mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-04 17:59:18 +08:00
Modify eval_mm for MiniCPM-V 2.6
This commit is contained in:
@@ -1,60 +1,59 @@
|
||||
# Evaluation
|
||||
|
||||
## opencompass
|
||||
## MiniCPM-V 2.6
|
||||
|
||||
### opencompass
|
||||
First, enter the `vlmevalkit` directory and install all dependencies:
|
||||
```bash
|
||||
cd vlmevalkit
|
||||
pip install -r requirements.txt
|
||||
pip install --upgrade pip
|
||||
pip install -e .
|
||||
wget https://download.pytorch.org/whl/cu118/torch-2.2.0%2Bcu118-cp310-cp310-linux_x86_64.whl#sha256=4377e0a7fe8ff8ffc4f7c9c6130c1dcd3874050ae4fc28b7ff1d35234fbca423
|
||||
wget https://download.pytorch.org/whl/cu118/torchvision-0.17.0%2Bcu118-cp310-cp310-linux_x86_64.whl#sha256=2e63d62e09d9b48b407d3e1b30eb8ae4e3abad6968e8d33093b60d0657542428
|
||||
wget https://github.com/Dao-AILab/flash-attention/releases/download/v2.6.3/flash_attn-2.6.3+cu118torch2.2cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
|
||||
pip install torch-2.2.0%2Bcu118-cp310-cp310-linux_x86_64.whl
|
||||
pip install torchvision-0.17.0%2Bcu118-cp310-cp310-linux_x86_64.whl
|
||||
pip install flash_attn-2.6.3+cu118torch2.2cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
|
||||
```
|
||||
<br />
|
||||
|
||||
Then, run `script/run_inference.sh`, which receives three input parameters in sequence: `MODELNAME`, `DATALIST`, and `MODE`. `MODELNAME` represents the name of the model, `DATALIST` represents the datasets used for inference, and `MODE` represents evaluation mode:
|
||||
Then, run `scripts/run_inference.sh`, which receives three input parameters in sequence: `MODELNAME`, `DATALIST`, and `MODE`. `MODELNAME` represents the name of the model, `DATALIST` represents the datasets used for inference, and `MODE` represents evaluation mode:
|
||||
```bash
|
||||
chmod +x ./script/run_inference.sh
|
||||
./script/run_inference.sh $MODELNAME $DATALIST $MODE
|
||||
chmod +x ./scripts/run_inference.sh
|
||||
./scripts/run_inference.sh $MODELNAME $DATALIST $MODE
|
||||
```
|
||||
<br />
|
||||
|
||||
The three available choices for `MODELNAME` are listed in `vlmeval/config.py`:
|
||||
The four available choices for `MODELNAME` are listed in `vlmeval/config.py`:
|
||||
```bash
|
||||
ungrouped = {
|
||||
'MiniCPM-V':partial(MiniCPM_V, model_path='openbmb/MiniCPM-V'),
|
||||
'MiniCPM-V-2':partial(MiniCPM_V, model_path='openbmb/MiniCPM-V-2'),
|
||||
'MiniCPM-Llama3-V-2_5':partial(MiniCPM_Llama3_V, model_path='openbmb/MiniCPM-Llama3-V-2_5'),
|
||||
minicpm_series = {
|
||||
'MiniCPM-V': partial(MiniCPM_V, model_path='openbmb/MiniCPM-V'),
|
||||
'MiniCPM-V-2': partial(MiniCPM_V, model_path='openbmb/MiniCPM-V-2'),
|
||||
'MiniCPM-Llama3-V-2_5': partial(MiniCPM_Llama3_V, model_path='openbmb/MiniCPM-Llama3-V-2_5'),
|
||||
'MiniCPM-V-2_6': partial(MiniCPM_V_2_6, model_path='openbmb/MiniCPM-V-2_6'),
|
||||
}
|
||||
```
|
||||
<br />
|
||||
|
||||
All available choices for `DATALIST` are listed in `vlmeval/utils/dataset_config.py`. While evaluating on a single dataset, call the dataset name directly without quotation marks; while evaluating on multiple datasets, separate the names of different datasets with spaces and add quotation marks at both ends:
|
||||
All available choices for `DATALIST` are listed in `vlmeval/utils/dataset_config.py`. Separate the names of different datasets with spaces and add quotation marks at both ends:
|
||||
```bash
|
||||
$DATALIST="POPE ScienceQA_TEST ChartQA_TEST"
|
||||
$DATALIST="MMMU_DEV_VAL MathVista_MINI MMVet MMBench_DEV_EN_V11 MMBench_DEV_CN_V11 MMStar HallusionBench AI2D_TEST"
|
||||
```
|
||||
<br />
|
||||
|
||||
While scoring on each benchmark directly, set `MODE=all`. If only inference results are required, set `MODE=infer`. In order to reproduce the results in the table displayed on the homepage (columns between MME and RealWorldQA), you need to run the script according to the following settings:
|
||||
While scoring on each benchmark directly, set `MODE=all`. If only inference results are required, set `MODE=infer`. In order to reproduce the results in the table displayed on the homepage (columns between MME and HallusionBench), you need to run the script according to the following settings:
|
||||
```bash
|
||||
# run on all 7 datasets
|
||||
./script/run_inference.sh MiniCPM-Llama3-V-2_5 "MME MMBench_TEST_EN MMBench_TEST_CN MMMU_DEV_VAL MathVista_MINI LLaVABench RealWorldQA" all
|
||||
|
||||
# The following are instructions for running on a single dataset
|
||||
# MME
|
||||
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MME all
|
||||
# MMBench_TEST_EN
|
||||
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MMBench_TEST_EN all
|
||||
# MMBench_TEST_CN
|
||||
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MMBench_TEST_CN all
|
||||
# MMMU_DEV_VAL
|
||||
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MMMU_DEV_VAL all
|
||||
# MathVista_MINI
|
||||
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MathVista_MINI all
|
||||
# LLaVABench
|
||||
./script/run_inference.sh MiniCPM-Llama3-V-2_5 LLaVABench all
|
||||
# RealWorldQA
|
||||
./script/run_inference.sh MiniCPM-Llama3-V-2_5 RealWorldQA all
|
||||
# without CoT
|
||||
./scripts/run_inference.sh MiniCPM-V-2_6 "MMMU_DEV_VAL MathVista_MINI MMVet MMBench_DEV_EN_V11 MMBench_DEV_CN_V11 MMStar HallusionBench AI2D_TEST" all
|
||||
./scripts/run_inference.sh MiniCPM-V-2_6 MME all
|
||||
# with CoT
|
||||
# While running the CoT version of MME, you need to modify the 'use_cot' function in vlmeval/vlm/minicpm_v.py and add MME to the branch that returns True.
|
||||
./scripts/run_inference/sh MiniCPM-V-2_6 "MMMU_DEV_VAL MMVet MMStar HallusionBench OCRBench" all
|
||||
./scripts/run_inference.sh MiniCPM-V-2_6 MME all
|
||||
```
|
||||
<br />
|
||||
|
||||
## vqadataset
|
||||
### vqadataset
|
||||
First, enter the `vqaeval` directory and install all dependencies. Then, create `downloads` subdirectory to store the downloaded dataset for all tasks:
|
||||
```bash
|
||||
cd vqaeval
|
||||
@@ -112,7 +111,8 @@ chmod +x ./shell/run_inference.sh
|
||||
```
|
||||
<br />
|
||||
|
||||
All optional parameters are listed in `eval_utils/getargs.py`. The meanings of some major parameters are listed as follows:
|
||||
All optional parameters are listed in `eval_utils/getargs.py`. The meanings of some major parameters are listed as follows.
|
||||
For `MiniCPM-V-2_6`, set `model_name` to `minicpmv26`:
|
||||
```bash
|
||||
# path to images and their corresponding questions
|
||||
# TextVQA
|
||||
@@ -174,4 +174,189 @@ For the DocVQATest task, in order to upload the inference results to the [offici
|
||||
```bash
|
||||
chmod +x ./shell/run_transform.sh
|
||||
./shell/run_transform.sh
|
||||
```
|
||||
```
|
||||
<br />
|
||||
|
||||
## MiniCPM-Llama3-V-2_5
|
||||
|
||||
<details>
|
||||
<summary>Expand</summary>
|
||||
|
||||
### opencompass
|
||||
First, enter the `vlmevalkit` directory and install all dependencies:
|
||||
```bash
|
||||
cd vlmevalkit
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
<br />
|
||||
|
||||
Then, run `scripts/run_inference.sh`, which receives three input parameters in sequence: `MODELNAME`, `DATALIST`, and `MODE`. `MODELNAME` represents the name of the model, `DATALIST` represents the datasets used for inference, and `MODE` represents evaluation mode:
|
||||
```bash
|
||||
chmod +x ./scripts/run_inference.sh
|
||||
./scripts/run_inference.sh $MODELNAME $DATALIST $MODE
|
||||
```
|
||||
<br />
|
||||
|
||||
The three available choices for `MODELNAME` are listed in `vlmeval/config.py`:
|
||||
```bash
|
||||
ungrouped = {
|
||||
'MiniCPM-V':partial(MiniCPM_V, model_path='openbmb/MiniCPM-V'),
|
||||
'MiniCPM-V-2':partial(MiniCPM_V, model_path='openbmb/MiniCPM-V-2'),
|
||||
'MiniCPM-Llama3-V-2_5':partial(MiniCPM_Llama3_V, model_path='openbmb/MiniCPM-Llama3-V-2_5'),
|
||||
}
|
||||
```
|
||||
<br />
|
||||
|
||||
All available choices for `DATALIST` are listed in `vlmeval/utils/dataset_config.py`. While evaluating on a single dataset, call the dataset name directly without quotation marks; while evaluating on multiple datasets, separate the names of different datasets with spaces and add quotation marks at both ends:
|
||||
```bash
|
||||
$DATALIST="POPE ScienceQA_TEST ChartQA_TEST"
|
||||
```
|
||||
<br />
|
||||
|
||||
While scoring on each benchmark directly, set `MODE=all`. If only inference results are required, set `MODE=infer`. In order to reproduce the results in the table displayed on the homepage (columns between MME and RealWorldQA), you need to run the script according to the following settings:
|
||||
```bash
|
||||
# run on all 7 datasets
|
||||
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 "MME MMBench_TEST_EN MMBench_TEST_CN MMMU_DEV_VAL MathVista_MINI LLaVABench RealWorldQA" all
|
||||
|
||||
# The following are instructions for running on a single dataset
|
||||
# MME
|
||||
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MME all
|
||||
# MMBench_TEST_EN
|
||||
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MMBench_TEST_EN all
|
||||
# MMBench_TEST_CN
|
||||
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MMBench_TEST_CN all
|
||||
# MMMU_DEV_VAL
|
||||
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MMMU_DEV_VAL all
|
||||
# MathVista_MINI
|
||||
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MathVista_MINI all
|
||||
# LLaVABench
|
||||
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 LLaVABench all
|
||||
# RealWorldQA
|
||||
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 RealWorldQA all
|
||||
```
|
||||
<br />
|
||||
|
||||
### vqadataset
|
||||
First, enter the `vqaeval` directory and install all dependencies. Then, create `downloads` subdirectory to store the downloaded dataset for all tasks:
|
||||
```bash
|
||||
cd vqaeval
|
||||
pip install -r requirements.txt
|
||||
mkdir downloads
|
||||
```
|
||||
<br />
|
||||
|
||||
Download the datasets from the following links and place it in the specified directories:
|
||||
###### TextVQA
|
||||
```bash
|
||||
cd downloads
|
||||
mkdir TextVQA && cd TextVQA
|
||||
wget https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip
|
||||
unzip train_val_images.zip && rm train_val_images.zip
|
||||
mv train_val_images/train_images . && rm -rf train_val_images
|
||||
wget https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_0.5.1_val.json
|
||||
cd ../..
|
||||
```
|
||||
|
||||
###### DocVQA / DocVQATest
|
||||
|
||||
```bash
|
||||
cd downloads
|
||||
mkdir DocVQA && cd DocVQA && mkdir spdocvqa_images
|
||||
# Download Images and Annotations from Task 1 - Single Page Document Visual Question Answering at https://rrc.cvc.uab.es/?ch=17&com=downloads
|
||||
# Move the spdocvqa_images.tar.gz and spdocvqa_qas.zip to DocVQA directory
|
||||
tar -zxvf spdocvqa_images.tar.gz -C spdocvqa_images && rm spdocvqa_images.tar.gz
|
||||
unzip spdocvqa_qas.zip && rm spdocvqa_qas.zip
|
||||
cp spdocvqa_qas/val_v1.0_withQT.json . && cp spdocvqa_qas/test_v1.0.json . && rm -rf spdocvqa_qas
|
||||
cd ../..
|
||||
```
|
||||
<br />
|
||||
|
||||
The `downloads` directory should be organized according to the following structure:
|
||||
```bash
|
||||
downloads
|
||||
├── TextVQA
|
||||
│ ├── train_images
|
||||
│ │ ├── ...
|
||||
│ ├── TextVQA_0.5.1_val.json
|
||||
├── DocVQA
|
||||
│ ├── spdocvqa_images
|
||||
│ │ ├── ...
|
||||
│ ├── val_v1.0_withQT.json
|
||||
│ ├── test_v1.0.json
|
||||
```
|
||||
<br />
|
||||
|
||||
Modify the parameters in `shell/run_inference.sh` and run inference:
|
||||
|
||||
```bash
|
||||
chmod +x ./shell/run_inference.sh
|
||||
./shell/run_inference.sh
|
||||
```
|
||||
<br />
|
||||
|
||||
All optional parameters are listed in `eval_utils/getargs.py`. The meanings of some major parameters are listed as follows.
|
||||
For `MiniCPM-Llama3-V-2_5`, set `model_name` to `minicpmv`:
|
||||
```bash
|
||||
# path to images and their corresponding questions
|
||||
# TextVQA
|
||||
--textVQA_image_dir
|
||||
--textVQA_ann_path
|
||||
# DocVQA
|
||||
--docVQA_image_dir
|
||||
--docVQA_ann_path
|
||||
# DocVQATest
|
||||
--docVQATest_image_dir
|
||||
--docVQATest_ann_path
|
||||
|
||||
# whether to eval on certain task
|
||||
--eval_textVQA
|
||||
--eval_docVQA
|
||||
--eval_docVQATest
|
||||
--eval_all
|
||||
|
||||
# model name and model path
|
||||
--model_name
|
||||
--model_path
|
||||
# load model from ckpt
|
||||
--ckpt
|
||||
# the way the model processes input data, "interleave" represents interleaved image-text form, while "old" represents non-interleaved.
|
||||
--generate_method
|
||||
|
||||
--batchsize
|
||||
|
||||
# path to save the outputs
|
||||
--answer_path
|
||||
```
|
||||
<br />
|
||||
|
||||
While evaluating on different tasks, parameters need to be set as follows:
|
||||
###### TextVQA
|
||||
```bash
|
||||
--eval_textVQA
|
||||
--textVQA_image_dir ./downloads/TextVQA/train_images
|
||||
--textVQA_ann_path ./downloads/TextVQA/TextVQA_0.5.1_val.json
|
||||
```
|
||||
|
||||
###### DocVQA
|
||||
```bash
|
||||
--eval_docVQA
|
||||
--docVQA_image_dir ./downloads/DocVQA/spdocvqa_images
|
||||
--docVQA_ann_path ./downloads/DocVQA/val_v1.0_withQT.json
|
||||
```
|
||||
|
||||
###### DocVQATest
|
||||
```bash
|
||||
--eval_docVQATest
|
||||
--docVQATest_image_dir ./downloads/DocVQA/spdocvqa_images
|
||||
--docVQATest_ann_path ./downloads/DocVQA/test_v1.0.json
|
||||
```
|
||||
|
||||
<br />
|
||||
|
||||
For the DocVQATest task, in order to upload the inference results to the [official website](https://rrc.cvc.uab.es/?ch=17) for evaluation, run `shell/run_transform.sh` for format transformation after inference. `input_file_path` represents the path to the original output json, `output_file_path` represents the path to the transformed json:
|
||||
```bash
|
||||
chmod +x ./shell/run_transform.sh
|
||||
./shell/run_transform.sh
|
||||
```
|
||||
|
||||
</details>
|
||||
Reference in New Issue
Block a user