]]`):
|
||||||
|
The inputs and targets of the model.
|
||||||
|
|
||||||
|
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
|
||||||
|
argument `labels`. Check your model's documentation for all accepted arguments.
|
||||||
|
prediction_loss_only (`bool`):
|
||||||
|
Whether or not to return the loss only.
|
||||||
|
ignore_keys (`List[str]`, *optional*):
|
||||||
|
A list of keys in the output of your model (if it is a dictionary) that should be ignored when
|
||||||
|
gathering predictions.
|
||||||
|
|
||||||
|
Return:
|
||||||
|
Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss,
|
||||||
|
logits and labels (each being optional).
|
||||||
|
"""
|
||||||
|
has_labels = False if len(self.label_names) == 0 else all(inputs.get(k) is not None for k in self.label_names)
|
||||||
|
# For CLIP-like models capable of returning loss values.
|
||||||
|
# If `return_loss` is not specified or being `None` in `inputs`, we check if the default value of `return_loss`
|
||||||
|
# is `True` in `model.forward`.
|
||||||
|
return_loss = inputs.get("return_loss", None)
|
||||||
|
if return_loss is None:
|
||||||
|
return_loss = self.can_return_loss
|
||||||
|
loss_without_labels = True if len(self.label_names) == 0 and return_loss else False
|
||||||
|
|
||||||
|
inputs = self._prepare_inputs(inputs)
|
||||||
|
if ignore_keys is None:
|
||||||
|
if hasattr(self.model, "config"):
|
||||||
|
ignore_keys = getattr(self.model.config, "keys_to_ignore_at_inference", [])
|
||||||
|
else:
|
||||||
|
ignore_keys = []
|
||||||
|
|
||||||
|
# labels may be popped when computing the loss (label smoothing for instance) so we grab them first.
|
||||||
|
if has_labels or loss_without_labels:
|
||||||
|
labels = nested_detach(tuple(inputs.get(name) for name in self.label_names))
|
||||||
|
if len(labels) == 1:
|
||||||
|
labels = labels[0]
|
||||||
|
else:
|
||||||
|
labels = None
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
if is_sagemaker_mp_enabled():
|
||||||
|
raw_outputs = smp_forward_only(model, inputs)
|
||||||
|
if has_labels or loss_without_labels:
|
||||||
|
if isinstance(raw_outputs, dict):
|
||||||
|
loss_mb = raw_outputs["loss"]
|
||||||
|
logits_mb = tuple(v for k, v in raw_outputs.items() if k not in ignore_keys + ["loss"])
|
||||||
|
else:
|
||||||
|
loss_mb = raw_outputs[0]
|
||||||
|
logits_mb = raw_outputs[1:]
|
||||||
|
|
||||||
|
loss = loss_mb.reduce_mean().detach().cpu()
|
||||||
|
logits = smp_nested_concat(logits_mb)
|
||||||
|
else:
|
||||||
|
loss = None
|
||||||
|
if isinstance(raw_outputs, dict):
|
||||||
|
logits_mb = tuple(v for k, v in raw_outputs.items() if k not in ignore_keys)
|
||||||
|
else:
|
||||||
|
logits_mb = raw_outputs
|
||||||
|
logits = smp_nested_concat(logits_mb)
|
||||||
|
else:
|
||||||
|
if has_labels or loss_without_labels:
|
||||||
|
with self.compute_loss_context_manager():
|
||||||
|
loss, outputs = self.compute_loss(model, inputs, return_outputs=True)
|
||||||
|
loss = loss.mean().detach()
|
||||||
|
|
||||||
|
if isinstance(outputs, dict):
|
||||||
|
logits = tuple(v for k, v in outputs.items() if k not in ignore_keys + ["loss"])
|
||||||
|
else:
|
||||||
|
logits = outputs[1:]
|
||||||
|
else:
|
||||||
|
loss = None
|
||||||
|
with self.compute_loss_context_manager():
|
||||||
|
outputs = model(**inputs)
|
||||||
|
if isinstance(outputs, dict):
|
||||||
|
logits = tuple(v for k, v in outputs.items() if k not in ignore_keys)
|
||||||
|
else:
|
||||||
|
logits = outputs
|
||||||
|
# TODO: this needs to be fixed and made cleaner later.
|
||||||
|
if self.args.past_index >= 0:
|
||||||
|
self._past = outputs[self.args.past_index - 1]
|
||||||
|
|
||||||
|
if prediction_loss_only:
|
||||||
|
return (loss, None, None)
|
||||||
|
|
||||||
|
logits = nested_detach(logits)
|
||||||
|
if len(logits) == 1:
|
||||||
|
logits = logits[0]
|
||||||
|
|
||||||
|
return (loss, logits, labels)
|
||||||
|
|
||||||
|
|
||||||
Reference in New Issue
Block a user