mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-05 18:29:18 +08:00
add news for MultiGPU inference
This commit is contained in:
@@ -29,7 +29,7 @@
|
||||
## 更新日志 <!-- omit in toc -->
|
||||
|
||||
#### 📌 置顶
|
||||
|
||||
* [2024.06.03] 现在,你可以利用多张低显存显卡上运行MiniCPM-Llama3-V 2.5。当MiniCPM-Llama3-V 2.5模型的19GB权重超过单个GPU(12 GB或16 GB)的内存容量时,可以将模型的层分布在多张显卡上,使用多GPU推理。详情请参见该[文档](https://github.com/OpenBMB/MiniCPM-V/blob/main/docs/inference_on_multiple_gpus.md)配置。
|
||||
* [2024.05.28] 💥 MiniCPM-Llama3-V 2.5 现在在 llama.cpp 和 ollama 中完全支持其功能!请拉取我们最新的 fork 来使用:[llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-v2.5/examples/minicpmv/README.md) & [ollama](https://github.com/OpenBMB/ollama/tree/minicpm-v2.5/examples/minicpm-v2.5)。我们还发布了各种大小的 GGUF 版本,请点击[这里](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf/tree/main)查看。我们正在积极推进将这些功能合并到 llama.cpp & ollama 官方仓库,敬请关注!
|
||||
* [2024.05.28] 💫 我们现在支持 MiniCPM-Llama3-V 2.5 的 LoRA 微调,更多内存使用统计信息可以在[这里](https://github.com/OpenBMB/MiniCPM-V/tree/main/finetune#model-fine-tuning-memory-usage-statistics)找到。
|
||||
* [2024.05.23] 🔍 我们添加了Phi-3-vision-128k-instruct 与 MiniCPM-Llama3-V 2.5的全面对比,包括基准测试评估、多语言能力和推理效率 🌟📊🌍🚀。点击[这里](./docs/compare_with_phi-3_vision.md)查看详细信息。
|
||||
|
||||
Reference in New Issue
Block a user