mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-05 18:29:18 +08:00
Add eval_mm dir
This commit is contained in:
240
eval_mm/vlmevalkit/vlmeval/evaluate/mathvista_eval.py
Normal file
240
eval_mm/vlmevalkit/vlmeval/evaluate/mathvista_eval.py
Normal file
@@ -0,0 +1,240 @@
|
||||
from vlmeval.evaluate.misc import build_judge
|
||||
from vlmeval.smp import *
|
||||
from vlmeval.utils import track_progress_rich
|
||||
from vlmeval.utils.matching_util import can_infer
|
||||
|
||||
|
||||
def get_gpt4_ICE():
|
||||
example_1 = """
|
||||
Hint: Please answer the question requiring an integer answer and provide the final value,
|
||||
e.g., 1, 2, 3, at the end.\n
|
||||
Question: Which number is missing?\n
|
||||
Model response: The number missing in the sequence is 14.\n
|
||||
Extracted answer: 14
|
||||
"""
|
||||
|
||||
example_2 = """
|
||||
Hint: Please answer the question requiring a floating-point number with one decimal place and provide the final value,
|
||||
e.g., 1.2, 1.3, 1.4, at the end.\n
|
||||
Question: What is the fraction of females facing the camera?\n
|
||||
Model response: The fraction of females facing the camera is 0.6,
|
||||
which means that six out of ten females in the group are facing the camera.\n
|
||||
Extracted answer: 0.6
|
||||
"""
|
||||
|
||||
example_3 = """
|
||||
Hint: Please answer the question requiring a floating-point number with two decimal places and provide the final value,
|
||||
e.g., 1.23, 1.34, 1.45, at the end.\n
|
||||
Question: How much money does Luca need to buy a sour apple candy and a butter-scotch candy? (Unit: $)\n
|
||||
Model response: Luca needs $1.45 to buy a sour apple candy and a butterscotch candy.\n
|
||||
Extracted answer: 1.45
|
||||
"""
|
||||
|
||||
example_4 = """
|
||||
Hint: Please answer the question requiring a Python list as an answer and provide the final list,
|
||||
e.g., [1, 2, 3], [1.2, 1.3, 1.4], at the end.\n
|
||||
Question: Between which two years does the line graph saw its maximum peak?\n
|
||||
Model response: The line graph saw its maximum peak between 2007 and 2008.\n
|
||||
Extracted answer: [2007, 2008]
|
||||
"""
|
||||
|
||||
example_5 = """
|
||||
Hint: Please answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.\n
|
||||
Question: What fraction of the shape is blue?\n
|
||||
Choices: (A) 3/11 (B) 8/11 (C) 6/11 (D) 3/5\n
|
||||
Model response: The correct answer is (B) 8/11.\n
|
||||
Extracted answer: B
|
||||
"""
|
||||
|
||||
return [example_1, example_2, example_3, example_4, example_5]
|
||||
|
||||
|
||||
def build_mathvista_gpt4_prompt(line):
|
||||
task_description = """
|
||||
Please read the following example.
|
||||
Then extract the answer from the model response and type it at the end of the prompt.\n
|
||||
"""
|
||||
question = line['question']
|
||||
prediction = str(line['prediction'])
|
||||
prompt = task_description
|
||||
examples = get_gpt4_ICE()
|
||||
for example in examples:
|
||||
prompt += example + '\n'
|
||||
prompt += question + '\n'
|
||||
prompt += 'Model respone: ' + prediction
|
||||
prompt += 'Extracted answer:'
|
||||
return prompt
|
||||
|
||||
|
||||
def list_to_dict(lst):
|
||||
return {chr(65 + i): val for i, val in enumerate(lst)}
|
||||
|
||||
|
||||
def post_check(line, prefetch=False):
|
||||
res = None
|
||||
ans = line['answer']
|
||||
response = line['prediction'] if prefetch else line['res']
|
||||
try:
|
||||
if line['question_type'] == 'multi_choice':
|
||||
ans = line['answer_option']
|
||||
choices = list_to_dict(eval(line['choices']))
|
||||
res = can_infer(response, choices)
|
||||
if prefetch:
|
||||
return res
|
||||
else:
|
||||
if line['answer_type'] == 'integer':
|
||||
res = int(response)
|
||||
ans = int(line['answer'])
|
||||
elif line['answer_type'] == 'float':
|
||||
res = float(response)
|
||||
ans = float(line['answer'])
|
||||
else:
|
||||
res = str(res)
|
||||
ans = str(ans)
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
if res == ans:
|
||||
return res if prefetch else True
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
def MathVista_auxeval(model, line):
|
||||
prompt = build_mathvista_gpt4_prompt(line)
|
||||
log = ''
|
||||
retry = 5
|
||||
if post_check(line, prefetch=True):
|
||||
res = post_check(line, prefetch=True)
|
||||
return dict(log='Prefetch succeed', res=res)
|
||||
for i in range(retry):
|
||||
prediction = line['prediction']
|
||||
res = model.generate(prompt, temperature=i * 0.5)
|
||||
if res is None:
|
||||
log += f'Try {i}: output is {prediction}, failed to parse.\n'
|
||||
else:
|
||||
log += 'Succeed'
|
||||
return dict(log=log, res=res)
|
||||
log += 'All 5 retries failed.\n'
|
||||
return dict(log=log, res='')
|
||||
|
||||
|
||||
def MathVista_acc(result_file):
|
||||
data = load(result_file)
|
||||
tot = defaultdict(lambda: 0)
|
||||
fetch = defaultdict(lambda: 0)
|
||||
hit = defaultdict(lambda: 0)
|
||||
lt = len(data)
|
||||
skill_list = []
|
||||
for i in range(lt):
|
||||
item = data.iloc[i]
|
||||
cate = item['task']
|
||||
tot['Overall'] += 1
|
||||
try:
|
||||
skills = eval(item['skills'])
|
||||
except SyntaxError:
|
||||
skills = [item['skills']]
|
||||
for skill in skills:
|
||||
if skill not in skill_list:
|
||||
skill_list.append(skill)
|
||||
tot[skill] += 1
|
||||
tot[cate] += 1
|
||||
if item['log'] == 'Prefetch succeed':
|
||||
fetch['Overall'] += 1
|
||||
fetch[cate] += 1
|
||||
for skill in skills:
|
||||
fetch[skill] += 1
|
||||
if post_check(item, prefetch=False):
|
||||
hit['Overall'] += 1
|
||||
hit[cate] += 1
|
||||
for skill in skills:
|
||||
hit[skill] += 1
|
||||
|
||||
res = defaultdict(list)
|
||||
for k in tot.keys():
|
||||
res['Task&Skill'].append(k)
|
||||
res['tot'].append(tot[k])
|
||||
res['prefetch'].append(fetch[k])
|
||||
res['hit'].append(hit[k])
|
||||
res['prefetch_rate'].append(fetch[k] / tot[k] * 100)
|
||||
res['acc'].append(hit[k] / tot[k] * 100)
|
||||
res = pd.DataFrame(res)
|
||||
return res
|
||||
|
||||
|
||||
def MathVista_eval(eval_file, **judge_kwargs):
|
||||
logger = get_logger('Evaluation')
|
||||
model = judge_kwargs['model']
|
||||
|
||||
suffix = eval_file.split('.')[-1]
|
||||
storage = eval_file.replace(f'.{suffix}', f'_{model}.xlsx')
|
||||
tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl')
|
||||
nproc = judge_kwargs.pop('nproc', 4)
|
||||
|
||||
if osp.exists(storage):
|
||||
logger.warning(f'GPT scoring file {storage} already exists, will reuse it in MathVista_eval. ')
|
||||
else:
|
||||
data = load(eval_file)
|
||||
model = build_judge(max_tokens=128, **judge_kwargs)
|
||||
lt = len(data)
|
||||
lines = [data.iloc[i] for i in range(lt)]
|
||||
tups = [(model, line) for line in lines]
|
||||
indices = [line['index'] for line in lines]
|
||||
|
||||
ans = {}
|
||||
if osp.exists(tmp_file):
|
||||
ans = load(tmp_file)
|
||||
tups = [x for x, i in zip(tups, indices) if i not in ans]
|
||||
indices = [i for i in indices if i not in ans]
|
||||
|
||||
if len(indices):
|
||||
new_results = track_progress_rich(
|
||||
MathVista_auxeval, tups, nproc=nproc, chunksize=nproc,
|
||||
keys=indices, save=tmp_file)
|
||||
ans = load(tmp_file)
|
||||
for k, v in zip(indices, new_results):
|
||||
assert k in ans
|
||||
assert ans[k]['log'] == v['log'] and ans[k]['res'] == v['res']
|
||||
|
||||
log_map, res_map = {}, {}
|
||||
all_inds = [line['index'] for line in lines]
|
||||
for k in all_inds:
|
||||
log_map[k] = ans[k]['log']
|
||||
res_map[k] = ans[k]['res']
|
||||
data['res'] = [res_map[idx] for idx in data['index']]
|
||||
data['log'] = [log_map[idx] for idx in data['index']]
|
||||
dump(data, storage)
|
||||
|
||||
score = MathVista_acc(storage)
|
||||
score_pth = storage.replace('.xlsx', '_score.csv')
|
||||
|
||||
dump(score, score_pth)
|
||||
logger.info(f'MathVista_eval successfully finished evaluating {eval_file}, results saved in {score_pth}')
|
||||
logger.info('Score: ')
|
||||
logger.info(score)
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description='Inference LLM Answers. ')
|
||||
parser.add_argument('data', type=str, help='The question set for inference, in excel / tsv / json format. ')
|
||||
parser.add_argument(
|
||||
'--model',
|
||||
type=str,
|
||||
help='The LLM (GPT) used for inference. ',
|
||||
default='gpt-4-turbo',
|
||||
choices=['gpt-4-0613', 'gpt-4-turbo', 'chatgpt-1106', 'chatgpt-0613'])
|
||||
parser.add_argument('--nproc', type=int, default=4)
|
||||
parser.add_argument('--verbose', action='store_true')
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
load_env()
|
||||
args = parse_args()
|
||||
judge_kwargs = dict(model=args.model, nproc=args.nproc, verbose=args.verbose)
|
||||
if 'OPENAI_API_KEY_JUDGE' in os.environ and os.environ['OPENAI_API_KEY_JUDGE']:
|
||||
judge_kwargs['key'] = os.environ['OPENAI_API_KEY_JUDGE']
|
||||
if 'OPENAI_API_BASE_JUDGE' in os.environ and os.environ['OPENAI_API_BASE_JUDGE']:
|
||||
judge_kwargs['api_base'] = os.environ['OPENAI_API_BASE_JUDGE']
|
||||
MathVista_eval(eval_file=args.data, **judge_kwargs)
|
||||
Reference in New Issue
Block a user