mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-05 18:29:18 +08:00
Update to MiniCPM-o 2.6
This commit is contained in:
301
web_demos/minicpm-o_2.6/vad_utils.py
Normal file
301
web_demos/minicpm-o_2.6/vad_utils.py
Normal file
@@ -0,0 +1,301 @@
|
||||
import functools
|
||||
import numpy as np
|
||||
import librosa
|
||||
import os
|
||||
import time
|
||||
import traceback
|
||||
|
||||
from typing import List, NamedTuple, Optional
|
||||
|
||||
class VadOptions(NamedTuple):
|
||||
"""VAD options.
|
||||
|
||||
Attributes:
|
||||
threshold: Speech threshold. Silero VAD outputs speech probabilities for each audio chunk,
|
||||
probabilities ABOVE this value are considered as SPEECH. It is better to tune this
|
||||
parameter for each dataset separately, but "lazy" 0.5 is pretty good for most datasets.
|
||||
min_speech_duration_ms: Final speech chunks shorter min_speech_duration_ms are thrown out.
|
||||
max_speech_duration_s: Maximum duration of speech chunks in seconds. Chunks longer
|
||||
than max_speech_duration_s will be split at the timestamp of the last silence that
|
||||
lasts more than 100ms (if any), to prevent aggressive cutting. Otherwise, they will be
|
||||
split aggressively just before max_speech_duration_s.
|
||||
min_silence_duration_ms: In the end of each speech chunk wait for min_silence_duration_ms
|
||||
before separating it
|
||||
window_size_samples: Audio chunks of window_size_samples size are fed to the silero VAD model.
|
||||
WARNING! Silero VAD models were trained using 512, 1024, 1536 samples for 16000 sample rate.
|
||||
Values other than these may affect model performance!!
|
||||
speech_pad_ms: Final speech chunks are padded by speech_pad_ms each side
|
||||
"""
|
||||
|
||||
# threshold: float = 0.3 # rep 0.5
|
||||
# min_speech_duration_ms: int = 250
|
||||
# max_speech_duration_s: float = float("inf")
|
||||
# min_silence_duration_ms: int = 2000
|
||||
# window_size_samples: int = 1024
|
||||
# speech_pad_ms: int = 600 # rep 400
|
||||
|
||||
threshold: float = 0.7 # gw: 0.3 # rep 0.5
|
||||
min_speech_duration_ms: int = 128 # original & gw: 250
|
||||
max_speech_duration_s: float = float("inf")
|
||||
min_silence_duration_ms: int = 500 # original & gw: 2000
|
||||
window_size_samples: int = 1024
|
||||
speech_pad_ms: int = 30 # gw: 600 # rep 400
|
||||
|
||||
class SileroVADModel:
|
||||
def __init__(self, path):
|
||||
try:
|
||||
import onnxruntime
|
||||
except ImportError as e:
|
||||
raise RuntimeError(
|
||||
"Applying the VAD filter requires the onnxruntime package"
|
||||
) from e
|
||||
|
||||
opts = onnxruntime.SessionOptions()
|
||||
opts.inter_op_num_threads = 1
|
||||
opts.intra_op_num_threads = 1
|
||||
opts.log_severity_level = 4
|
||||
|
||||
self.session = onnxruntime.InferenceSession(
|
||||
path,
|
||||
providers=["CPUExecutionProvider"],
|
||||
sess_options=opts,
|
||||
)
|
||||
|
||||
def get_initial_state(self, batch_size: int):
|
||||
h = np.zeros((2, batch_size, 64), dtype=np.float32)
|
||||
c = np.zeros((2, batch_size, 64), dtype=np.float32)
|
||||
return h, c
|
||||
|
||||
def __call__(self, x, state, sr: int):
|
||||
if len(x.shape) == 1:
|
||||
x = np.expand_dims(x, 0)
|
||||
if len(x.shape) > 2:
|
||||
raise ValueError(
|
||||
f"Too many dimensions for input audio chunk {len(x.shape)}"
|
||||
)
|
||||
if sr / x.shape[1] > 31.25:
|
||||
raise ValueError("Input audio chunk is too short")
|
||||
|
||||
h, c = state
|
||||
|
||||
ort_inputs = {
|
||||
"input": x,
|
||||
#"state": np.concatenate((h, c), axis=0),
|
||||
"h": h,
|
||||
"c": c,
|
||||
"sr": np.array(sr, dtype="int64"),
|
||||
}
|
||||
|
||||
out, h, c = self.session.run(None, ort_inputs)
|
||||
#out = self.session.run(None, ort_inputs)
|
||||
state = (h, c)
|
||||
return out, state
|
||||
|
||||
|
||||
@functools.lru_cache
|
||||
def get_vad_model():
|
||||
"""Returns the VAD model instance."""
|
||||
path = os.path.join(os.path.dirname(__file__), "silero_vad.onnx")
|
||||
return SileroVADModel(path)
|
||||
|
||||
|
||||
def get_speech_timestamps(
|
||||
audio: np.ndarray,
|
||||
vad_options: Optional[VadOptions] = None,
|
||||
**kwargs,
|
||||
) -> List[dict]:
|
||||
"""This method is used for splitting long audios into speech chunks using silero VAD.
|
||||
|
||||
Args:
|
||||
audio: One dimensional float array.
|
||||
vad_options: Options for VAD processing.
|
||||
kwargs: VAD options passed as keyword arguments for backward compatibility.
|
||||
|
||||
Returns:
|
||||
List of dicts containing begin and end samples of each speech chunk.
|
||||
"""
|
||||
if vad_options is None:
|
||||
vad_options = VadOptions(**kwargs)
|
||||
|
||||
threshold = vad_options.threshold
|
||||
min_speech_duration_ms = vad_options.min_speech_duration_ms
|
||||
max_speech_duration_s = vad_options.max_speech_duration_s
|
||||
min_silence_duration_ms = vad_options.min_silence_duration_ms
|
||||
window_size_samples = vad_options.window_size_samples
|
||||
speech_pad_ms = vad_options.speech_pad_ms
|
||||
|
||||
if window_size_samples not in [512, 1024, 1536]:
|
||||
warnings.warn(
|
||||
"Unusual window_size_samples! Supported window_size_samples:\n"
|
||||
" - [512, 1024, 1536] for 16000 sampling_rate"
|
||||
)
|
||||
|
||||
sampling_rate = 16000
|
||||
min_speech_samples = sampling_rate * min_speech_duration_ms / 1000 #如果间隔区间没这个长度就不会添加
|
||||
speech_pad_samples = sampling_rate * speech_pad_ms / 1000
|
||||
max_speech_samples = (
|
||||
sampling_rate * max_speech_duration_s
|
||||
- window_size_samples
|
||||
- 2 * speech_pad_samples
|
||||
)
|
||||
min_silence_samples = sampling_rate * min_silence_duration_ms / 1000 # 在每个silent需要等 min_silence_duration_ms 后才结束,
|
||||
min_silence_samples_at_max_speech = sampling_rate * 98 / 1000 # 0.098s # need to adjust?
|
||||
|
||||
audio_length_samples = len(audio)
|
||||
|
||||
# import pdb
|
||||
# pdb.set_trace()
|
||||
|
||||
model = get_vad_model()
|
||||
state = model.get_initial_state(batch_size=1)
|
||||
|
||||
speech_probs = []
|
||||
#print("audio_length_samples ", audio_length_samples, ", window_size_samples ", window_size_samples)
|
||||
for current_start_sample in range(0, audio_length_samples, window_size_samples):
|
||||
chunk = audio[current_start_sample : current_start_sample + window_size_samples]
|
||||
if len(chunk) < window_size_samples:
|
||||
chunk = np.pad(chunk, (0, int(window_size_samples - len(chunk))))
|
||||
speech_prob, state = model(chunk, state, sampling_rate)
|
||||
speech_probs.append(speech_prob)
|
||||
|
||||
triggered = False
|
||||
speeches = []
|
||||
current_speech = {}
|
||||
neg_threshold = threshold - 0.15
|
||||
|
||||
# to save potential segment end (and tolerate some silence)
|
||||
temp_end = 0
|
||||
# to save potential segment limits in case of maximum segment size reached
|
||||
prev_end = next_start = 0
|
||||
|
||||
# 大概是一段音频找出其中连续部分,如果遇到silent的话会先记录temp_end,然后如果没超过最小silent长度遇到active的情况下会重置temp_end。silent片段会分别记录silent的起终,在超过长度的时候切开(不完全确定,但是inf的最大长也遇不到)
|
||||
|
||||
for i, speech_prob in enumerate(speech_probs):
|
||||
if (speech_prob >= threshold) and temp_end:
|
||||
temp_end = 0
|
||||
if next_start < prev_end:
|
||||
next_start = window_size_samples * i
|
||||
|
||||
if (speech_prob >= threshold) and not triggered:
|
||||
triggered = True
|
||||
current_speech["start"] = window_size_samples * i
|
||||
continue
|
||||
|
||||
if (
|
||||
triggered
|
||||
and (window_size_samples * i) - current_speech["start"] > max_speech_samples
|
||||
):
|
||||
if prev_end:
|
||||
current_speech["end"] = prev_end
|
||||
speeches.append(current_speech)
|
||||
current_speech = {}
|
||||
# previously reached silence (< neg_thres) and is still not speech (< thres)
|
||||
if next_start < prev_end:
|
||||
triggered = False
|
||||
else:
|
||||
current_speech["start"] = next_start
|
||||
prev_end = next_start = temp_end = 0
|
||||
else:
|
||||
current_speech["end"] = window_size_samples * i
|
||||
speeches.append(current_speech)
|
||||
current_speech = {}
|
||||
prev_end = next_start = temp_end = 0
|
||||
triggered = False
|
||||
continue
|
||||
|
||||
if (speech_prob < neg_threshold) and triggered:
|
||||
if not temp_end:
|
||||
temp_end = window_size_samples * i
|
||||
# condition to avoid cutting in very short silence
|
||||
if (window_size_samples * i) - temp_end > min_silence_samples_at_max_speech:
|
||||
prev_end = temp_end
|
||||
if (window_size_samples * i) - temp_end < min_silence_samples:
|
||||
continue
|
||||
else:
|
||||
current_speech["end"] = temp_end
|
||||
if (
|
||||
current_speech["end"] - current_speech["start"]
|
||||
) > min_speech_samples:
|
||||
speeches.append(current_speech)
|
||||
current_speech = {}
|
||||
prev_end = next_start = temp_end = 0
|
||||
triggered = False
|
||||
continue
|
||||
|
||||
|
||||
if (
|
||||
current_speech
|
||||
and (audio_length_samples - current_speech["start"]) > min_speech_samples
|
||||
):
|
||||
current_speech["end"] = audio_length_samples
|
||||
speeches.append(current_speech)
|
||||
|
||||
# pad 多少ms,每个中间都会不足平分
|
||||
for i, speech in enumerate(speeches):
|
||||
if i == 0:
|
||||
speech["start"] = int(max(0, speech["start"] - speech_pad_samples))
|
||||
if i != len(speeches) - 1:
|
||||
silence_duration = speeches[i + 1]["start"] - speech["end"]
|
||||
if silence_duration < 2 * speech_pad_samples:
|
||||
speech["end"] += int(silence_duration // 2)
|
||||
speeches[i + 1]["start"] = int(
|
||||
max(0, speeches[i + 1]["start"] - silence_duration // 2)
|
||||
)
|
||||
else:
|
||||
speech["end"] = int(
|
||||
min(audio_length_samples, speech["end"] + speech_pad_samples)
|
||||
)
|
||||
speeches[i + 1]["start"] = int(
|
||||
max(0, speeches[i + 1]["start"] - speech_pad_samples)
|
||||
)
|
||||
else:
|
||||
speech["end"] = int(
|
||||
min(audio_length_samples, speech["end"] + speech_pad_samples)
|
||||
)
|
||||
return speeches
|
||||
|
||||
def collect_chunks(audio: np.ndarray, chunks: List[dict]) -> np.ndarray:
|
||||
"""Collects and concatenates audio chunks."""
|
||||
if not chunks:
|
||||
return np.array([], dtype=np.float32)
|
||||
|
||||
return np.concatenate([audio[chunk["start"] : chunk["end"]] for chunk in chunks])
|
||||
|
||||
|
||||
def run_vad(ori_audio, sr, vad_options=None):
|
||||
_st = time.time()
|
||||
try:
|
||||
audio = np.frombuffer(ori_audio, dtype=np.int16)
|
||||
audio = audio.astype(np.float32) / 32768.0
|
||||
sampling_rate = 16000
|
||||
if sr != sampling_rate:
|
||||
audio = librosa.resample(audio, orig_sr=sr, target_sr=sampling_rate)
|
||||
# print('audio.encode.shape: {}'.format(audio.shape))
|
||||
if vad_options is None:
|
||||
vad_options = VadOptions()
|
||||
|
||||
# 确保传递给 get_speech_timestamps 的是 VadOptions 实例
|
||||
speech_chunks = get_speech_timestamps(audio, vad_options=vad_options)
|
||||
# print(speech_chunks)
|
||||
audio = collect_chunks(audio, speech_chunks)
|
||||
# print(audio.shape)
|
||||
duration_after_vad = audio.shape[0] / sampling_rate
|
||||
|
||||
# print('audio.decode.shape: {}'.format(audio.shape))
|
||||
if sr != sampling_rate:
|
||||
# resample to original sampling rate
|
||||
vad_audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=sr)
|
||||
else:
|
||||
vad_audio = audio
|
||||
vad_audio = np.round(vad_audio * 32768.0).astype(np.int16)
|
||||
|
||||
# 这个round会有一定的误差
|
||||
|
||||
vad_audio_bytes = vad_audio.tobytes()
|
||||
|
||||
return duration_after_vad, vad_audio_bytes, round(time.time() - _st, 4)
|
||||
except Exception as e:
|
||||
msg = f"[asr vad error] audio_len: {len(ori_audio)/(sr*2):.3f} s, trace: {traceback.format_exc()}"
|
||||
print(msg)
|
||||
return -1, ori_audio, round(time.time() - _st, 4)
|
||||
|
||||
Reference in New Issue
Block a user