Modify eval_mm for MiniCPM-V 2.6

This commit is contained in:
Haoyu Li
2024-08-30 18:18:22 +00:00
parent ab1141ee45
commit 59224808a1
69 changed files with 8231 additions and 1818 deletions

View File

@@ -1,10 +1,13 @@
import math
import torch
import random
import numpy as np
from PIL import Image
from transformers import AutoModel, AutoTokenizer
from .base import BaseModel
from ..smp import *
from ..utils import DATASET_TYPE
from ..dataset import DATASET_TYPE
class MiniCPM_V(BaseModel):
@@ -59,10 +62,10 @@ class MiniCPM_V(BaseModel):
return message
def generate_inner(self, message, dataset=None):
prompt, image_path = self.message_to_promptimg(message)
prompt, image_path = self.message_to_promptimg(message, dataset=dataset)
image = Image.open(image_path).convert('RGB')
msgs = [{'role': 'user', 'content': prompt}]
if DATASET_TYPE(dataset) == 'multi-choice':
if DATASET_TYPE(dataset) == 'MCQ':
max_new_tokens = 20
elif DATASET_TYPE(dataset) == 'Y/N':
max_new_tokens = 100
@@ -83,3 +86,374 @@ class MiniCPM_V(BaseModel):
**default_kwargs
)
return res
class MiniCPM_Llama3_V(BaseModel):
INSTALL_REQ = False
INTERLEAVE = True
def __init__(self, model_path='openbmb/MiniCPM-Llama3-V-2_5', **kwargs):
assert model_path is not None
self.model_path = model_path
print(f'load from {self.model_path}')
self.model = AutoModel.from_pretrained(self.model_path, trust_remote_code=True)
self.model = self.model.to(dtype=torch.float16)
self.model.eval().cuda()
self.kwargs = kwargs
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True)
torch.cuda.empty_cache()
self.num_beams = 1 if self.model_path == 'openbmb/MiniCPM-V' else 3
self.options_system_prompt = ('Carefully read the following question and select the letter corresponding '
'to the correct answer. Highlight the applicable choices without giving '
'explanations.')
self.wo_options_system_prompt = 'Carefully read the following question Answer the question directly.'
self.detail_system_prompt = 'Answer this question in detail.'
self.vqa_prompt = 'Answer the question using a single word or phrase.'
def use_custom_prompt(self, dataset):
if listinstr(['MCQ', 'VQA'], DATASET_TYPE(dataset)):
return True
elif dataset is not None and listinstr(['HallusionBench'], dataset):
return True
return False
def build_prompt(self, line, dataset=None):
if isinstance(line, int):
line = self.data.iloc[line]
tgt_path = self.dump_image(line, dataset)
system_prompt = ''
question = line['question']
if DATASET_TYPE(dataset) == 'MCQ':
options = {
cand: line[cand]
for cand in string.ascii_uppercase
if cand in line and not pd.isna(line[cand])
}
options_prompt = 'Options:\n'
for key, item in options.items():
options_prompt += f'{key}. {item}\n'
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
prompt = ''
if hint is not None:
prompt += f'Hint: {hint}\n'
prompt += f'Question: {question}\n'
if len(options):
prompt += options_prompt
system_prompt = self.options_system_prompt + '\nPlease just indicate your choice.'
else:
system_prompt = self.wo_options_system_prompt
if 'MMMU' in dataset: # Corner Case
prompt = system_prompt + '\n' + prompt
system_prompt = ''
elif dataset is not None and listinstr(['HallusionBench'], dataset):
question = line['question'] + ' Yes or No?'
prompt = question
elif dataset is not None and listinstr(['MME'], dataset):
question = line['question'] + ' Yes or No?'
prompt = question
elif dataset is not None and listinstr(['OCRBench'], dataset):
system_prompt = self.vqa_prompt
question = line['question']
prompt = question
elif DATASET_TYPE(dataset) == 'VQA':
if listinstr(['LLaVABench', 'MMLongBench_DOC'], dataset):
system_prompt = ''
prompt = question
elif listinstr(['MMVet'], dataset):
system_prompt = self.detail_system_prompt
prompt = question
else:
system_prompt = self.vqa_prompt
prompt = question
msgs = []
if system_prompt:
msgs.append(dict(type='text', value=system_prompt))
if isinstance(tgt_path, list):
msgs.extend([dict(type='image', value=p) for p in tgt_path])
else:
msgs = [dict(type='image', value=tgt_path)]
msgs.append(dict(type='text', value=prompt))
return msgs
def generate_inner(self, message, dataset=None):
if DATASET_TYPE(dataset) == 'MCQ':
max_new_tokens = 200
elif DATASET_TYPE(dataset) == 'Y/N':
max_new_tokens = 3
else:
max_new_tokens = 1024
default_kwargs = dict(
max_new_tokens=max_new_tokens,
sampling=False,
num_beams=self.num_beams,
)
default_kwargs.update(self.kwargs)
content = []
for x in message:
if x['type'] == 'text':
content.append(x['value'])
elif x['type'] == 'image':
image = Image.open(x['value']).convert('RGB')
content.append(image)
msgs = [{'role': 'user', 'content': content}]
res = self.model.chat(
msgs=msgs,
context=None,
image=None,
tokenizer=self.tokenizer,
**default_kwargs
)
if isinstance(res, tuple) and len(res) > 0:
res = res[0]
return res
def chat_inner(self, message, dataset=None):
max_new_tokens = 1024
default_kwargs = dict(
max_new_tokens=max_new_tokens,
sampling=False,
num_beams=self.num_beams,
)
default_kwargs.update(self.kwargs)
msgs = []
for msg in message:
content = []
if len(msg['content']) == 1 and msg['content'][0]['type'] == 'text':
msg_new = {'role': msg['role'], 'content': msg['content'][0]['value']}
msgs.append(msg_new)
continue
for x in msg['content']:
if x['type'] == 'text':
content.append(x['value'])
elif x['type'] == 'image':
image = Image.open(x['value']).convert('RGB')
content.append(image)
msg_new = {'role': msg['role'], 'content': content}
msgs.append(msg_new)
res = self.model.chat(
msgs=msgs,
context=None,
image=None,
tokenizer=self.tokenizer,
**default_kwargs)
if isinstance(res, tuple) and len(res) > 0:
res = res[0]
return res
class MiniCPM_V_2_6(BaseModel):
INSTALL_REQ = False
INTERLEAVE = True
def __init__(self, model_path='openbmb/MiniCPM-V', **kwargs):
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)
assert model_path is not None
self.model_path = model_path
print(f'load from path {self.model_path}')
self.model = AutoModel.from_pretrained(self.model_path, trust_remote_code=True)
self.model = self.model.to(dtype=torch.bfloat16)
self.model.eval().cuda()
self.kwargs = kwargs
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True)
torch.cuda.empty_cache()
self.num_beams = 1 if self.model_path == 'openbmb/MiniCPM-V' else 3
self.options_suffix_prompt = '''\nAnswer with the option's letter from the given choices directly.'''
self.wo_options_system_prompt = 'Carefully read the following question Answer the question directly.'
self.detail_system_prompt = 'Answer this question in detail.'
self.vqa_prompt = 'Answer the question using a single word or phrase.'
self.multi_choice_cot_prompt = ('''Carefully read the following multichoice question, solve it step '''
'''by step and finally pick the option associated with the correct '''
'''answer in the format of "Answer: selected option\n\n''')
self.short_ans_cot_prompt = ('''Read the following question carefully, solve it step by step, and '''
'''then output the final answer in the format of "Answer: single number '''
'''or single word or phrase".\n\n''')
def use_custom_prompt(self, dataset=None):
if dataset is None:
return False
if listinstr(['MCQ', 'VQA', 'Y/N'], DATASET_TYPE(dataset)):
return True
return False
def use_cot(self, dataset=None):
if dataset is None:
return False
if listinstr(['MMMU', 'HallusionBench', 'OCRBench', 'ChartQA'], dataset):
return True
elif listinstr(['MathVista', 'MMVet', 'MMBench', 'MMStar', 'AI2D', 'RealWorldQA',
'POPE', 'ScienceQA', 'TextVQA', 'DocVQA'], dataset):
return False
else:
return False
def use_upsize(self, dataset=None):
if dataset is None:
return False
if listinstr(['MMVet', 'MMBench', 'MMStar', 'AI2D', 'OCRBench'], dataset):
return True
else:
return False
def build_prompt(self, line, dataset=None):
if isinstance(line, int):
line = self.data.iloc[line]
tgt_path = self.dump_image(line, dataset)
system_prompt, prompt = '', ''
question = line['question']
if not self.use_cot(dataset):
if DATASET_TYPE(dataset) == 'MCQ':
options = {
cand: line[cand]
for cand in string.ascii_uppercase
if cand in line and not pd.isna(line[cand])
}
options_prompt = 'Options:\n'
for key, item in options.items():
options_prompt += f'{key}. {item}\n'
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
if hint is not None:
prompt += f'Hint: {hint}\n'
prompt += f'Question: {question}\n'
if len(options):
prompt += options_prompt
prompt += self.options_suffix_prompt
else:
system_prompt = self.wo_options_system_prompt
if 'MMMU' in dataset:
if len(system_prompt) > 0:
prompt = system_prompt + '\n' + prompt
system_prompt = ''
elif dataset is not None and listinstr(['HallusionBench'], dataset):
question += ' Yes or No?'
prompt = question
elif dataset is not None and listinstr(['OCRBench'], dataset):
system_prompt = self.vqa_prompt
prompt = question
elif DATASET_TYPE(dataset) == 'VQA':
if listinstr(['LLaVABench'], dataset):
system_prompt = ''
elif listinstr(['MMVet'], dataset):
system_prompt = self.detail_system_prompt
else:
system_prompt = self.vqa_prompt
prompt = question
else:
prompt = question
else:
has_options = True
if DATASET_TYPE(dataset) == 'MCQ':
options = {
cand: line[cand]
for cand in string.ascii_uppercase
if cand in line and not pd.isna(line[cand])
}
options_prompt = ''
for key, item in options.items():
options_prompt += f'{key}. {item}\n'
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
if hint is not None:
prompt += f'Hint: {hint}\n'
prompt += f'{question}\n'
if len(options):
prompt += options_prompt
else:
has_options = False
if 'MMMU' in dataset:
if len(system_prompt) > 0:
prompt = system_prompt + '\n' + prompt
system_prompt = ''
else:
prompt = question
if DATASET_TYPE(dataset) in ['MCQ', 'Y/N', 'VQA']:
if DATASET_TYPE(dataset) == 'MCQ':
if has_options:
prompt = self.multi_choice_cot_prompt + prompt
else:
prompt = self.short_ans_cot_prompt + prompt
elif DATASET_TYPE(dataset) == 'Y/N':
prompt = self.short_ans_cot_prompt + prompt
else:
prompt = self.short_ans_cot_prompt + prompt
msgs = []
if system_prompt:
msgs.append(dict(type='text', value=system_prompt))
if isinstance(tgt_path, list):
msgs.extend([dict(type='image', value=p) for p in tgt_path])
else:
msgs = [dict(type='image', value=tgt_path)]
msgs.append(dict(type='text', value=prompt))
return msgs
def generate_inner(self, message, dataset=None):
max_new_tokens = 2048
default_kwargs = dict(
max_new_tokens=max_new_tokens,
sampling=False,
num_beams=self.num_beams,
)
default_kwargs.update(self.kwargs)
content = []
for x in message:
if x['type'] == 'text':
content.append(x['value'])
elif x['type'] == 'image':
image = Image.open(x['value']).convert('RGB')
if not self.use_upsize(dataset):
content.append(image)
else:
img_width, img_height = image.width, image.height
if (img_width * img_height) >= (1344 * 1344):
content.append(image)
else:
ratio = math.sqrt((1344 * 1344) / (img_width * img_height))
max_img_width = int(img_width * ratio)
new_img_width = random.randint(img_width, max_img_width)
new_img_height = int(new_img_width / img_width * img_height)
resized_image = image.resize((new_img_width, new_img_height))
content.append(resized_image)
msgs = [{'role': 'user', 'content': content}]
res = self.model.chat(
image=None,
msgs=msgs,
context=None,
tokenizer=self.tokenizer,
max_inp_length=8192,
**default_kwargs
)
if isinstance(res, tuple) and len(res) > 0:
res = res[0]
return res