mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-04 17:59:18 +08:00
不少用户需要自行量化模型,这里提供了bnb量化脚本和使用方法
This commit is contained in:
79
quantize/bnb_quantize.py
Normal file
79
quantize/bnb_quantize.py
Normal file
@@ -0,0 +1,79 @@
|
||||
"""
|
||||
the script will use bitandbytes to quantize the MiniCPM-Llama3-V-2_5 model.
|
||||
the be quantized model can be finetuned by MiniCPM-Llama3-V-2_5 or not.
|
||||
you only need to set the model_path 、save_path and run bash code
|
||||
|
||||
cd MiniCPM-V
|
||||
python quantize/bnb_quantize.py
|
||||
|
||||
you will get the quantized model in save_path、quantized_model test time and gpu usage
|
||||
"""
|
||||
|
||||
|
||||
import torch
|
||||
from transformers import AutoModel, AutoTokenizer, BitsAndBytesConfig
|
||||
from PIL import Image
|
||||
import time
|
||||
import torch
|
||||
import GPUtil
|
||||
import os
|
||||
|
||||
model_path = '/root/ld/ld_model_pretrain/MiniCPM-Llama3-V-2_5' # 模型下载地址
|
||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
save_path = '/root/ld/ld_model_pretrain/MiniCPM-Llama3-V-2_5_int4' # 量化模型保存地址
|
||||
image_path = './assets/airplane.jpeg'
|
||||
|
||||
# 创建一个配置对象来指定量化参数
|
||||
quantization_config = BitsAndBytesConfig(
|
||||
load_in_4bit= True, # 是否进行4bit量化
|
||||
load_in_8bit=False, # 是否进行8bit量化
|
||||
bnb_4bit_compute_dtype=torch.float16, # 计算精度设置
|
||||
bnb_4bit_quant_storage=torch.uint8, # 量化权重的储存格式
|
||||
bnb_4bit_quant_type="nf4", # 量化格式,这里用的是正太分布的int4
|
||||
bnb_4bit_use_double_quant= True, # 是否采用双量化,即对zeropoint和scaling参数进行量化
|
||||
llm_int8_enable_fp32_cpu_offload=False, # 是否llm使用int8,cpu上保存的参数使用fp32
|
||||
llm_int8_has_fp16_weight=False, # 是否启用混合精度
|
||||
llm_int8_skip_modules=[ "out_proj", "kv_proj", "lm_head" ], # 不进行量化的模块
|
||||
llm_int8_threshold= 6.0 # llm.int8()算法中的离群值,根据这个值区分是否进行量化
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
model = AutoModel.from_pretrained(
|
||||
model_path,
|
||||
device_map="cuda:0", # 分配模型到GPU0
|
||||
quantization_config=quantization_config,
|
||||
trust_remote_code=True
|
||||
)
|
||||
gpu_usage = GPUtil.getGPUs()[0].memoryUsed
|
||||
|
||||
start=time.time()
|
||||
response = model.chat(
|
||||
image=Image.open(image_path).convert("RGB"),
|
||||
msgs=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "这张图片中有什么?"
|
||||
}
|
||||
],
|
||||
tokenizer=tokenizer
|
||||
) # 模型推理
|
||||
print('量化后输出',response)
|
||||
print('量化后用时',time.time()-start)
|
||||
print(f"量化后显存占用: {round(gpu_usage/1024,2)}GB")
|
||||
|
||||
"""
|
||||
expected output:
|
||||
|
||||
量化后输出 这张图片中包含了飞机的特定部件,包括机翼、发动机和尾翼。这些部件是大型商用飞机的关键组成部分。
|
||||
机翼支撑着飞行时的升力,而发动机提供推力使飞机前进。尾翼通常用于稳定飞行,并在航空公司品牌中起到作用。
|
||||
飞机的设计和颜色表明它属于中国航空公司,很可能是一架客机,因为其庞大的尺寸和双引擎配置。
|
||||
飞机上没有任何标记或标志表明具体的型号或注册编号,这些信息可能需要额外的背景信息或更清晰的视角才能辨别。
|
||||
量化后用时 8.583992719650269
|
||||
量化后显存占用: 6.41GB
|
||||
"""
|
||||
|
||||
|
||||
# 保存模型和分词器
|
||||
os.makedirs(save_path, exist_ok=True)
|
||||
model.save_pretrained(save_path, safe_serialization=True)
|
||||
tokenizer.save_pretrained(save_path)
|
||||
Reference in New Issue
Block a user