updata Update README.md

This commit is contained in:
Your Name
2024-02-01 23:40:12 +08:00
parent 7026436d1a
commit 324ecf18c3

131
README.md
View File

@@ -23,12 +23,22 @@
[中文文档](./README_zh.md)
## Contents
- [Contents](#contents)
- [OmniLMM-12B](#omnilmm-12b)
- [Evaluation](#evaluation)
- [Examples](#examples)
- [OmniLMM-3B](#omnilmm-3b)
- [Evaluation](#evaluation-1)
- [Examples](#examples-1)
- [Demo](#demo)
- [Install](#install)
- [Inference](#inference)
- [Model Zoo](#model-zoo)
- [Model Zoo](#model-zoo)
- [Multi-turn Conversation](#multi-turn-conversation)
- [✅ TODO](#-todo)
- [Model License](#model-license)
- [Statement](#statement)
- [🏫 Institutions](#-institutions)
## OmniLMM-12B
**OmniLMM-12B** is the most capable version. The model is built based on EVA02-5B and Zephyr-7B-β, connected with a perceiver resampler layer, and trained on multimodal data in a curriculum fashion. The model has three notable features:
@@ -181,79 +191,118 @@ We combine the OmniLMM-12B and GPT-3.5 (text-only) into a **real-time multimodal
OmniLMM-3B is **the first edge-deployable LMM supporting bilingual multimodal interaction in English and Chinese**. This is achieved by generalizing multimodal capabilities across languages, a technique from our ICLR 2024 spotlight [paper](https://arxiv.org/abs/2308.12038).
### Evaluation
<div align="center">
<img src=assets/eval_radar.png width=50% />
</div>
<details>
<summary>Click to view results on MME, MMBench, MMMU, MMBench, MMHal-Bench, Object HalBench, SeedBench, LLaVA Bench W. </summary>
<table style="margin: 0px auto;">
<table>
<thead>
<tr>
<th align="left">Model</th>
<th>Size</th>
<th>MME</th>
<th nowrap="nowrap" >MMB dev (en)</th>
<th nowrap="nowrap" >MMB dev (zh)</th>
<th nowrap="nowrap">MMB dev (en)</th>
<th nowrap="nowrap" >MMMU val</th>
<th nowrap="nowrap" >CMMMU val</th>
<th nowrap="nowrap" >MMHal-Bench</th>
<th nowrap="nowrap" >Object HalBench</th>
<th nowrap="nowrap" >SeedBench-I</th>
<th>MathVista</th>
<th nowrap="nowrap" >LLaVA Bench W</th>
</tr>
</thead>
<tbody align="center">
<tr>
<td align="left">LLaVA-Phi</td>
<td align="right">3B</td>
<td>1335</td>
<td>59.8</td>
<td>- </td>
<td>- </td>
<td>- </td>
<td align="left">GPT-4V†</td>
<td>-</td>
<td>1409</td>
<td>75.1 </td>
<td>56.8</td>
<td>3.53 / 70.8</td>
<td>86.4 / 92.7</td>
<td>71.6 </td>
<td>47.8 </td>
<td>93.1 </td>
</tr>
<tr>
<td nowrap="nowrap" align="left">MobileVLM</td>
<td align="right">3B</td>
<td>1289</td>
<td>59.6</td>
<td>- </td>
<td nowrap="nowrap" align="left">Qwen-VL-Plus†</td>
<td>-</td>
<td>1681</td>
<td>66.2 </td>
<td>45.2</td>
<td>- </td>
<td>- </td>
<td>65.7 </td>
<td>36.0 </td>
<td>73.7 </td>
</tr>
<tr>
<td nowrap="nowrap" align="left" >Imp-v1</td>
<td align="right">3B</td>
<td>1434</td>
<td>66.5</td>
<td>- </td>
<td align="left">Yi-VL 6B</td>
<td align="right">6.7B </td>
<td>- </td>
<td>68.2 </td>
<td>39.1 </td>
<td>- </td>
<td>- </td>
<td>66.1 </td>
<td>28.0 </td>
<td>39.9 </td>
</tr>
<tr>
<td align="left" >Qwen-VL-Chat</td>
<td align="right" >9.6B</td>
<td>1487</td>
<td nowrap="nowrap" align="left" >Qwen-VL-Chat</td>
<td align="right">9.6B</td>
<td>1488</td>
<td>60.6 </td>
<td>56.7 </td>
<td>35.9 </td>
<td>30.7 </td>
<td>35.9</td>
<td>2.93 / 59.4</td>
<td>56.2 / 80.0</td>
<td>64.8 </td>
<td>33.8 </td>
<td>67.7 </td>
</tr>
<tr>
<td nowrap="nowrap" align="left" >CogVLM</td>
<td align="right">17.4B </td>
<td>1438 </td>
<td align="left" >CogVLM</td>
<td align="right">17.4B</td>
<td>1438</td>
<td>63.7 </td>
<td>53.8 </td>
<td>32.1 </td>
<td>- </td>
<td>2.68 / 52.1 </td>
<td>73.6 / 87.4 </td>
<td>68.8 </td>
<td>34.7 </td>
<td>73.9 </td>
</tr>
<tr>
<td nowrap="nowrap" align="left" ><b>OmniLMM-3B</b></td>
<td align="right">3B </td>
<td>1452 </td>
<td>67.3 </td>
<td>61.9 </td>
<td>34.7 </td>
<td>32.1 </td>
<td align="left" >LLaVA 1.5</td>
<td align="right">13.6B </td>
<td>1531 </td>
<td>68.2 </td>
<td>36.4 </td>
<td>2.71 / 51.0 </td>
<td>53.7 / 77.4 </td>
<td>68.1 </td>
<td>26.4 </td>
<td>64.6 </td>
</tr>
<tr>
<td nowrap="nowrap" align="left" ><b>OmniLMM-12B</b></td>
<td align="right">11.6B </td>
<td>1637 </td>
<td>71.6 </td>
<td>40.7 </td>
<td>3.45 / 68.8 </td>
<td>90.3 / 95.5 </td>
<td>71.1 </td>
<td>34.9 </td>
<td>72.0 </td>
</tr>
</tbody>
</table>
<small>†: Proprietary models</small>
</details>
</div>