mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-05 18:29:18 +08:00
Add eval_mm dir
This commit is contained in:
195
eval_mm/vlmevalkit/vlmeval/api/base.py
Normal file
195
eval_mm/vlmevalkit/vlmeval/api/base.py
Normal file
@@ -0,0 +1,195 @@
|
||||
import time
|
||||
import random as rd
|
||||
from abc import abstractmethod
|
||||
import os.path as osp
|
||||
import copy as cp
|
||||
from ..smp import get_logger, parse_file
|
||||
|
||||
|
||||
class BaseAPI:
|
||||
|
||||
allowed_types = ['text', 'image']
|
||||
INTERLEAVE = True
|
||||
INSTALL_REQ = False
|
||||
|
||||
def __init__(self,
|
||||
retry=10,
|
||||
wait=3,
|
||||
system_prompt=None,
|
||||
verbose=True,
|
||||
fail_msg='Failed to obtain answer via API.',
|
||||
**kwargs):
|
||||
"""Base Class for all APIs.
|
||||
|
||||
Args:
|
||||
retry (int, optional): The retry times for `generate_inner`. Defaults to 10.
|
||||
wait (int, optional): The wait time after each failed retry of `generate_inner`. Defaults to 3.
|
||||
system_prompt (str, optional): Defaults to None.
|
||||
verbose (bool, optional): Defaults to True.
|
||||
fail_msg (str, optional): The message to return when failed to obtain answer.
|
||||
Defaults to 'Failed to obtain answer via API.'.
|
||||
**kwargs: Other kwargs for `generate_inner`.
|
||||
"""
|
||||
|
||||
self.wait = wait
|
||||
self.retry = retry
|
||||
self.system_prompt = system_prompt
|
||||
self.verbose = verbose
|
||||
self.fail_msg = fail_msg
|
||||
self.logger = get_logger('ChatAPI')
|
||||
|
||||
if len(kwargs):
|
||||
self.logger.info(f'BaseAPI received the following kwargs: {kwargs}')
|
||||
self.logger.info('Will try to use them as kwargs for `generate`. ')
|
||||
self.default_kwargs = kwargs
|
||||
|
||||
@abstractmethod
|
||||
def generate_inner(self, inputs, **kwargs):
|
||||
"""The inner function to generate the answer.
|
||||
|
||||
Returns:
|
||||
tuple(int, str, str): ret_code, response, log
|
||||
"""
|
||||
self.logger.warning('For APIBase, generate_inner is an abstract method. ')
|
||||
assert 0, 'generate_inner not defined'
|
||||
ret_code, answer, log = None, None, None
|
||||
# if ret_code is 0, means succeed
|
||||
return ret_code, answer, log
|
||||
|
||||
def working(self):
|
||||
"""If the API model is working, return True, else return False.
|
||||
|
||||
Returns:
|
||||
bool: If the API model is working, return True, else return False.
|
||||
"""
|
||||
retry = 3
|
||||
while retry > 0:
|
||||
ret = self.generate('hello')
|
||||
if ret is not None and ret != '' and self.fail_msg not in ret:
|
||||
return True
|
||||
retry -= 1
|
||||
return False
|
||||
|
||||
def check_content(self, msgs):
|
||||
"""Check the content type of the input. Four types are allowed: str, dict, liststr, listdict.
|
||||
|
||||
Args:
|
||||
msgs: Raw input messages.
|
||||
|
||||
Returns:
|
||||
str: The message type.
|
||||
"""
|
||||
if isinstance(msgs, str):
|
||||
return 'str'
|
||||
if isinstance(msgs, dict):
|
||||
return 'dict'
|
||||
if isinstance(msgs, list):
|
||||
types = [self.check_content(m) for m in msgs]
|
||||
if all(t == 'str' for t in types):
|
||||
return 'liststr'
|
||||
if all(t == 'dict' for t in types):
|
||||
return 'listdict'
|
||||
return 'unknown'
|
||||
|
||||
def preproc_content(self, inputs):
|
||||
"""Convert the raw input messages to a list of dicts.
|
||||
|
||||
Args:
|
||||
inputs: raw input messages.
|
||||
|
||||
Returns:
|
||||
list(dict): The preprocessed input messages. Will return None if failed to preprocess the input.
|
||||
"""
|
||||
if self.check_content(inputs) == 'str':
|
||||
return [dict(type='text', value=inputs)]
|
||||
elif self.check_content(inputs) == 'dict':
|
||||
assert 'type' in inputs and 'value' in inputs
|
||||
return [inputs]
|
||||
elif self.check_content(inputs) == 'liststr':
|
||||
res = []
|
||||
for s in inputs:
|
||||
mime, pth = parse_file(s)
|
||||
if mime is None or mime == 'unknown':
|
||||
res.append(dict(type='text', value=s))
|
||||
else:
|
||||
res.append(dict(type=mime.split('/')[0], value=pth))
|
||||
return res
|
||||
elif self.check_content(inputs) == 'listdict':
|
||||
for item in inputs:
|
||||
assert 'type' in item and 'value' in item
|
||||
mime, s = parse_file(item['value'])
|
||||
if mime is None:
|
||||
assert item['type'] == 'text', item['value']
|
||||
else:
|
||||
assert mime.split('/')[0] == item['type']
|
||||
item['value'] = s
|
||||
return inputs
|
||||
else:
|
||||
return None
|
||||
|
||||
def generate(self, message, **kwargs1):
|
||||
"""The main function to generate the answer. Will call `generate_inner` with the preprocessed input messages.
|
||||
|
||||
Args:
|
||||
message: raw input messages.
|
||||
|
||||
Returns:
|
||||
str: The generated answer of the Failed Message if failed to obtain answer.
|
||||
"""
|
||||
assert self.check_content(message) in ['str', 'dict', 'liststr', 'listdict'], f'Invalid input type: {message}'
|
||||
message = self.preproc_content(message)
|
||||
assert message is not None and self.check_content(message) == 'listdict'
|
||||
for item in message:
|
||||
assert item['type'] in self.allowed_types, f'Invalid input type: {item["type"]}'
|
||||
|
||||
# merge kwargs
|
||||
kwargs = cp.deepcopy(self.default_kwargs)
|
||||
kwargs.update(kwargs1)
|
||||
|
||||
answer = None
|
||||
# a very small random delay [0s - 0.5s]
|
||||
T = rd.random() * 0.5
|
||||
time.sleep(T)
|
||||
|
||||
for i in range(self.retry):
|
||||
try:
|
||||
ret_code, answer, log = self.generate_inner(message, **kwargs)
|
||||
if ret_code == 0 and self.fail_msg not in answer and answer != '':
|
||||
if self.verbose:
|
||||
print(answer)
|
||||
return answer
|
||||
elif self.verbose:
|
||||
if not isinstance(log, str):
|
||||
try:
|
||||
log = log.text
|
||||
except:
|
||||
self.logger.warning(f'Failed to parse {log} as an http response. ')
|
||||
self.logger.info(f'RetCode: {ret_code}\nAnswer: {answer}\nLog: {log}')
|
||||
except Exception as err:
|
||||
if self.verbose:
|
||||
self.logger.error(f'An error occured during try {i}:')
|
||||
self.logger.error(err)
|
||||
# delay before each retry
|
||||
T = rd.random() * self.wait * 2
|
||||
time.sleep(T)
|
||||
|
||||
return self.fail_msg if answer in ['', None] else answer
|
||||
|
||||
def message_to_promptimg(self, message):
|
||||
assert not self.INTERLEAVE
|
||||
model_name = self.__class__.__name__
|
||||
import warnings
|
||||
warnings.warn(
|
||||
f'Model {model_name} does not support interleaved input. '
|
||||
'Will use the first image and aggregated texts as prompt. ')
|
||||
num_images = len([x for x in message if x['type'] == 'image'])
|
||||
if num_images == 0:
|
||||
prompt = '\n'.join([x['value'] for x in message if x['type'] == 'text'])
|
||||
image = None
|
||||
elif num_images == 1:
|
||||
prompt = '\n'.join([x['value'] for x in message if x['type'] == 'text'])
|
||||
image = [x['value'] for x in message if x['type'] == 'image'][0]
|
||||
else:
|
||||
prompt = '\n'.join([x['value'] if x['type'] == 'text' else '<image>' for x in message])
|
||||
image = [x['value'] for x in message if x['type'] == 'image'][0]
|
||||
return prompt, image
|
||||
Reference in New Issue
Block a user