Add eval_mm dir

This commit is contained in:
trainfanlhy
2024-05-28 01:21:34 +08:00
parent 7e12387362
commit 65f5567a3a
49 changed files with 5610 additions and 0 deletions

View File

@@ -0,0 +1,3 @@
# vqa-eval
contains vqa_eval kit from the server.

View File

View File

@@ -0,0 +1,116 @@
import json
import os
import re
from torch.utils.data import Dataset
def prompt_processor(prompt):
if prompt.startswith('OCR tokens: '):
pattern = r"Question: (.*?) Short answer:"
match = re.search(pattern, prompt, re.DOTALL)
question = match.group(1)
elif 'Reference OCR token: ' in prompt and len(prompt.split('\n')) == 3:
if prompt.startswith('Reference OCR token:'):
question = prompt.split('\n')[1]
else:
question = prompt.split('\n')[0]
elif len(prompt.split('\n')) == 2:
question = prompt.split('\n')[0]
else:
assert False
return question.lower()
class textVQADataset(Dataset):
def __init__(
self,
image_dir="./downloads/TextVQA/train_images",
ann_path="./downloads/TextVQA/TextVQA_0.5.1_val.json",
):
self.data = json.load(open(ann_path, "r"))["data"]
self.image_dir = image_dir
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
question = self.data[idx]['question']
answers = self.data[idx]['answers']
img_id = self.data[idx]['image_id']
qid = self.data[idx]['question_id']
img_path = os.path.join(self.image_dir, f"{img_id}.jpg")
item = {
"question_id": qid,
"image_path": img_path,
"question": question,
"gt_answers": answers
}
return item
class docVQADataset(Dataset):
def __init__(
self,
image_dir= "./downloads/DocVQA/spdocvqa_images",
ann_path= "./downloads/DocVQA/val_v1.0_withQT.json",
ocr_token_path=None
):
self.data = json.load(open(ann_path, "r"))["data"]
self.image_dir = image_dir
self.ann_path = ann_path
if ocr_token_path:
self.ocr_token_data = {item['image_id']: item for item in json.load(open(ocr_token_path, "r"))["data"]}
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
question_id = self.data[idx]['questionId']
relative_img_path = self.data[idx]['image']
corrected_relative_img_path = relative_img_path.replace("documents", "images")
img_path = os.path.join(self.image_dir, corrected_relative_img_path)
question = self.data[idx]['question']
answers = self.data[idx]['answers']
question_type = self.data[idx]['question_types']
return {
"question_id": question_id,
"image_path": img_path,
"question": question,
"gt_answers": answers,
'question_type': question_type,
}
class docVQATESTDataset(Dataset):
def __init__(
self,
image_dir= "./downloads/DocVQA/spdocvqa_images",
ann_path= "./downloads/DocVQA/test_v1.0.json",
ocr_token_path=None
):
self.data = json.load(open(ann_path, "r"))["data"]
self.image_dir = image_dir
self.ann_path = ann_path
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
question_id = self.data[idx]['questionId']
relative_img_path = self.data[idx]['image']
corrected_relative_img_path = relative_img_path.replace("documents", "images")
img_path = os.path.join(self.image_dir, corrected_relative_img_path)
question = self.data[idx]['question']
return {
"question_id": question_id,
"image_path": img_path,
"question": question,
"gt_answers": "",
'question_type': "",
}

97
eval_mm/vqaeval/eval.py Normal file
View File

@@ -0,0 +1,97 @@
import sys
import datetime
import json
import os
import torch
script_dir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(os.path.join(script_dir, '..'))
from datasets.vqa_dataset import docVQADataset, docVQATESTDataset, textVQADataset
print(torch.__version__)
import numpy as np
from eval_utils.getargs import parse_args
from eval_utils.vqa_evaluate import *
def get_model(args):
if args.model_name=='':
raise Exception('Model name cannot be empty str!')
from models.MiniCPM.minicpmv import MiniCPM_V
model_path = args.model_path
ckpt = args.ckpt
model = MiniCPM_V(model_path=model_path, ckpt=ckpt, device=args.device)
return model
def main(args):
np.random.seed(0)
max_sample_num = None
torch.distributed.init_process_group(
backend='nccl',
world_size=int(os.getenv('WORLD_SIZE', '1')),
rank=int(os.getenv('RANK', '0')),
)
torch.cuda.set_device(int(os.getenv('LOCAL_RANK', 0)))
print(f'Init Rank-{torch.distributed.get_rank()}')
if torch.distributed.is_initialized():
args.device = torch.device(f"cuda:{torch.cuda.current_device()}")
model = get_model(args)
result = {}
time = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
if args.eval_textVQA or args.eval_all:
dataset = textVQADataset(args.textVQA_image_dir, args.textVQA_ann_path)
if max_sample_num is not None:
dataset = torch.utils.data.Subset(dataset, range(max_sample_num))
acc = evaluate_VQA(model, dataset, args.model_name, 'textVQA', time, \
batch_size=args.batchsize, generate_method=args.generate_method, answer_path=args.answer_path)
result['textVQA'] = acc
if args.eval_docVQA or args.eval_all:
dataset = docVQADataset(args.docVQA_image_dir, args.docVQA_ann_path)
if max_sample_num is not None:
dataset = torch.utils.data.Subset(dataset, range(max_sample_num))
acc = evaluate_VQA(model, dataset, args.model_name, 'docVQA', time, batch_size=args.batchsize, generate_method=args.generate_method, answer_path=args.answer_path)
result['docVQA'] = acc
if args.eval_docVQATest or args.eval_all:
target_dataset = "docVQATest"
dataset = docVQATESTDataset(args.docVQATest_image_dir, args.docVQATest_ann_path)
if max_sample_num is not None:
dataset = torch.utils.data.Subset(dataset, range(max_sample_num))
acc = evaluate_VQA(model, dataset, args.model_name, target_dataset, time, batch_size=args.batchsize, generate_method=args.generate_method, answer_path=args.answer_path)
result['docVQATest'] = acc
if torch.distributed.is_initialized():
torch.distributed.barrier()
if torch.distributed.is_initialized() and torch.distributed.get_rank() != 0:
return None
result_path = os.path.join(os.path.join(args.answer_path, args.model_name), 'result.json')
output_flag = False
for k, v in result.items():
if v > 0.0:
output_flag = True
break
if output_flag:
with open(result_path, "w") as f:
f.write(json.dumps(result, indent=4))
if __name__ == "__main__":
args = parse_args()
main(args)

View File

@@ -0,0 +1,40 @@
import json
import glob
import re
def has_word(sentence, word):
pattern = r"\b" + re.escape(word) + r"\b"
match = re.search(pattern, sentence)
if match:
return True
else:
return False
def remove_special_chars(s):
pattern = r"[^a-zA-Z0-9\s]"
s = re.sub(pattern, "", s)
return s
for model in glob.glob('./answer_save/*'):
print(model, ':')
result_list = sorted(glob.glob(f'{model}/*.json'))
for task_result_path in result_list:
taskname = task_result_path.split('/')[-1]
taskname = taskname.split('.')[0]
if taskname not in ['IIIT5K', 'svt', 'IC13_857', 'IC15_1811', 'svtp', 'ct80',
'cocotext', 'ctw', 'totaltext', 'HOST']:
continue
correct = 0
num = 0
with open(task_result_path, 'r') as f:
dict = json.load(f)[:100]
for i in range(len(dict)):
gt_answers = dict[i]['gt_answers']
answer = dict[i]['answer']
gt_answers = remove_special_chars(gt_answers).lower()
answer = remove_special_chars(answer).lower()
if has_word(answer, gt_answers):
correct+=1
num+=1
print(f'{taskname:10s}:{float(correct)/num*100:.2f}')
print('=' * 32)

View File

@@ -0,0 +1,62 @@
import argparse
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
parser.add_argument('--local-rank', type=int, default=0, help='Local rank for distributed training')
# textVQA
parser.add_argument("--textVQA_image_dir", type=str, default="")
parser.add_argument("--textVQA_ann_path", type=str, default="")
# docVQA
parser.add_argument("--docVQA_image_dir", type=str, default="")
parser.add_argument("--docVQA_ann_path", type=str, default="")
# docVQATest
parser.add_argument("--docVQATest_image_dir", type=str, default="")
parser.add_argument("--docVQATest_ann_path", type=str, default="")
# result path
parser.add_argument("--answer_path", type=str, default="./answers-new")
# eval
parser.add_argument(
"--eval_textVQA",
action="store_true",
default=False,
help="Whether to evaluate on textVQA."
)
parser.add_argument(
"--eval_docVQA",
action="store_true",
default=False,
help="Whether to evaluate on docVQA."
)
parser.add_argument(
"--eval_docVQATest",
action="store_true",
default=False,
help="Whether to evaluate on docVQA."
)
parser.add_argument(
"--eval_all",
action="store_true",
default=False,
help="Whether to evaluate all datasets"
)
parser.add_argument("--model_name", type=str, default="")
parser.add_argument("--model_path", type=str, default="")
parser.add_argument("--generate_method", type=str, default="", help="generate with interleave or not.")
parser.add_argument("--device", type=str, default="cuda:0")
parser.add_argument('--batchsize', type=int, default=1, help='Batch size for processing.')
parser.add_argument("--ckpt", type=str, default="")
args = parser.parse_args()
return args

View File

@@ -0,0 +1,446 @@
import itertools
import json
import os
import re
from collections import namedtuple
import torch
from tqdm import tqdm
class InferenceSampler(torch.utils.data.sampler.Sampler):
def __init__(self, size):
self._size = int(size)
assert size > 0
self._rank = torch.distributed.get_rank()
self._world_size = torch.distributed.get_world_size()
self._local_indices = self._get_local_indices(size, self._world_size,
self._rank)
@staticmethod
def _get_local_indices(total_size, world_size, rank):
shard_size = total_size // world_size
left = total_size % world_size
shard_sizes = [shard_size + int(r < left) for r in range(world_size)]
begin = sum(shard_sizes[:rank])
end = min(sum(shard_sizes[:rank + 1]), total_size)
return range(begin, end)
def __iter__(self):
yield from self._local_indices
def __len__(self):
return len(self._local_indices)
def collate_fn_vqa(batches):
'''
'''
image_paths = [_['image_path'] for _ in batches]
questions = [_['question'] for _ in batches]
gt_answers = [_['gt_answers'] for _ in batches]
ocr_tokens = [_['ocr_tokens'] if 'ocr_tokens' in _ else None for _ in batches]
question_ids = [_['question_id'] if 'question_id' in _ else None for _ in batches]
question_type = [_['question_type'] if 'question_type' in _ else None for _ in batches]
return image_paths, questions, gt_answers, ocr_tokens, question_ids, question_type
def has_word(sentence, word):
if word[0].isalnum():
start_pattern = r"\b"
else:
start_pattern = r""
if word[-1].isalnum():
end_pattern = r"\b"
else:
end_pattern = r""
pattern = start_pattern + re.escape(word) + end_pattern
match = re.search(pattern, sentence)
return bool(match)
def remove_special_chars(s):
pattern = r"[^a-zA-Z0-9\s]"
s = re.sub(pattern, "", s)
return s
def levenshtein_distance(s1, s2):
if len(s1) > len(s2):
s1, s2 = s2, s1
distances = range(len(s1) + 1)
for i2, c2 in enumerate(s2):
distances_ = [i2+1]
for i1, c1 in enumerate(s1):
if c1 == c2:
distances_.append(distances[i1])
else:
distances_.append(1 + min((distances[i1], distances[i1 + 1], distances_[-1])))
distances = distances_
return distances[-1]
class VQAEval:
def __init__(self):
self.contractions = {
"aint": "ain't",
"arent": "aren't",
"cant": "can't",
"couldve": "could've",
"couldnt": "couldn't",
"couldn'tve": "couldn't've",
"couldnt've": "couldn't've",
"didnt": "didn't",
"doesnt": "doesn't",
"dont": "don't",
"hadnt": "hadn't",
"hadnt've": "hadn't've",
"hadn'tve": "hadn't've",
"hasnt": "hasn't",
"havent": "haven't",
"hed": "he'd",
"hed've": "he'd've",
"he'dve": "he'd've",
"hes": "he's",
"howd": "how'd",
"howll": "how'll",
"hows": "how's",
"Id've": "I'd've",
"I'dve": "I'd've",
"Im": "I'm",
"Ive": "I've",
"isnt": "isn't",
"itd": "it'd",
"itd've": "it'd've",
"it'dve": "it'd've",
"itll": "it'll",
"let's": "let's",
"maam": "ma'am",
"mightnt": "mightn't",
"mightnt've": "mightn't've",
"mightn'tve": "mightn't've",
"mightve": "might've",
"mustnt": "mustn't",
"mustve": "must've",
"neednt": "needn't",
"notve": "not've",
"oclock": "o'clock",
"oughtnt": "oughtn't",
"ow's'at": "'ow's'at",
"'ows'at": "'ow's'at",
"'ow'sat": "'ow's'at",
"shant": "shan't",
"shed've": "she'd've",
"she'dve": "she'd've",
"she's": "she's",
"shouldve": "should've",
"shouldnt": "shouldn't",
"shouldnt've": "shouldn't've",
"shouldn'tve": "shouldn't've",
"somebody'd": "somebodyd",
"somebodyd've": "somebody'd've",
"somebody'dve": "somebody'd've",
"somebodyll": "somebody'll",
"somebodys": "somebody's",
"someoned": "someone'd",
"someoned've": "someone'd've",
"someone'dve": "someone'd've",
"someonell": "someone'll",
"someones": "someone's",
"somethingd": "something'd",
"somethingd've": "something'd've",
"something'dve": "something'd've",
"somethingll": "something'll",
"thats": "that's",
"thered": "there'd",
"thered've": "there'd've",
"there'dve": "there'd've",
"therere": "there're",
"theres": "there's",
"theyd": "they'd",
"theyd've": "they'd've",
"they'dve": "they'd've",
"theyll": "they'll",
"theyre": "they're",
"theyve": "they've",
"twas": "'twas",
"wasnt": "wasn't",
"wed've": "we'd've",
"we'dve": "we'd've",
"weve": "we've",
"werent": "weren't",
"whatll": "what'll",
"whatre": "what're",
"whats": "what's",
"whatve": "what've",
"whens": "when's",
"whered": "where'd",
"wheres": "where's",
"whereve": "where've",
"whod": "who'd",
"whod've": "who'd've",
"who'dve": "who'd've",
"wholl": "who'll",
"whos": "who's",
"whove": "who've",
"whyll": "why'll",
"whyre": "why're",
"whys": "why's",
"wont": "won't",
"wouldve": "would've",
"wouldnt": "wouldn't",
"wouldnt've": "wouldn't've",
"wouldn'tve": "wouldn't've",
"yall": "y'all",
"yall'll": "y'all'll",
"y'allll": "y'all'll",
"yall'd've": "y'all'd've",
"y'alld've": "y'all'd've",
"y'all'dve": "y'all'd've",
"youd": "you'd",
"youd've": "you'd've",
"you'dve": "you'd've",
"youll": "you'll",
"youre": "you're",
"youve": "you've",
}
self.manualMap = {
"none": "0",
"zero": "0",
"one": "1",
"two": "2",
"three": "3",
"four": "4",
"five": "5",
"six": "6",
"seven": "7",
"eight": "8",
"nine": "9",
"ten": "10",
}
self.articles = ["a", "an", "the"]
self.periodStrip = re.compile("(?!<=\d)(\.)(?!\d)")
self.commaStrip = re.compile("(\d)(\,)(\d)")
self.punct = [
";",
r"/",
"[",
"]",
'"',
"{",
"}",
"(",
")",
"=",
"+",
"\\",
"_",
"-",
">",
"<",
"@",
"`",
",",
"?",
"!",
]
def clean_text(self, text):
text = text.replace("\n", " ").replace("\t", " ").strip()
text = self.processPunctuation(text)
text = self.processDigitArticle(text)
return text
def evaluate_vqa_human(self, answer, gt_answers):
'''TextVQA, VQAv2, OKVQA, vizwiz'''
answer = answer.replace("\n", " ").replace("\t", " ").strip()
answer = self.processPunctuation(answer)
answer = self.processDigitArticle(answer)
gt_answers = [self.processPunctuation(ans) for ans in gt_answers]
gt_answers = [self.processDigitArticle(ans) for ans in gt_answers]
gtAcc = []
for idx, gtAnsDatum in enumerate(gt_answers):
otherGTAns = gt_answers[:idx] + gt_answers[idx+1:]
matchingAns = [item for item in otherGTAns if answer == item]
acc = min(1, float(len(matchingAns)) / 3)
gtAcc.append(acc)
avgGTAcc = float(sum(gtAcc)) / len(gtAcc) if gtAcc else 0
return avgGTAcc
def evaluate_anls(self, answer, gt_answers, threshold=0.5):
'''DOcVQA, InfographicsVQA, STVQA'''
answer = ' '.join(answer.strip().lower().split())
if not isinstance(gt_answers, list):
gt_answers = [gt_answers]
gt_answers = [' '.join(gt_answer.strip().lower().split()) for gt_answer in gt_answers]
values = []
for gt_answer in gt_answers:
dist = levenshtein_distance(answer, gt_answer)
length = max(len(answer), len(gt_answer))
values.append(0.0 if length == 0 else float(dist) / float(length))
score = 1 - min(values)
score = 0 if score < threshold else score
return score
def processPunctuation(self, inText):
outText = inText
for p in self.punct:
if (p + " " in inText or " " + p in inText) or (
re.search(self.commaStrip, inText) != None
):
outText = outText.replace(p, "")
else:
outText = outText.replace(p, " ")
outText = self.periodStrip.sub("", outText, re.UNICODE)
return outText
def processDigitArticle(self, inText):
outText = []
tempText = inText.lower().split()
for word in tempText:
word = self.manualMap.setdefault(word, word)
if word not in self.articles:
outText.append(word)
else:
pass
for wordId, word in enumerate(outText):
if word in self.contractions:
outText[wordId] = self.contractions[word]
outText = " ".join(outText)
return outText
def evaluate_dataset(dataset_name, answer_file_path, model_name, method = None):
with open(answer_file_path, 'r', encoding='utf-8') as f:
predictions = json.load(f)
eval = VQAEval()
total_accuracy = 0
num = 0
Entry = namedtuple('Entry', ['text', 'bbox'])
for item in predictions:
gt_answers = item['gt_answers']
answer = item['answer']
if method is not None:
pass
if dataset_name in ["textVQA"]:
if num == 0:
print(f"evaluating vqa...")
accuracy = eval.evaluate_vqa_human(answer, gt_answers)
elif dataset_name in ['docVQA']:
if num == 0:
print(f"evaluating anls...")
accuracy = eval.evaluate_anls(answer, gt_answers)
else:
accuracy = eval.evaluate_has(answer, gt_answers)
item['accuracy'] = accuracy
total_accuracy += accuracy
num += 1
average_accuracy = total_accuracy / num
print(f'{dataset_name}:{average_accuracy}')
answer_model_method_path = answer_file_path.replace('.json', f'_{model_name}_{method}.json')
with open(answer_model_method_path, "w", encoding='utf-8') as f:
json.dump(predictions, f, indent=4, ensure_ascii=False)
return average_accuracy
def evaluate_VQA(
model,
dataset,
model_name,
dataset_name,
time,
batch_size=1,
generate_method="interleave",
answer_path='./answers',
):
print(f"answer path:{answer_path}")
sampler = None
if torch.distributed.is_initialized():
sampler=InferenceSampler(len(dataset))
dataloader = torch.utils.data.DataLoader(
dataset=dataset,
batch_size=batch_size,
sampler=sampler,
collate_fn=collate_fn_vqa
)
now_rank = torch.distributed.get_rank()
answer_dir = os.path.join(answer_path, model_name, time)
os.makedirs(answer_dir, exist_ok=True)
image_list = []
for item in dataset:
image_list.append(item["image_path"])
predictions = []
for batch in tqdm(dataloader, desc="Running inference"):
image_paths, questions, gt_answers, ocr_tokens_list, question_ids, question_type = batch
with torch.no_grad():
if model_name != "minicpm":
if model_name != "codellama":
outputs = model.generate(images=image_paths, questions=questions, datasetname=dataset_name)
else:
outputs = model.generate()
elif model_name == "minicpm":
if generate_method == "old":
outputs = model.generate(images=image_paths, questions=questions, datasetname=dataset_name)
elif generate_method == "interleave":
outputs = model.generate_with_interleaved(images=image_paths, questions=questions, datasetname=dataset_name)
else:
raise Exception(f"Wrong generate paradigm {generate_method}!")
for i in range(len(outputs)):
answer_dict = {
'question_id': question_ids[i],
'question': questions[i],
'answer': outputs[i],
'gt_answers': gt_answers[i],
'image_path': image_paths[i],
'model_name': model_name,
'question_type': question_type[i]
}
predictions.append(answer_dict)
if torch.distributed.is_initialized():
torch.distributed.barrier()
if torch.distributed.is_initialized():
world_size = torch.distributed.get_world_size()
merged_predictions = [None for _ in range(world_size)]
torch.distributed.all_gather_object(merged_predictions, predictions)
predictions = [_ for _ in itertools.chain.from_iterable(merged_predictions)]
if torch.distributed.is_initialized() and torch.distributed.get_rank() != 0:
return None
answer_file_path = os.path.join(answer_dir, f"{dataset_name}.json")
print(f"answer_file_path:{answer_file_path}")
with open(answer_file_path, "w", encoding='utf-8') as f:
json.dump(predictions, f, indent=4, ensure_ascii=False)
if dataset_name in ["docVQATest"]:
return -1.0
return evaluate_dataset(answer_file_path=answer_file_path, dataset_name=dataset_name, model_name=model_name)

View File

@@ -0,0 +1,96 @@
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer
Image.MAX_IMAGE_PIXELS = 1000000000
max_token = {
'docVQA': 100,
'textVQA': 100,
"docVQATest": 100
}
class MiniCPM_V:
def __init__(self, model_path, ckpt, device=None)->None:
self.model_path = model_path
self.ckpt = ckpt
self.model = AutoModel.from_pretrained(self.model_path, trust_remote_code=True).eval()
if self.ckpt is not None:
self.ckpt = ckpt
self.state_dict = torch.load(self.ckpt, map_location=torch.device('cpu'))
self.model.load_state_dict(self.state_dict)
self.model = self.model.to(dtype=torch.float16)
self.model.to(device)
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True)
torch.cuda.empty_cache()
def generate(self, images, questions, datasetname):
image = Image.open(images[0]).convert('RGB')
try:
max_new_tokens = max_token[datasetname]
except:
max_new_tokens = 1024
if (datasetname == 'docVQA') or (datasetname == "docVQATest") :
prompt = "Answer the question directly with single word." + "\n" + questions[0]
elif (datasetname == 'textVQA') :
prompt = "Answer the question directly with single word." + '\n'+ questions[0]
msgs = [{'role': 'user', 'content': prompt}]
default_kwargs = dict(
max_new_tokens=max_new_tokens,
sampling=False,
num_beams=3
)
res = self.model.chat(
image=image,
msgs=msgs,
context=None,
tokenizer=self.tokenizer,
**default_kwargs
)
return [res]
def generate_with_interleaved(self, images, questions, datasetname):
try:
max_new_tokens = max_token[datasetname]
except:
max_new_tokens = 1024
prompt = "Answer the question directly with single word."
default_kwargs = dict(
max_new_tokens=max_new_tokens,
sampling=False,
num_beams=3
)
content = []
message = [
{'type': 'text', 'value': prompt},
{'type': 'image', 'value': images[0]},
{'type': 'text', 'value': questions[0]}
]
for x in message:
if x['type'] == 'text':
content.append(x['value'])
elif x['type'] == 'image':
image = Image.open(x['value']).convert('RGB')
content.append(image)
msgs = [{'role': 'user', 'content': content}]
res = self.model.chat(
msgs=msgs,
context=None,
tokenizer=self.tokenizer,
**default_kwargs
)
if isinstance(res, tuple) and len(res) > 0:
res = res[0]
print(f"Q: {content}, \nA: {res}")
return [res]

View File

@@ -0,0 +1,49 @@
accelerate
aiohttp==3.8.4
aiosignal==1.3.1
async-timeout==4.0.2
attrs==22.2.0
bitsandbytes==0.37.0
cchardet==2.1.7
chardet==5.1.0
contourpy==1.0.7
cycler==0.11.0
filelock==3.9.0
fonttools==4.38.0
frozenlist==1.3.3
huggingface-hub==0.13.4
importlib-resources==5.12.0
kiwisolver==1.4.4
matplotlib==3.7.0
multidict==6.0.4
openai==0.27.0
packaging==23.0
psutil==5.9.4
pycocotools==2.0.6
pyparsing==3.0.9
python-dateutil==2.8.2
pyyaml==6.0
regex==2022.10.31
tokenizers==0.13.2
tqdm==4.64.1
transformers
timm==0.6.13
spacy==3.5.1
webdataset==0.2.48
scikit-learn==1.2.2
scipy==1.10.1
yarl==1.8.2
zipp==3.14.0
omegaconf==2.3.0
opencv-python==4.7.0.72
iopath==0.1.10
decord==0.6.0
tenacity==8.2.2
peft
pycocoevalcap
sentence-transformers
umap-learn
notebook
gradio==3.24.1
gradio-client==0.0.8
wandb

View File

@@ -0,0 +1,15 @@
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
python -m torch.distributed.launch \
--nproc_per_node=${NPROC_PER_NODE:-8} \
--nnodes=${WORLD_SIZE:-1} \
--node_rank=${RANK:-0} \
--master_addr=${MASTER_ADDR:-127.0.0.1} \
--master_port=${MASTER_PORT:-12345} \
./eval.py \
--model_name minicpm \
--model_path \
--generate_method interleave \
--eval_textVQA \
--eval_docVQA \
--answer_path ./answers \
--batchsize 1

View File

@@ -0,0 +1,3 @@
python ./transform_docvqatest_for_submission.py \
--input_file_path \
--output_file_path

View File

@@ -0,0 +1,16 @@
import argparse
import json
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--input_file_path", type=str, default="", help="path to the originial output json.")
parser.add_argument("--output_file_path", type=str, default="", help="path to where you want to save the processed json.")
args = parser.parse_args()
with open(args.input_file_path , 'r') as f:
data = json.load(f)
transformed_data = [{"questionId": item["question_id"], "answer": item["answer"].replace("</s>", "")} for item in data]
with open(args.output_file_path, 'w') as f:
json.dump(transformed_data, f)