mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-05 18:29:18 +08:00
Add eval_mm dir
This commit is contained in:
184
eval_mm/vlmevalkit/vlmeval/inference.py
Normal file
184
eval_mm/vlmevalkit/vlmeval/inference.py
Normal file
@@ -0,0 +1,184 @@
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import datetime
|
||||
from vlmeval.config import supported_VLM, api_models
|
||||
from vlmeval.utils import TSVDataset, track_progress_rich, split_MMMU
|
||||
from vlmeval.smp import *
|
||||
|
||||
FAIL_MSG = 'Failed to obtain answer via API.'
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--data', type=str, nargs='+', required=True)
|
||||
parser.add_argument('--model', type=str, nargs='+', required=True)
|
||||
parser.add_argument('--nproc', type=int, default=4, required=True)
|
||||
parser.add_argument('--verbose', action='store_true')
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
# Only API model is accepted
|
||||
def infer_data_api(work_dir, model_name, dataset_name, index_set=None, api_nproc=4, ignore_failed=False):
|
||||
rank, world_size = get_rank_and_world_size()
|
||||
assert rank == 0 and world_size == 1
|
||||
dataset = TSVDataset(dataset_name)
|
||||
data = dataset.data
|
||||
if index_set is not None:
|
||||
data = data[data['index'].isin(index_set)]
|
||||
|
||||
model = supported_VLM[model_name]() if isinstance(model_name, str) else model_name
|
||||
assert getattr(model, 'is_api', False)
|
||||
|
||||
lt, indices = len(data), list(data['index'])
|
||||
structs = [dataset.build_prompt(data.iloc[i]) for i in range(lt)]
|
||||
|
||||
# Corner Case
|
||||
if listinstr(['MMMU'], dataset_name):
|
||||
structs = [split_MMMU(s) for s in structs]
|
||||
|
||||
out_file = f'{work_dir}/{model_name}_{dataset_name}_supp.pkl'
|
||||
res = {}
|
||||
if osp.exists(out_file):
|
||||
res = load(out_file)
|
||||
if ignore_failed:
|
||||
res = {k: v for k, v in res.items() if FAIL_MSG not in v}
|
||||
|
||||
structs = [s for i, s in zip(indices, structs) if i not in res]
|
||||
indices = [i for i in indices if i not in res]
|
||||
|
||||
gen_func = model.generate
|
||||
# For now, we do not use split_MMMU for MMMU dataset
|
||||
structs = [dict(message=struct, dataset=dataset_name) for struct in structs]
|
||||
|
||||
if len(structs):
|
||||
track_progress_rich(gen_func, structs, nproc=api_nproc, chunksize=api_nproc, save=out_file, keys=indices)
|
||||
|
||||
res = load(out_file)
|
||||
if index_set is not None:
|
||||
res = {k: v for k, v in res.items() if k in index_set}
|
||||
os.remove(out_file)
|
||||
return res
|
||||
|
||||
|
||||
def infer_data(model_name, work_dir, dataset_name, out_file, verbose=False, api_nproc=4):
|
||||
prev_file = f'{work_dir}/{model_name}_{dataset_name}_PREV.pkl'
|
||||
res = load(prev_file) if osp.exists(prev_file) else {}
|
||||
if osp.exists(out_file):
|
||||
res.update(load(out_file))
|
||||
|
||||
rank, world_size = get_rank_and_world_size()
|
||||
if rank == 0:
|
||||
dataset = TSVDataset(dataset_name)
|
||||
if world_size > 1:
|
||||
dist.barrier()
|
||||
dataset = TSVDataset(dataset_name)
|
||||
|
||||
sheet_indices = list(range(rank, len(dataset), world_size))
|
||||
lt = len(sheet_indices)
|
||||
data = dataset.data.iloc[sheet_indices]
|
||||
data_indices = [i for i in data['index']]
|
||||
|
||||
# If finished, will exit without building the model
|
||||
all_finished = True
|
||||
for i in range(lt):
|
||||
idx = data.iloc[i]['index']
|
||||
if idx not in res:
|
||||
all_finished = False
|
||||
if all_finished:
|
||||
res = {k: res[k] for k in data_indices}
|
||||
dump(res, out_file)
|
||||
return
|
||||
|
||||
# Data need to be inferred
|
||||
data = data[~data['index'].isin(res)]
|
||||
lt = len(data)
|
||||
|
||||
model = supported_VLM[model_name]() if isinstance(model_name, str) else model_name
|
||||
|
||||
is_api = getattr(model, 'is_api', False)
|
||||
if is_api:
|
||||
lt, indices = len(data), list(data['index'])
|
||||
supp = infer_data_api(
|
||||
work_dir=work_dir,
|
||||
model_name=model_name,
|
||||
dataset_name=dataset_name,
|
||||
index_set=set(indices),
|
||||
api_nproc=api_nproc)
|
||||
for idx in indices:
|
||||
assert idx in supp
|
||||
res.update(supp)
|
||||
res = {k: res[k] for k in data_indices}
|
||||
dump(res, out_file)
|
||||
return model_name
|
||||
|
||||
for i in tqdm(range(lt)):
|
||||
idx = data.iloc[i]['index']
|
||||
if idx in res:
|
||||
continue
|
||||
|
||||
if hasattr(model, 'use_custom_prompt') and model.use_custom_prompt(dataset_name):
|
||||
struct = model.build_prompt(data.iloc[i], dataset=dataset_name)
|
||||
else:
|
||||
struct = dataset.build_prompt(data.iloc[i])
|
||||
|
||||
# Corner Case
|
||||
if listinstr(['MMMU'], dataset_name):
|
||||
struct = split_MMMU(struct)
|
||||
|
||||
# For now, we do not use split_MMMU for MMMU dataset
|
||||
response = model.generate(message=struct, dataset=dataset_name)
|
||||
# torch.cuda.empty_cache()
|
||||
|
||||
if verbose:
|
||||
print(response, flush=True)
|
||||
|
||||
res[idx] = response
|
||||
if (i + 1) % 20 == 0:
|
||||
dump(res, out_file)
|
||||
|
||||
res = {k: res[k] for k in data_indices}
|
||||
dump(res, out_file)
|
||||
return model
|
||||
|
||||
|
||||
# A wrapper for infer_data, do the pre & post processing
|
||||
def infer_data_job(model, work_dir, model_name, dataset_name, verbose=False, api_nproc=4, ignore_failed=False):
|
||||
rank, world_size = get_rank_and_world_size()
|
||||
result_file = osp.join(work_dir, f'{model_name}_{dataset_name}.xlsx')
|
||||
|
||||
prev_file = f'{work_dir}/{model_name}_{dataset_name}_PREV.pkl'
|
||||
if osp.exists(result_file):
|
||||
if rank == 0:
|
||||
data = load(result_file)
|
||||
results = {k: v for k, v in zip(data['index'], data['prediction'])}
|
||||
if not ignore_failed:
|
||||
results = {k: v for k, v in results.items() if FAIL_MSG not in str(v)}
|
||||
dump(results, prev_file)
|
||||
if world_size > 1:
|
||||
dist.barrier()
|
||||
|
||||
tmpl = osp.join(work_dir, '{}' + f'{world_size}_{dataset_name}.pkl')
|
||||
out_file = tmpl.format(rank)
|
||||
|
||||
model = infer_data(
|
||||
model, work_dir=work_dir, dataset_name=dataset_name, out_file=out_file, verbose=verbose, api_nproc=api_nproc)
|
||||
if world_size > 1:
|
||||
dist.barrier()
|
||||
|
||||
if rank == 0:
|
||||
data_all = {}
|
||||
for i in range(world_size):
|
||||
data_all.update(load(tmpl.format(i)))
|
||||
|
||||
data = TSVDataset(dataset_name).data
|
||||
for x in data['index']:
|
||||
assert x in data_all
|
||||
data['prediction'] = [str(data_all[x]) for x in data['index']]
|
||||
if 'image' in data:
|
||||
data.pop('image')
|
||||
|
||||
dump(data, result_file)
|
||||
for i in range(world_size):
|
||||
os.remove(tmpl.format(i))
|
||||
return model
|
||||
Reference in New Issue
Block a user