diff --git a/README.md b/README.md
index e352647..3801cd1 100644
--- a/README.md
+++ b/README.md
@@ -30,7 +30,7 @@ Join our ๐ฌ WeChat
#### ๐ Pinned
* [2024.08.06] ๐ฅ๐ฅ๐ฅ We open-source MiniCPM-V 2.6, which outperforms GPT-4V on single image, multi-image and video understanding. It advances popular features of MiniCPM-Llama3-V 2.5, and can support real-time video understanding on iPad. Try it now!
* [2024.08.03] MiniCPM-Llama3-V 2.5 technical report is released! See [here](https://arxiv.org/abs/2408.01800).
-* [2024.07.19] MiniCPM-Llama3-V 2.5 supports vLLM now! See [here](#vllm).
+* [2024.07.19] MiniCPM-Llama3-V 2.5 supports vLLM now! See [here](#inference-with-vllm).
* [2024.05.28] ๐๐๐ MiniCPM-Llama3-V 2.5 now fully supports its feature in llama.cpp and ollama! Please pull the latest code **of our provided forks** ([llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-v2.5/examples/minicpmv/README.md), [ollama](https://github.com/OpenBMB/ollama/tree/minicpm-v2.5/examples/minicpm-v2.5)). GGUF models in various sizes are available [here](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf/tree/main). MiniCPM-Llama3-V 2.5 series is **not supported by the official repositories yet**, and we are working hard to merge PRs. Please stay tuned!
* [2024.05.28] ๐ซ We now support LoRA fine-tuning for MiniCPM-Llama3-V 2.5, using only 2 V100 GPUs! See more statistics [here](https://github.com/OpenBMB/MiniCPM-V/tree/main/finetune#model-fine-tuning-memory-usage-statistics).
* [2024.05.23] ๐ We've released a comprehensive comparison between Phi-3-vision-128k-instruct and MiniCPM-Llama3-V 2.5, including benchmarks evaluations, multilingual capabilities, and inference efficiency ๐๐๐๐. Click [here](./docs/compare_with_phi-3_vision.md) to view more details.
@@ -45,7 +45,7 @@ Join our ๐ฌ WeChat
* [2024.05.25] MiniCPM-Llama3-V 2.5 now supports streaming outputs and customized system prompts. Try it [here](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5#usage)!
* [2024.05.24] We release the MiniCPM-Llama3-V 2.5 [gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf), which supports [llama.cpp](#inference-with-llamacpp) inference and provides a 6~8 token/s smooth decoding on mobile phones. Try it now!
* [2024.05.20] We open-soure MiniCPM-Llama3-V 2.5, it has improved OCR capability and supports 30+ languages, representing the first end-side MLLM achieving GPT-4V level performance! We provide [efficient inference](#deployment-on-mobile-phone) and [simple fine-tuning](./finetune/readme.md). Try it now!
-* [2024.04.23] MiniCPM-V-2.0 supports vLLM now! Click [here](#vllm) to view more details.
+* [2024.04.23] MiniCPM-V-2.0 supports vLLM now! Click [here](#inference-with-vllm) to view more details.
* [2024.04.18] We create a HuggingFace Space to host the demo of MiniCPM-V 2.0 at [here](https://huggingface.co/spaces/openbmb/MiniCPM-V-2)!
* [2024.04.17] MiniCPM-V-2.0 supports deploying [WebUI Demo](#webui-demo) now!
* [2024.04.15] MiniCPM-V-2.0 now also supports [fine-tuning](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v-2ๆไฝณๅฎ่ทต.md) with the SWIFT framework!
@@ -1517,23 +1517,87 @@ MiniCPM-V 2.6 can run with ollama now! See [our fork of ollama](https://github.c
vLLM now officially supports MiniCPM-V 2.0, MiniCPM-Llama3-V 2.5 and MiniCPM-V 2.6, Click to see.
-1. Clone the official vLLM:
+1. Install vLLM(==0.5.4):
```shell
-git clone https://github.com/vllm-project/vllm.git
+pip install vllm
```
-2. Install vLLM:
-```shell
-cd vllm
-pip install -e .
-```
-3. Install timm: (optional, MiniCPM-V 2.0 need timm)
+2. Install timm: (optional, MiniCPM-V 2.0 need timm)
```shell
pip install timm==0.9.10
```
-4. Run the example:๏ผAttention: If you use model in local path, please update the model code to the latest version on Hugging Face.)
-```shell
-python examples/minicpmv_example.py
+3. Run the example(for image):
+```python
+from transformers import AutoTokenizer
+from PIL import Image
+from vllm import LLM, SamplingParams
+
+MODEL_NAME = "openbmb/MiniCPM-V-2_6"
+# Also available for previous models
+# MODEL_NAME = "openbmb/MiniCPM-Llama3-V-2_5"
+# MODEL_NAME = "HwwwH/MiniCPM-V-2"
+
+image = Image.open("xxx.png").convert("RGB")
+tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
+llm = LLM(
+ model=MODEL_NAME,
+ trust_remote_code=True,
+ gpu_memory_utilization=1,
+ max_model_len=2048
+)
+
+messages = [{
+ "role":
+ "user",
+ "content":
+ # Number of images
+ "(./)" + \
+ "\nWhat is the content of this image?"
+}]
+prompt = tokenizer.apply_chat_template(
+ messages,
+ tokenize=False,
+ add_generation_prompt=True
+)
+
+# Single Inference
+inputs = {
+ "prompt": prompt,
+ "multi_modal_data": {
+ "image": image
+ # Multi images, the number of images should be equal to that of `(./)`
+ # "image": [image, image]
+ },
+}
+# Batch Inference
+# inputs = [{
+# "prompt": prompt,
+# "multi_modal_data": {
+# "image": image
+# },
+# } for _ in 2]
+
+
+# 2.6
+stop_tokens = ['<|im_end|>', '<|endoftext|>']
+stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens]
+# 2.0
+# stop_token_ids = [tokenizer.eos_id]
+# 2.5
+# stop_token_ids = [tokenizer.eos_id, tokenizer.eot_id]
+
+sampling_params = SamplingParams(
+ stop_token_ids=stop_token_ids,
+ use_beam_search=True,
+ temperature=0,
+ best_of=3,
+ max_tokens=1024
+)
+
+outputs = llm.generate(inputs, sampling_params=sampling_params)
+
+print(outputs[0].outputs[0].text)
```
+4. click [here](https://modelbest.feishu.cn/wiki/C2BWw4ZP0iCDy7kkCPCcX2BHnOf?from=from_copylink) if you want to use it with *video*, or get more details about `vLLM`.
## Fine-tuning