mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-05 18:29:18 +08:00
update readme
This commit is contained in:
@@ -50,7 +50,6 @@
|
|||||||
|
|
||||||
|
|
||||||
- [MiniCPM-Llama3-V 2.5](#minicpm-llama3-v-25)
|
- [MiniCPM-Llama3-V 2.5](#minicpm-llama3-v-25)
|
||||||
- [Evaluation](#evaluation)
|
|
||||||
- [MiniCPM-V 2.0](#minicpm-v-20)
|
- [MiniCPM-V 2.0](#minicpm-v-20)
|
||||||
- [Online Demo](#online-demo)
|
- [Online Demo](#online-demo)
|
||||||
- [Install](#install)
|
- [Install](#install)
|
||||||
@@ -86,7 +85,7 @@
|
|||||||
- 🚀 **Efficient Deployment.**
|
- 🚀 **Efficient Deployment.**
|
||||||
MiniCPM-Llama3-V 2.5 systematically employs **model quantization, CPU optimizations, NPU optimizations and compilation optimizations**, achieving high-efficiency deployment on edge devices. For mobile phones with Qualcomm chips, we have integrated the NPU acceleration framework QNN into llama.cpp for the first time. After systematic optimization, MiniCPM-Llama3-V 2.5 has realized a **150x acceleration in end-side MLLM image encoding** and a **3x speedup in language decoding**.
|
MiniCPM-Llama3-V 2.5 systematically employs **model quantization, CPU optimizations, NPU optimizations and compilation optimizations**, achieving high-efficiency deployment on edge devices. For mobile phones with Qualcomm chips, we have integrated the NPU acceleration framework QNN into llama.cpp for the first time. After systematic optimization, MiniCPM-Llama3-V 2.5 has realized a **150x acceleration in end-side MLLM image encoding** and a **3x speedup in language decoding**.
|
||||||
|
|
||||||
### Evaluation
|
### Evaluation <!-- omit in toc -->
|
||||||
|
|
||||||
<div align="center">
|
<div align="center">
|
||||||
<img src=assets/MiniCPM-Llama3-V-2.5-peformance.png width=66% />
|
<img src=assets/MiniCPM-Llama3-V-2.5-peformance.png width=66% />
|
||||||
|
|||||||
@@ -50,7 +50,6 @@
|
|||||||
|
|
||||||
|
|
||||||
- [MiniCPM-Llama3-V 2.5](#minicpm-llama3-v-25)
|
- [MiniCPM-Llama3-V 2.5](#minicpm-llama3-v-25)
|
||||||
- [Evaluation](#evaluation)
|
|
||||||
- [MiniCPM-V 2.0](#minicpm-v-20)
|
- [MiniCPM-V 2.0](#minicpm-v-20)
|
||||||
- [Online Demo](#online-demo)
|
- [Online Demo](#online-demo)
|
||||||
- [Install](#install)
|
- [Install](#install)
|
||||||
@@ -86,7 +85,7 @@
|
|||||||
- 🚀 **Efficient Deployment.**
|
- 🚀 **Efficient Deployment.**
|
||||||
MiniCPM-Llama3-V 2.5 systematically employs **model quantization, CPU optimizations, NPU optimizations and compilation optimizations**, achieving high-efficiency deployment on edge devices. For mobile phones with Qualcomm chips, we have integrated the NPU acceleration framework QNN into llama.cpp for the first time. After systematic optimization, MiniCPM-Llama3-V 2.5 has realized a **150x acceleration in end-side MLLM image encoding** and a **3x speedup in language decoding**.
|
MiniCPM-Llama3-V 2.5 systematically employs **model quantization, CPU optimizations, NPU optimizations and compilation optimizations**, achieving high-efficiency deployment on edge devices. For mobile phones with Qualcomm chips, we have integrated the NPU acceleration framework QNN into llama.cpp for the first time. After systematic optimization, MiniCPM-Llama3-V 2.5 has realized a **150x acceleration in end-side MLLM image encoding** and a **3x speedup in language decoding**.
|
||||||
|
|
||||||
### Evaluation
|
### Evaluation <!-- omit in toc -->
|
||||||
|
|
||||||
<div align="center">
|
<div align="center">
|
||||||
<img src=assets/MiniCPM-Llama3-V-2.5-peformance.png width=66% />
|
<img src=assets/MiniCPM-Llama3-V-2.5-peformance.png width=66% />
|
||||||
|
|||||||
@@ -52,8 +52,6 @@
|
|||||||
## 目录 <!-- omit in toc -->
|
## 目录 <!-- omit in toc -->
|
||||||
|
|
||||||
- [MiniCPM-Llama3-V 2.5](#minicpm-llama3-v-25)
|
- [MiniCPM-Llama3-V 2.5](#minicpm-llama3-v-25)
|
||||||
- [性能评估](#性能评估)
|
|
||||||
- [典型示例](#典型示例)
|
|
||||||
- [MiniCPM-V 2.0](#minicpm-v-20)
|
- [MiniCPM-V 2.0](#minicpm-v-20)
|
||||||
- [Online Demo](#online-demo)
|
- [Online Demo](#online-demo)
|
||||||
- [安装](#安装)
|
- [安装](#安装)
|
||||||
@@ -92,7 +90,7 @@
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
### 性能评估
|
### 性能评估 <!-- omit in toc -->
|
||||||
|
|
||||||
<div align="center">
|
<div align="center">
|
||||||
<img src="assets/MiniCPM-Llama3-V-2.5-peformance.png" width="66%" />
|
<img src="assets/MiniCPM-Llama3-V-2.5-peformance.png" width="66%" />
|
||||||
@@ -381,7 +379,7 @@
|
|||||||
</div>
|
</div>
|
||||||
|
|
||||||
|
|
||||||
### 典型示例
|
### 典型示例 <!-- omit in toc -->
|
||||||
<table align="center">
|
<table align="center">
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<img src="assets/minicpmv-llama3-v2.5/cases_all.png" width=95%/>
|
<img src="assets/minicpmv-llama3-v2.5/cases_all.png" width=95%/>
|
||||||
|
|||||||
Reference in New Issue
Block a user