mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-05 18:29:18 +08:00
Update LoRA finetuning code (#154)
* update lora tuning * updata lora fine-tuning code * update finetuning lora code * lora code * lora finetuning code * updating lora finetuning code * update lora finetuning code * Update Lora finetuning code * Update LoRA finetuning code * Update LoRA finetuning code
This commit is contained in:
@@ -3,20 +3,22 @@ import json
|
||||
import logging
|
||||
import os
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
from typing import Dict, List, Optional, Union, Literal, Tuple
|
||||
from types import MethodType
|
||||
import torch
|
||||
import transformers
|
||||
from accelerate.utils import DistributedType
|
||||
from deepspeed import zero
|
||||
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
|
||||
from PIL import Image
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
from transformers.integrations import deepspeed
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
|
||||
from dataset import SupervisedDataset, data_collator
|
||||
from trainer import CPMTrainer
|
||||
|
||||
from peft import LoraConfig, get_peft_model
|
||||
|
||||
@dataclass
|
||||
class ModelArguments:
|
||||
@@ -31,7 +33,6 @@ class DataArguments:
|
||||
eval_data_path: str = field(
|
||||
default=None, metadata={"help": "Path to the evaluation data."}
|
||||
)
|
||||
lazy_preprocess: bool = False
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -45,15 +46,83 @@ class TrainingArguments(transformers.TrainingArguments):
|
||||
},
|
||||
)
|
||||
tune_vision: Optional[bool] = field(default=True)
|
||||
tune_llm: Optional[bool] = field(default=True)
|
||||
tune_llm: Optional[bool] = field(default=False)
|
||||
llm_type: str = field(default="minicpm")
|
||||
use_lora: Optional[bool] = field(default=False)
|
||||
|
||||
|
||||
@dataclass
|
||||
class LoraArguments:
|
||||
lora_r: int = 64
|
||||
lora_alpha: int = 64
|
||||
lora_dropout: float = 0.05
|
||||
lora_target_modules: str = r"llm\..*layers\.\d+\.self_attn\.(q_proj|k_proj|v_proj)"
|
||||
lora_weight_path: str = ""
|
||||
lora_bias: str = "none"
|
||||
q_lora: bool = False
|
||||
lora_modules_to_save: str = ""
|
||||
lora_layer_replication: Optional[List[Tuple[int, int]]] = None
|
||||
lora_layers_to_transform: Optional[List[int]] = None
|
||||
lora_layers_pattern: Optional[str] = None
|
||||
|
||||
def maybe_zero_3(param):
|
||||
if hasattr(param, "ds_id"):
|
||||
assert param.ds_status == ZeroParamStatus.NOT_AVAILABLE
|
||||
with zero.GatheredParameters([param]):
|
||||
param = param.data.detach().cpu().clone()
|
||||
else:
|
||||
param = param.detach().cpu().clone()
|
||||
return param
|
||||
|
||||
|
||||
# Borrowed from peft.utils.get_peft_model_state_dict
|
||||
def get_peft_state_maybe_zero_3(named_params, bias):
|
||||
if bias == "none":
|
||||
to_return = {k: t for k, t in named_params if "lora_" in k}
|
||||
elif bias == "all":
|
||||
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
|
||||
elif bias == "lora_only":
|
||||
to_return = {}
|
||||
maybe_lora_bias = {}
|
||||
lora_bias_names = set()
|
||||
for k, t in named_params:
|
||||
if "lora_" in k:
|
||||
to_return[k] = t
|
||||
bias_name = k.split("lora_")[0] + "bias"
|
||||
lora_bias_names.add(bias_name)
|
||||
elif "bias" in k:
|
||||
maybe_lora_bias[k] = t
|
||||
for k, t in maybe_lora_bias:
|
||||
if bias_name in lora_bias_names:
|
||||
to_return[bias_name] = t
|
||||
else:
|
||||
raise NotImplementedError
|
||||
to_return = {k: maybe_zero_3(v) for k, v in to_return.items()}
|
||||
return to_return
|
||||
|
||||
|
||||
local_rank = None
|
||||
def rank0_print(*args):
|
||||
if local_rank == 0:
|
||||
print(*args)
|
||||
|
||||
|
||||
def safe_save_model_for_hf_trainer(trainer, output_dir: str, bias="none"):
|
||||
"""Collects the state dict and dump to disk."""
|
||||
# check if zero3 mode enabled
|
||||
if deepspeed.is_deepspeed_zero3_enabled():
|
||||
state_dict = trainer.model_wrapped._zero3_consolidated_16bit_state_dict()
|
||||
else:
|
||||
if trainer.args.use_lora:
|
||||
state_dict = get_peft_state_maybe_zero_3(
|
||||
trainer.model.named_parameters(), bias
|
||||
)
|
||||
else:
|
||||
state_dict = trainer.model.state_dict()
|
||||
if trainer.args.should_save and trainer.args.local_rank == 0:
|
||||
trainer._save(output_dir, state_dict=state_dict)
|
||||
|
||||
|
||||
def make_supervised_data_module(
|
||||
tokenizer: transformers.PreTrainedTokenizer,
|
||||
data_args,
|
||||
@@ -124,18 +193,18 @@ local_rank = 0
|
||||
|
||||
def train():
|
||||
global local_rank
|
||||
|
||||
parser = transformers.HfArgumentParser(
|
||||
(ModelArguments, DataArguments, TrainingArguments)
|
||||
(ModelArguments, DataArguments, TrainingArguments, LoraArguments)
|
||||
)
|
||||
|
||||
(
|
||||
model_args,
|
||||
data_args,
|
||||
training_args,
|
||||
lora_args,
|
||||
) = parser.parse_args_into_dataclasses()
|
||||
|
||||
if getattr(training_args, "deepspeed", None):
|
||||
if getattr(training_args, "deepspeed", None) :
|
||||
training_args.distributed_state.distributed_type = DistributedType.DEEPSPEED
|
||||
|
||||
compute_dtype = (
|
||||
@@ -145,18 +214,17 @@ def train():
|
||||
)
|
||||
|
||||
local_rank = training_args.local_rank
|
||||
|
||||
world_size = int(os.environ.get("WORLD_SIZE", 1))
|
||||
ddp = world_size != 1
|
||||
|
||||
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} if ddp else None
|
||||
|
||||
|
||||
model = AutoModel.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
trust_remote_code=True,
|
||||
torch_dtype=compute_dtype,
|
||||
device_map=device_map,
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.model_name_or_path, trust_remote_code=True
|
||||
)
|
||||
@@ -165,6 +233,32 @@ def train():
|
||||
model.vpm.requires_grad_(False)
|
||||
if not training_args.tune_llm:
|
||||
model.llm.requires_grad_(False)
|
||||
|
||||
if training_args.use_lora:
|
||||
if training_args.use_lora and training_args.tune_llm:
|
||||
raise ValueError("The model cannot simultaneously adjust LLM parameters and apply LoRA.")
|
||||
|
||||
rank0_print("Currently using LoRA for fine-tuning the MiniCPM-V model.")
|
||||
for name, param in model.llm.named_parameters():
|
||||
param.requires_grad = False
|
||||
lora_config = LoraConfig(
|
||||
r=lora_args.lora_r,
|
||||
lora_alpha=lora_args.lora_alpha,
|
||||
target_modules=lora_args.lora_target_modules,
|
||||
lora_dropout=lora_args.lora_dropout,
|
||||
bias=lora_args.lora_bias,
|
||||
layers_to_transform=lora_args.lora_layers_to_transform,
|
||||
task_type="CAUSAL_LM",
|
||||
)
|
||||
if training_args.gradient_checkpointing:
|
||||
def get_input_embeddings(self):
|
||||
return self.llm.get_input_embeddings()
|
||||
model.get_input_embeddings = MethodType(get_input_embeddings, model)
|
||||
model = get_peft_model(model, lora_config)
|
||||
model.base_model.llm.model.embed_tokens.weight.requires_grad_(True)
|
||||
if training_args.gradient_checkpointing:
|
||||
model.enable_input_require_grads()
|
||||
|
||||
rank0_print(get_parameter_number(model))
|
||||
|
||||
llm_type = training_args.llm_type
|
||||
@@ -194,7 +288,7 @@ def train():
|
||||
query_nums=model.config.query_num,
|
||||
batch_vision=batch_vision,
|
||||
)
|
||||
|
||||
|
||||
trainer = CPMTrainer(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
@@ -205,6 +299,11 @@ def train():
|
||||
trainer.train()
|
||||
trainer.save_state()
|
||||
|
||||
safe_save_model_for_hf_trainer(
|
||||
trainer=trainer,
|
||||
output_dir=training_args.output_dir,
|
||||
bias=lora_args.lora_bias)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
train()
|
||||
|
||||
Reference in New Issue
Block a user