diff --git a/README.md b/README.md index 8e567dd..e126cf4 100644 --- a/README.md +++ b/README.md @@ -7,7 +7,7 @@ [中文](./README_zh.md) | English -Join our 💬 WeChat +Join our 💬 WeChat | View MiniCPM-V 📖 best practices

@@ -29,9 +29,10 @@ Join our 💬 WeChat #### 📌 Pinned +* [2024.08.17] 🚀🚀🚀 MiniCPM-V 2.6 is now fully supported by [official](https://github.com/ggerganov/llama.cpp) llama.cpp! GGUF models of various sizes are available [here](https://huggingface.co/openbmb/MiniCPM-V-2_6-gguf). * [2024.08.15] We now also support multi-image SFT. For more details, please refer to the [document](https://github.com/OpenBMB/MiniCPM-V/tree/main/finetune). * [2024.08.14] MiniCPM-V 2.6 now also supports [fine-tuning](https://github.com/modelscope/ms-swift/issues/1613) with the SWIFT framework! -* [2024.08.10] 🚀🚀🚀 MiniCPM-Llama3-V 2.5 is now fully supported by [official](https://github.com/ggerganov/llama.cpp) llama.cpp! GGUF models of various sizes are available [here](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf). Please note that MiniCPM-V 2.6 still needs [our fork](https://github.com/OpenBMB/llama.cpp/blob/minicpmv-main/examples/llava/README-minicpmv2.6.md). +* [2024.08.10] 🚀🚀🚀 MiniCPM-Llama3-V 2.5 is now fully supported by [official](https://github.com/ggerganov/llama.cpp) llama.cpp! GGUF models of various sizes are available [here](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf). * [2024.08.06] 🔥🔥🔥 We open-source MiniCPM-V 2.6, which outperforms GPT-4V on single image, multi-image and video understanding. It advances popular features of MiniCPM-Llama3-V 2.5, and can support real-time video understanding on iPad. Try it now! * [2024.08.03] MiniCPM-Llama3-V 2.5 technical report is released! See [here](https://arxiv.org/abs/2408.01800). * [2024.07.19] MiniCPM-Llama3-V 2.5 supports vLLM now! See [here](#inference-with-vllm). @@ -535,7 +536,7 @@ Note: For proprietary models, we calculate token density based on the image enco Claude 3.5 Sonnet - 60.0 - - + 62.9 - - - @@ -546,7 +547,7 @@ Note: For proprietary models, we calculate token density based on the image enco GPT-4V - 59.9 - - + 63.3 - - - diff --git a/README_en.md b/README_en.md index 8e567dd..e126cf4 100644 --- a/README_en.md +++ b/README_en.md @@ -7,7 +7,7 @@ [中文](./README_zh.md) | English -Join our 💬 WeChat +Join our 💬 WeChat | View MiniCPM-V 📖 best practices

@@ -29,9 +29,10 @@ Join our 💬 WeChat #### 📌 Pinned +* [2024.08.17] 🚀🚀🚀 MiniCPM-V 2.6 is now fully supported by [official](https://github.com/ggerganov/llama.cpp) llama.cpp! GGUF models of various sizes are available [here](https://huggingface.co/openbmb/MiniCPM-V-2_6-gguf). * [2024.08.15] We now also support multi-image SFT. For more details, please refer to the [document](https://github.com/OpenBMB/MiniCPM-V/tree/main/finetune). * [2024.08.14] MiniCPM-V 2.6 now also supports [fine-tuning](https://github.com/modelscope/ms-swift/issues/1613) with the SWIFT framework! -* [2024.08.10] 🚀🚀🚀 MiniCPM-Llama3-V 2.5 is now fully supported by [official](https://github.com/ggerganov/llama.cpp) llama.cpp! GGUF models of various sizes are available [here](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf). Please note that MiniCPM-V 2.6 still needs [our fork](https://github.com/OpenBMB/llama.cpp/blob/minicpmv-main/examples/llava/README-minicpmv2.6.md). +* [2024.08.10] 🚀🚀🚀 MiniCPM-Llama3-V 2.5 is now fully supported by [official](https://github.com/ggerganov/llama.cpp) llama.cpp! GGUF models of various sizes are available [here](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf). * [2024.08.06] 🔥🔥🔥 We open-source MiniCPM-V 2.6, which outperforms GPT-4V on single image, multi-image and video understanding. It advances popular features of MiniCPM-Llama3-V 2.5, and can support real-time video understanding on iPad. Try it now! * [2024.08.03] MiniCPM-Llama3-V 2.5 technical report is released! See [here](https://arxiv.org/abs/2408.01800). * [2024.07.19] MiniCPM-Llama3-V 2.5 supports vLLM now! See [here](#inference-with-vllm). @@ -535,7 +536,7 @@ Note: For proprietary models, we calculate token density based on the image enco Claude 3.5 Sonnet - 60.0 - - + 62.9 - - - @@ -546,7 +547,7 @@ Note: For proprietary models, we calculate token density based on the image enco GPT-4V - 59.9 - - + 63.3 - - - diff --git a/README_zh.md b/README_zh.md index e1db448..57867df 100644 --- a/README_zh.md +++ b/README_zh.md @@ -9,7 +9,9 @@ 中文 | [English](./README_en.md) - 加入我们的 💬 微信社区 + 加入我们的 💬 微信社区 +| 了解 MiniCPM-V 📖 最佳实践 +

MiniCPM-V 2.6 🤗 🤖 | MiniCPM-Llama3-V 2.5 🤗 🤖 | @@ -33,9 +35,11 @@ #### 📌 置顶 + +* [2024.08.17] 🚀🚀🚀 llama.cpp [官方仓库](https://github.com/ggerganov/llama.cpp)正式支持 MiniCPM-V 2.6 啦!点击[这里](https://huggingface.co/openbmb/MiniCPM-V-2_6-gguf)查看各种大小的 GGUF 版本。 * [2024.08.15] MiniCPM-V 2.6 现在支持多图像 SFT。有关更多详细信息,请参阅[微调文档](https://github.com/OpenBMB/MiniCPM-V/tree/main/finetune) * [2024.08.14] MiniCPM-V 2.6 现在可以通过 SWIFT 框架 [微调](https://github.com/modelscope/ms-swift/issues/1613) 了! -* [2024.08.10] 🚀🚀🚀 llama.cpp [官方仓库](https://github.com/ggerganov/llama.cpp)正式支持 MiniCPM-Llama3-V 2.5 啦!点击[这里](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf/tree/main)查看各种大小的 GGUF 版本。但还请使用者注意 MiniCPM-V 2.6 仍然需要**拉取我们最新的 fork 来使用**:[llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpmv-main/examples/llava/README-minicpmv2.6.md) 。我们将继续积极推进将这些功能合并到 llama.cpp 官方仓库 +* [2024.08.10] 🚀🚀🚀 llama.cpp [官方仓库](https://github.com/ggerganov/llama.cpp)正式支持 MiniCPM-Llama3-V 2.5 啦!点击[这里](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf/tree/main)查看各种大小的 GGUF 版本。 * [2024.08.06] 🔥🔥🔥 我们开源了 MiniCPM-V 2.6,该模型在单图、多图和视频理解方面取得了优于 GPT-4V 的表现。我们还进一步提升了 MiniCPM-Llama3-V 2.5 的多项亮点能力,并首次支持了 iPad 上的实时视频理解。欢迎试用! * [2024.08.03] MiniCPM-Llama3-V 2.5 技术报告已发布!欢迎点击[这里](https://arxiv.org/abs/2408.01800)查看。 * [2024.07.19] MiniCPM-Llama3-V 2.5 现已支持[vLLM](#vllm-部署-) ! @@ -541,7 +545,7 @@ Claude 3.5 Sonnet - 60.0 - - + 62.9 - - - @@ -552,7 +556,7 @@ GPT-4V - 59.9 - - + 63.3 - - - diff --git a/assets/minicpm-v27.png b/assets/minicpm-v27.png new file mode 100644 index 0000000..18365f2 Binary files /dev/null and b/assets/minicpm-v27.png differ diff --git a/docs/best_practice_summary.md b/docs/best_practice_summary.md new file mode 100644 index 0000000..a3bd6fa --- /dev/null +++ b/docs/best_practice_summary.md @@ -0,0 +1,23 @@ +# MiniCPM-V Best Practices + +**MiniCPM-V** is a series of end-side multimodal LLMs (MLLMs) designed for vision-language understanding. The models take image, video and text as inputs and provide high-quality text output, aiming to achieve **strong performance and efficient deployment**. The most notable models in this series currently include MiniCPM-Llama3-V 2.5 and MiniCPM-V 2.6. The following sections provide detailed tutorials and guidance for each version of the MiniCPM-V models. + + +## MiniCPM-V 2.6 + +MiniCPM-V 2.6 is the latest and most capable model in the MiniCPM-V series. With a total of 8B parameters, the model **surpasses GPT-4V in single image, multi-image and video understanding**. It outperforms **GPT-4o mini, Gemini 1.5 Pro and Claude 3.5 Sonnet** in single image understanding, and advances MiniCPM-Llama3-V 2.5's features such as strong OCR capability, trustworthy behavior, multilingual support, and end-side deployment. Due to its superior token density, MiniCPM-V 2.6 can for the first time support real-time video understanding on end-side devices such as iPad. + +* [Deployment Tutorial](https://modelbest.feishu.cn/wiki/C2BWw4ZP0iCDy7kkCPCcX2BHnOf) +* [Training Tutorial](https://modelbest.feishu.cn/wiki/GeHMwLMa0i2FhUkV0f6cz3HWnV1) +* [Quantization Tutorial](https://modelbest.feishu.cn/wiki/YvsPwnPwWiqUjlkmW0scQ76TnBb) + +## MiniCPM-Llama3-V 2.5 + +MiniCPM-Llama3-V 2.5 is built on SigLip-400M and Llama3-8B-Instruct with a total of 8B parameters. It exhibits a significant performance improvement over MiniCPM-V 2.0. + +* [Quantization Tutorial](https://modelbest.feishu.cn/wiki/Kc7ywV4X1ipSaAkuPFOc9SFun8b) +* [Training Tutorial](https://modelbest.feishu.cn/wiki/UpSiw63o9iGDhIklmwScX4a6nhW) +* [End-side Deployment](https://modelbest.feishu.cn/wiki/Lwr9wpOQdinr6AkLzHrc9LlgnJD) +* [Deployment Tutorial](https://modelbest.feishu.cn/wiki/LTOKw3Hz7il9kGkCLX9czsennKe) +* [HD Decoding Tutorial](https://modelbest.feishu.cn/wiki/Ug8iwdXfhiHVsDk2gGEco6xnnVg) +* [Model Structure](https://modelbest.feishu.cn/wiki/ACtAw9bOgiBQ9lkWyafcvtVEnQf) \ No newline at end of file diff --git a/docs/best_practice_summary_zh.md b/docs/best_practice_summary_zh.md new file mode 100644 index 0000000..9aafe11 --- /dev/null +++ b/docs/best_practice_summary_zh.md @@ -0,0 +1,22 @@ +# MiniCPM-V 最佳实践 + +**MiniCPM-V**是面向图文理解的端侧多模态大模型系列。该系列模型接受图像和文本输入,并提供高质量的文本输出。自2024年2月以来,我们共发布了5个版本模型,旨在实现**领先的性能和高效的部署**,目前该系列最值得关注的模型包括: + +## MiniCPM-V 2.6 + +MiniCPM-V系列的最新、性能最佳模型。总参数量 8B,单图、多图和视频理解性能**超越了 GPT-4V**。在单图理解上,它取得了优于 **GPT-4o mini、Gemini 1.5 Pro 和 Claude 3.5 Sonnet** 等商用闭源模型的表现,并进一步优化了 MiniCPM-Llama3-V 2.5 的 OCR、可信行为、多语言支持以及端侧部署等诸多特性。基于其领先的视觉 token 密度,MiniCPM-V 2.6 成为了首个支持在 iPad 等端侧设备上进行实时视频理解的多模态大模型。 + +* [部署教程](https://modelbest.feishu.cn/wiki/LZxLwp4Lzi29vXklYLFchwN5nCf) +* [训练教程](https://modelbest.feishu.cn/wiki/HvfLwYzlIihqzXkmeCdczs6onmd) +* [量化教程](https://modelbest.feishu.cn/wiki/PAsHw6N6xiEy0DkJWpJcIocRnz9) + +## MiniCPM-Llama3-V 2.5 + +MiniCPM-Llama3-V 2.5 基于 SigLip-400M 和 Llama3-8B-Instruct 构建,总共有 80 亿参数。其性能相比 MiniCPM-V 2.0 有了显著提升。 + +* [量化教程](https://modelbest.feishu.cn/wiki/O0KTwQV5piUPzTkRXl9cSFyHnQb) +* [训练教程](https://modelbest.feishu.cn/wiki/MPkPwvONEiZm3BkWMnyc83Tin4d) +* [端侧部署](https://modelbest.feishu.cn/wiki/CZZJw1EDGitSSZka664cZwbWnrb) +* [部署教程](https://modelbest.feishu.cn/wiki/BcHIwjOLGihJXCkkSdMc2WhbnZf) +* [高清解码教程](https://modelbest.feishu.cn/wiki/L0ajwm8VAiiPY6kDZfJce3B7nRg) +* [模型结构](https://modelbest.feishu.cn/wiki/X15nwGzqpioxlikbi2RcXDpJnjd) \ No newline at end of file diff --git a/docs/wechat.md b/docs/wechat.md index 98ef51d..2e9c088 100644 --- a/docs/wechat.md +++ b/docs/wechat.md @@ -1,5 +1,5 @@

- +

扫码加入「MiniCPM-V 交流群」

Scan the QR code to join the "MiniCPM-V Discussion Group"