Add Cookbook

This commit is contained in:
yiranyyu
2025-08-01 01:16:19 +08:00
parent 2d9919ac69
commit 50214bfa52
2 changed files with 64 additions and 0 deletions

View File

@@ -41,6 +41,9 @@
#### 📌 Pinned #### 📌 Pinned
* [2025.08.01] 🔥🔥🔥 We've open-sourced the [MiniCPM-V & o Cookbook](https://github.com/OpenSQZ/MiniCPM-V-CookBook)! It provides comprehensive guides for diverse user scenarios, paired with our new [Docs Site](https://minicpm-o.readthedocs.io/en/latest/index.html) for smoother onboarding.
* [2025.06.20] ⭐️⭐️⭐️ Our official [ollama repository](https://ollama.com/openbmb) is released. Try our latest models with [one click](https://ollama.com/openbmb/minicpm-o2.6) * [2025.06.20] ⭐️⭐️⭐️ Our official [ollama repository](https://ollama.com/openbmb) is released. Try our latest models with [one click](https://ollama.com/openbmb/minicpm-o2.6)
* [2025.03.01] 🚀🚀🚀 RLAIF-V, which is the alignment technique of MiniCPM-o, is accepted by CVPR 2025The [code](https://github.com/RLHF-V/RLAIF-V), [dataset](https://huggingface.co/datasets/openbmb/RLAIF-V-Dataset), [paper](https://arxiv.org/abs/2405.17220) are open-sourced! * [2025.03.01] 🚀🚀🚀 RLAIF-V, which is the alignment technique of MiniCPM-o, is accepted by CVPR 2025The [code](https://github.com/RLHF-V/RLAIF-V), [dataset](https://huggingface.co/datasets/openbmb/RLAIF-V-Dataset), [paper](https://arxiv.org/abs/2405.17220) are open-sourced!
@@ -122,6 +125,10 @@
- [Inference on Mac](#inference-on-mac) - [Inference on Mac](#inference-on-mac)
- [Efficient Inference with llama.cpp, ollama, vLLM](#efficient-inference-with-llamacpp-ollama-vllm) - [Efficient Inference with llama.cpp, ollama, vLLM](#efficient-inference-with-llamacpp-ollama-vllm)
- [Fine-tuning](#fine-tuning) - [Fine-tuning](#fine-tuning)
- [MiniCPM-V \& o Cookbook](#minicpm-v--o-cookbook)
- [Easy Usage Documentation](#easy-usage-documentation)
- [Broad User Spectrum](#broad-user-spectrum)
- [Versatile Deployment Scenarios](#versatile-deployment-scenarios)
- [Awesome work using MiniCPM-V \& MiniCPM-o](#awesome-work-using-minicpm-v--minicpm-o) - [Awesome work using MiniCPM-V \& MiniCPM-o](#awesome-work-using-minicpm-v--minicpm-o)
- [FAQs](#faqs) - [FAQs](#faqs)
- [Limitations](#limitations) - [Limitations](#limitations)
@@ -2551,6 +2558,7 @@ Best Practices: [MiniCPM-o 2.6](https://github.com/PKU-Alignment/align-anything/
We support fine-tuning MiniCPM-o 2.6 and MiniCPM-V 2.6 with the LLaMA-Factory framework. LLaMA-Factory provides a solution for flexibly customizing the fine-tuning (Lora/Full/Qlora) of 200+ LLMs without the need for coding through the built-in web UI LLaMABoard. It supports various training methods like sft/ppo/dpo/kto and advanced algorithms like Galore/BAdam/LLaMA-Pro/Pissa/LongLoRA. We support fine-tuning MiniCPM-o 2.6 and MiniCPM-V 2.6 with the LLaMA-Factory framework. LLaMA-Factory provides a solution for flexibly customizing the fine-tuning (Lora/Full/Qlora) of 200+ LLMs without the need for coding through the built-in web UI LLaMABoard. It supports various training methods like sft/ppo/dpo/kto and advanced algorithms like Galore/BAdam/LLaMA-Pro/Pissa/LongLoRA.
Best Practices: [MiniCPM-o 2.6 | MiniCPM-V 2.6](./docs/llamafactory_train_and_infer.md). Best Practices: [MiniCPM-o 2.6 | MiniCPM-V 2.6](./docs/llamafactory_train_and_infer.md).
@@ -2560,6 +2568,32 @@ We now support MiniCPM-V series fine-tuning with the SWIFT framework. SWIFT supp
Best Practices[MiniCPM-V 1.0](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v最佳实践.md), [MiniCPM-V 2.0](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v-2最佳实践.md), [MiniCPM-V 2.6](https://github.com/modelscope/ms-swift/issues/1613). Best Practices[MiniCPM-V 1.0](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v最佳实践.md), [MiniCPM-V 2.0](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v-2最佳实践.md), [MiniCPM-V 2.6](https://github.com/modelscope/ms-swift/issues/1613).
## MiniCPM-V & o Cookbook
Discover comprehensive, ready-to-deploy solutions for the MiniCPM-V and MiniCPM-o model series in our structured [Cookbook](https://github.com/OpenSQZ/MiniCPM-V-CookBook), which empowers developers to rapidly implement multimodal AI applications with integrated vision, speech, and live-streaming capabilities. Key features include:
### Easy Usage Documentation
Our comprehensive [documentation website](https://minicpm-o.readthedocs.io/en/latest/index.html) presents every recipe in a clear, well-organized manner.
All features are displayed at a glance, making it easy for you to quickly find exactly what you need.
### Broad User Spectrum
We support a wide range of users, from individuals to enterprises and researchers.
* **Individuals**: Enjoy effortless inference using [Ollama](https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/deployment/ollama/minicpm-v4_ollama.md) and [Llama.cpp](https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/deployment/llama.cpp/minicpm-v4_llamacpp.md) with minimal setup.
* **Enterprises**: Achieve high-throughput, scalable performance with [vLLM](https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/deployment/vllm/minicpm-v4_vllm.md) and [SGLang](https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/deployment/sglang/MiniCPM-v4_sglang.md).
* **Researchers**: Leverage advanced frameworks including [Transformers](https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/finetune/finetune_full.md), [LLaMA-Factory](https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/finetune/finetune_llamafactory.md), [SWIFT](https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/finetune/swift.md), and [Align-anything](https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/finetune/align_anything.md) to enable flexible model development and cutting-edge experimentation.
### Versatile Deployment Scenarios
Our ecosystem delivers optimal solution for a variety of hardware environments and deployment demands.
* **Web demo**: Launch interactive multimodal AI web demo with [FastAPI](https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/demo/README.md).
* **Quantized deployment**: Maximize efficiency and minimize resource consumption using [GGUF](https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/quantization/gguf/minicpm-v4_gguf_quantize.md) and [BNB](https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/quantization/bnb/minicpm-v4_bnb_quantize.md).
* **Edge devices**: Bring powerful AI experiences to [iPhone and iPad](https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/demo/ios_demo/ios.md), supporting offline and privacy-sensitive applications.
## Awesome work using MiniCPM-V & MiniCPM-o ## Awesome work using MiniCPM-V & MiniCPM-o
- [text-extract-api](https://github.com/CatchTheTornado/text-extract-api): Document extraction API using OCRs and Ollama supported models ![GitHub Repo stars](https://img.shields.io/github/stars/CatchTheTornado/text-extract-api) - [text-extract-api](https://github.com/CatchTheTornado/text-extract-api): Document extraction API using OCRs and Ollama supported models ![GitHub Repo stars](https://img.shields.io/github/stars/CatchTheTornado/text-extract-api)
- [comfyui_LLM_party](https://github.com/heshengtao/comfyui_LLM_party): Build LLM workflows and integrate into existing image workflows ![GitHub Repo stars](https://img.shields.io/github/stars/heshengtao/comfyui_LLM_party) - [comfyui_LLM_party](https://github.com/heshengtao/comfyui_LLM_party): Build LLM workflows and integrate into existing image workflows ![GitHub Repo stars](https://img.shields.io/github/stars/heshengtao/comfyui_LLM_party)

View File

@@ -38,6 +38,8 @@
#### 📌 置顶 #### 📌 置顶
* [2025.08.01] 🔥🔥🔥 我们开源了 [MiniCPM-V & o Cookbook](https://github.com/OpenSQZ/MiniCPM-V-CookBook),提供针对不同人群的全场景使用指南,配合最新的[文档网站](https://minicpm-o.readthedocs.io/en/latest/index.html)上手更轻松!
* [2025.06.20] ⭐️⭐️⭐️ MiniCPM-o 的 ollama [官方仓库](https://ollama.com/openbmb)正式支持 MiniCPM-o 2.6 等模型啦,欢迎[一键使用](https://ollama.com/openbmb/minicpm-o2.6) * [2025.06.20] ⭐️⭐️⭐️ MiniCPM-o 的 ollama [官方仓库](https://ollama.com/openbmb)正式支持 MiniCPM-o 2.6 等模型啦,欢迎[一键使用](https://ollama.com/openbmb/minicpm-o2.6)
* [2025.03.01] 🚀🚀🚀 MiniCPM-o 系列的对齐技术 RLAIF-V 被 CVPR 2025 接收了!其[代码](https://github.com/RLHF-V/RLAIF-V)、[数据](https://huggingface.co/datasets/openbmb/RLAIF-V-Dataset)、[论文](https://arxiv.org/abs/2405.17220)均已开源。 * [2025.03.01] 🚀🚀🚀 MiniCPM-o 系列的对齐技术 RLAIF-V 被 CVPR 2025 接收了!其[代码](https://github.com/RLHF-V/RLAIF-V)、[数据](https://huggingface.co/datasets/openbmb/RLAIF-V-Dataset)、[论文](https://arxiv.org/abs/2405.17220)均已开源。
@@ -110,6 +112,10 @@
- [Mac 推理](#mac-推理) - [Mac 推理](#mac-推理)
- [基于 llama.cpp、ollama、vLLM 的高效推理](#基于-llamacppollamavllm-的高效推理) - [基于 llama.cpp、ollama、vLLM 的高效推理](#基于-llamacppollamavllm-的高效推理)
- [微调](#微调) - [微调](#微调)
- [MiniCPM-V \& o 使用手册](#minicpm-v--o-使用手册)
- [易用的文档](#易用的文档)
- [广泛的用户支持](#广泛的用户支持)
- [多样化的部署场景](#多样化的部署场景)
- [基于 MiniCPM-V \& MiniCPM-o 的更多项目](#基于-minicpm-v--minicpm-o-的更多项目) - [基于 MiniCPM-V \& MiniCPM-o 的更多项目](#基于-minicpm-v--minicpm-o-的更多项目)
- [FAQs](#faqs) - [FAQs](#faqs)
- [模型局限性](#模型局限性) - [模型局限性](#模型局限性)
@@ -2446,6 +2452,30 @@ pip install vllm
参考文档:[MiniCPM-V 1.0](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v最佳实践.md)[MiniCPM-V 2.0](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v-2最佳实践.md) [MiniCPM-V 2.6](https://github.com/modelscope/ms-swift/issues/1613). 参考文档:[MiniCPM-V 1.0](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v最佳实践.md)[MiniCPM-V 2.0](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v-2最佳实践.md) [MiniCPM-V 2.6](https://github.com/modelscope/ms-swift/issues/1613).
## MiniCPM-V & o 使用手册
欢迎探索我们整理的[使用手册 (Cookbook)](https://github.com/OpenSQZ/MiniCPM-V-CookBook),其中提供了针对 MiniCPM-V 和 MiniCPM-o 模型系列的全面、开箱即用的解决方案。本手册赋能开发者快速构建集成了视觉、语音和直播能力的多模态 AI 应用。主要特性包括:
### 易用的文档
我们的详尽[文档网站](https://minicpm-o.readthedocs.io/en/latest/index.html)以清晰、条理分明的方式呈现每一份解决方案。
### 广泛的用户支持
我们支持从个人用户到企业和研究者的广泛用户群体。
* **个人用户**:借助[Ollama](https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/deployment/ollama/minicpm-v4_ollama.md)和[Llama.cpp](https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/deployment/llama.cpp/minicpm-v4_llamacpp.md),仅需极简设置即可轻松进行模型推理。
* **企业用户**:通过[vLLM](https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/deployment/vllm/minicpm-v4_vllm.md)和[SGLang](https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/deployment/sglang/MiniCPM-v4_sglang.md)实现高吞吐量、可扩展的高性能部署。
* **研究者**:利用包括[Transformers](https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/finetune/finetune_full.md)、[LLaMA-Factory](https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/finetune/finetune_llamafactory.md)、[SWIFT](https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/finetune/swift.md)和[Align-anything](https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/finetune/align_anything.md)在内的先进框架,进行灵活的模型开发和前沿实验。
### 多样化的部署场景
我们的生态系统为各种硬件环境和部署需求提供最优解决方案。
* **Web Demo**:使用[FastAPI](https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/demo/README.md)快速启动交互式多模态 AI Web 演示。
* **量化部署**:通过[GGUF](https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/quantization/gguf/minicpm-v4_gguf_quantize.md)和[BNB](https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/quantization/bnb/minicpm-v4_bnb_quantize.md)量化技术,最大化效率并最小化资源消耗。
* **边缘设备**:将强大的 AI 体验带到[iPhone 和 iPad](https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/demo/ios_demo/ios.md),支持离线及隐私敏感的应用场景。
## 基于 MiniCPM-V & MiniCPM-o 的更多项目 ## 基于 MiniCPM-V & MiniCPM-o 的更多项目
- [text-extract-api](https://github.com/CatchTheTornado/text-extract-api): 利用 OCR 和 Ollama 模型的本地化文档提取与解析API支持PDF、Word、PPTX ![GitHub Repo stars](https://img.shields.io/github/stars/CatchTheTornado/text-extract-api) - [text-extract-api](https://github.com/CatchTheTornado/text-extract-api): 利用 OCR 和 Ollama 模型的本地化文档提取与解析API支持PDF、Word、PPTX ![GitHub Repo stars](https://img.shields.io/github/stars/CatchTheTornado/text-extract-api)