mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-04 17:59:18 +08:00
Update to MiniCPM-Llama3-V 2.5
This commit is contained in:
@@ -1,90 +1,115 @@
|
||||
import os
|
||||
import math
|
||||
import json
|
||||
import copy
|
||||
import json
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
from typing import Dict, Optional, List
|
||||
from PIL import Image
|
||||
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
from transformers import AutoTokenizer, AutoProcessor
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
from torch.utils.data import Dataset
|
||||
from transformers import AutoProcessor, AutoTokenizer
|
||||
|
||||
|
||||
class SupervisedDataset(Dataset):
|
||||
"""Dataset for supervised fine-tuning."""
|
||||
def __init__(self, raw_data, transform, tokenizer, slice_config):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
raw_data,
|
||||
transform,
|
||||
tokenizer,
|
||||
slice_config,
|
||||
llm_type="minicpm",
|
||||
patch_size=14,
|
||||
query_nums=64,
|
||||
batch_vision=False,
|
||||
):
|
||||
super(SupervisedDataset, self).__init__()
|
||||
self.raw_data = raw_data
|
||||
self.tokenizer = tokenizer
|
||||
self.transform = transform
|
||||
self.slice_config = slice_config
|
||||
self.llm_type = llm_type
|
||||
self.patch_size = patch_size
|
||||
self.query_nums=query_nums
|
||||
self.batch_vision = batch_vision
|
||||
|
||||
def __len__(self):
|
||||
return len(self.raw_data)
|
||||
|
||||
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
||||
image = Image.open(self.raw_data[i]["image"]).convert("RGB")
|
||||
ret = preprocess(image, self.raw_data[i]["conversations"], self.tokenizer, self.transform, slice_config=self.slice_config)
|
||||
ret = preprocess(
|
||||
image,
|
||||
self.raw_data[i]["conversations"],
|
||||
self.tokenizer,
|
||||
self.transform,
|
||||
query_nums=self.query_nums,
|
||||
slice_config=self.slice_config,
|
||||
llm_type=self.llm_type,
|
||||
patch_size=self.patch_size,
|
||||
batch_vision=self.batch_vision,
|
||||
)
|
||||
ret = dict(
|
||||
input_ids=ret["input_ids"],
|
||||
labels=ret["target"],
|
||||
attention_mask=ret["input_ids"].ne(self.tokenizer.pad_token_id),
|
||||
attention_mask=torch.ones_like(ret["input_ids"], dtype=torch.bool),
|
||||
pixel_values=ret["pixel_values"],
|
||||
tgt_sizes=ret["tgt_sizes"],
|
||||
image_bound=ret["image_bound"],
|
||||
)
|
||||
|
||||
|
||||
return ret
|
||||
|
||||
|
||||
def data_collator(examples, padding_value=0):
|
||||
input_ids = pad_sequence([example["input_ids"] for example in examples], batch_first=True, padding_value=padding_value)
|
||||
targets = pad_sequence([example["labels"] for example in examples], batch_first=True, padding_value=padding_value)
|
||||
attention_mask = pad_sequence([example["attention_mask"] for example in examples], batch_first=True, padding_value=padding_value)
|
||||
input_ids = pad_sequence(
|
||||
[example["input_ids"] for example in examples],
|
||||
batch_first=True,
|
||||
padding_value=padding_value,
|
||||
)
|
||||
targets = pad_sequence(
|
||||
[example["labels"] for example in examples],
|
||||
batch_first=True,
|
||||
padding_value=padding_value,
|
||||
)
|
||||
attention_mask = pad_sequence(
|
||||
[example["attention_mask"] for example in examples],
|
||||
batch_first=True,
|
||||
padding_value=padding_value,
|
||||
)
|
||||
pixel_values = [example["pixel_values"] for example in examples]
|
||||
image_bound = [example["image_bound"] for example in examples]
|
||||
return {"input_ids": input_ids, "labels":targets, "attention_mask": attention_mask, "image_bound": image_bound, "pixel_values": pixel_values}
|
||||
tgt_sizes = [example["tgt_sizes"] for example in examples]
|
||||
return {
|
||||
"input_ids": input_ids,
|
||||
"labels": targets,
|
||||
"attention_mask": attention_mask,
|
||||
"image_bound": image_bound,
|
||||
"tgt_sizes": tgt_sizes,
|
||||
"pixel_values": pixel_values,
|
||||
}
|
||||
|
||||
|
||||
def conversation_to_ids(conversation, tokenizer):
|
||||
def conversation_to_ids(conversation, tokenizer, llm_type=None):
|
||||
"""
|
||||
for single image multi-turn conversation
|
||||
conversation: [{'role': 'user', 'content': 'Describe this image'},
|
||||
{'role': 'assistant', 'content': 'This is a cat.'}]
|
||||
"""
|
||||
raw_msg = ''
|
||||
input_ids = []
|
||||
context = []
|
||||
for idx, msg in enumerate(conversation):
|
||||
role = msg['role']
|
||||
message = msg['content']
|
||||
assert role in ['user', 'assistant']
|
||||
if role == 'user':
|
||||
prefix = '<用户>'
|
||||
else:
|
||||
prefix = '<AI>'
|
||||
# append eos
|
||||
if idx == len(conversation) - 1:
|
||||
message = message + tokenizer.eos_token
|
||||
prefix_ids = tokenizer.encode(prefix)[1:] # remove bos
|
||||
message_ids = tokenizer.encode(message)[1:]
|
||||
if llm_type == "llama3":
|
||||
input_ids, context, raw_msg = conversation_to_ids_llama3(
|
||||
conversation, tokenizer
|
||||
)
|
||||
else:
|
||||
input_ids, context, raw_msg = conversation_to_ids_minicpm(
|
||||
conversation, tokenizer
|
||||
)
|
||||
|
||||
input_ids.append(prefix_ids)
|
||||
input_ids.append(message_ids)
|
||||
|
||||
context.append(np.ones((len(prefix_ids),), dtype=np.int8))
|
||||
if role == 'assistant':
|
||||
context.append(np.zeros((len(message_ids),), dtype=np.int8))
|
||||
else:
|
||||
context.append(np.ones((len(message_ids),), dtype=np.int8))
|
||||
|
||||
raw_msg += (prefix + message)
|
||||
|
||||
ids = torch.from_numpy(np.hstack(input_ids, dtype=np.int32))
|
||||
context = torch.from_numpy(np.hstack(context, dtype=np.int8))
|
||||
|
||||
@@ -94,45 +119,137 @@ def conversation_to_ids(conversation, tokenizer):
|
||||
if context[i] == 0:
|
||||
target[i - 1] = ids[i]
|
||||
if context[i] == 1 and context[i - 1] == 0:
|
||||
target[i - 1] = tokenizer.eos_id
|
||||
if hasattr(tokenizer, "eot_id"):
|
||||
target[i - 1] = tokenizer.eot_id
|
||||
else:
|
||||
target[i - 1] = tokenizer.eos_id
|
||||
|
||||
# build image bound
|
||||
image_start_tokens = torch.where(ids == tokenizer.im_start_id)[0]
|
||||
image_start_tokens += 1
|
||||
image_end_tokens = torch.where(ids == tokenizer.im_end_id)[0]
|
||||
if len(image_start_tokens) != len(image_end_tokens):
|
||||
print('image start token != image end tokens')
|
||||
if len(image_start_tokens)>0:
|
||||
image_bound = torch.hstack([image_start_tokens.unsqueeze(-1), image_end_tokens.unsqueeze(-1)])
|
||||
print("image start token != image end tokens")
|
||||
if len(image_start_tokens) > 0:
|
||||
image_bound = torch.hstack(
|
||||
[image_start_tokens.unsqueeze(-1), image_end_tokens.unsqueeze(-1)]
|
||||
)
|
||||
else:
|
||||
image_bound = []
|
||||
|
||||
return {
|
||||
'input_ids': ids,
|
||||
'target': target,
|
||||
'image_bound': image_bound,
|
||||
'raw_msg': raw_msg,
|
||||
"input_ids": ids,
|
||||
"target": target,
|
||||
"image_bound": image_bound,
|
||||
"raw_msg": raw_msg,
|
||||
}
|
||||
|
||||
|
||||
def preprocess(image, conversation, tokenizer, transform, query_nums=64, slice_config=None):
|
||||
def conversation_to_ids_minicpm(conversation, tokenizer):
|
||||
raw_msg = ""
|
||||
input_ids = []
|
||||
context = []
|
||||
for idx, msg in enumerate(conversation):
|
||||
role = msg["role"]
|
||||
message = msg["content"]
|
||||
assert role in ["user", "assistant"]
|
||||
if role == "user":
|
||||
prefix = "<用户>"
|
||||
else:
|
||||
prefix = "<AI>"
|
||||
# append eos
|
||||
if idx == len(conversation) - 1:
|
||||
message = message + tokenizer.eos_token
|
||||
prefix_ids = tokenizer.encode(prefix)[1:] # remove bos
|
||||
message_ids = tokenizer.encode(message)[1:]
|
||||
|
||||
input_ids.append(prefix_ids)
|
||||
input_ids.append(message_ids)
|
||||
|
||||
context.append(np.ones((len(prefix_ids),), dtype=np.int8))
|
||||
if role == "assistant":
|
||||
context.append(np.zeros((len(message_ids),), dtype=np.int8))
|
||||
else:
|
||||
context.append(np.ones((len(message_ids),), dtype=np.int8))
|
||||
|
||||
raw_msg += prefix + message
|
||||
|
||||
return input_ids, context, raw_msg
|
||||
|
||||
|
||||
def conversation_to_ids_llama3(conversation, tokenizer):
|
||||
raw_msg = ""
|
||||
input_ids = []
|
||||
context = []
|
||||
raw_msg = tokenizer.apply_chat_template(
|
||||
conversation, tokenize=False, add_generation_prompt=False
|
||||
)
|
||||
input_ids = tokenizer.apply_chat_template(
|
||||
conversation, tokenize=True, add_generation_prompt=False
|
||||
)
|
||||
input_ids = np.array(input_ids)
|
||||
|
||||
start_header_idxs = np.where(
|
||||
input_ids == tokenizer.convert_tokens_to_ids("<|start_header_id|>")
|
||||
)[0]
|
||||
assistant_idxs = np.where(
|
||||
input_ids == tokenizer.convert_tokens_to_ids("assistant")
|
||||
)[0]
|
||||
end_header_idxs = np.where(
|
||||
input_ids == tokenizer.convert_tokens_to_ids("<|end_header_id|>")
|
||||
)[0]
|
||||
eot_idxs = np.where(
|
||||
input_ids == tokenizer.convert_tokens_to_ids("<|eot_id|>"))[0]
|
||||
|
||||
context = np.ones_like(input_ids, dtype=np.int8)
|
||||
|
||||
for assistant_idx in assistant_idxs:
|
||||
if assistant_idx in set((start_header_idxs + end_header_idxs) / 2):
|
||||
st = assistant_idx + 3 # assistant<|end_header_id|>\n\n
|
||||
for eot_idx in eot_idxs:
|
||||
if eot_idx > st:
|
||||
context[st: eot_idx + 1] = 0
|
||||
break
|
||||
|
||||
input_ids = np.hstack(input_ids)
|
||||
context = np.hstack(context)
|
||||
|
||||
return input_ids, context, raw_msg
|
||||
|
||||
|
||||
def preprocess(
|
||||
image,
|
||||
conversation,
|
||||
tokenizer,
|
||||
transform,
|
||||
query_nums=64,
|
||||
slice_config=None,
|
||||
llm_type=None,
|
||||
patch_size=14,
|
||||
batch_vision=False,
|
||||
):
|
||||
"""
|
||||
single image preprocess, the image will be placed at the top of the conversation
|
||||
"""
|
||||
conversation = copy.deepcopy(conversation)
|
||||
assert len(conversation) > 1, "conversation length must large than 2"
|
||||
assert conversation[0]['role'] == 'user', "the first role must be user"
|
||||
assert conversation[0]["role"] == "user", "the first role must be user"
|
||||
|
||||
if slice_config is not None:
|
||||
assert isinstance(slice_config, Dict)
|
||||
assert 'patch_size' in slice_config
|
||||
assert 'max_slice_nums' in slice_config
|
||||
assert 'scale_resolution' in slice_config
|
||||
default_image_placeholder = tokenizer.im_start + tokenizer.unk_token * query_nums + tokenizer.im_end
|
||||
assert "patch_size" in slice_config
|
||||
assert "max_slice_nums" in slice_config
|
||||
assert "scale_resolution" in slice_config
|
||||
default_image_placeholder = (
|
||||
tokenizer.im_start + tokenizer.unk_token * query_nums + tokenizer.im_end
|
||||
)
|
||||
if slice_config:
|
||||
images = []
|
||||
source_image, patches, best_grid = slice_image(
|
||||
image, slice_config['max_slice_nums'], slice_config['scale_resolution'], slice_config['patch_size']
|
||||
image,
|
||||
slice_config["max_slice_nums"],
|
||||
slice_config["scale_resolution"],
|
||||
slice_config["patch_size"],
|
||||
)
|
||||
images.append(source_image)
|
||||
image_placeholder = default_image_placeholder
|
||||
@@ -142,30 +259,51 @@ def preprocess(image, conversation, tokenizer, transform, query_nums=64, slice_c
|
||||
images.append(patches[i][j])
|
||||
|
||||
image_placeholder += get_grid_placeholder(
|
||||
tokenizer, best_grid, query_nums
|
||||
)
|
||||
tokenizer, best_grid, query_nums)
|
||||
images = [transform(i) for i in images]
|
||||
else:
|
||||
images = [transform(image)]
|
||||
image_placeholder = default_image_placeholder
|
||||
if '<image>' in conversation[0]['content']:
|
||||
conversation[0]['content'] = conversation[0]['content'].replace('<image>', image_placeholder)
|
||||
if "<image>" in conversation[0]["content"]:
|
||||
conversation[0]["content"] = conversation[0]["content"].replace(
|
||||
"<image>", image_placeholder
|
||||
)
|
||||
else:
|
||||
conversation[0]['content'] = image_placeholder + '\n' + conversation[0]['content']
|
||||
conversation[0]["content"] = (
|
||||
image_placeholder + "\n" + conversation[0]["content"]
|
||||
)
|
||||
|
||||
input_dict = conversation_to_ids(conversation, tokenizer, llm_type)
|
||||
|
||||
if batch_vision:
|
||||
tgt_sizes = []
|
||||
reshape_images = []
|
||||
for image in images:
|
||||
H, W = image.shape[1:]
|
||||
reshape_image = reshape_by_patch(image, patch_size)
|
||||
reshape_images.append(reshape_image)
|
||||
tgt_sizes.append([H // patch_size, W // patch_size])
|
||||
if tgt_sizes:
|
||||
tgt_sizes = torch.Tensor(tgt_sizes).type(torch.int32)
|
||||
|
||||
input_dict["pixel_values"] = reshape_images
|
||||
input_dict["tgt_sizes"] = tgt_sizes
|
||||
|
||||
else:
|
||||
input_dict["pixel_values"] = images
|
||||
input_dict["tgt_sizes"] = []
|
||||
|
||||
input_dict = conversation_to_ids(conversation, tokenizer)
|
||||
input_dict['pixel_values'] = images
|
||||
return input_dict
|
||||
|
||||
|
||||
|
||||
def slice_image(
|
||||
image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False
|
||||
):
|
||||
original_size = image.size
|
||||
original_width, original_height = original_size
|
||||
log_ratio = math.log(original_width / original_height)
|
||||
ratio = original_width * original_height / (scale_resolution * scale_resolution)
|
||||
ratio = original_width * original_height / \
|
||||
(scale_resolution * scale_resolution)
|
||||
multiple = min(math.ceil(ratio), max_slice_nums)
|
||||
|
||||
source_image = None
|
||||
@@ -186,7 +324,8 @@ def slice_image(
|
||||
candidate_split_grids_nums.append(i)
|
||||
|
||||
# source image, down-sampling and ensure divided by patch_size
|
||||
best_resize = find_best_resize(original_size, scale_resolution, patch_size)
|
||||
best_resize = find_best_resize(
|
||||
original_size, scale_resolution, patch_size)
|
||||
source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
|
||||
candidate_grids = []
|
||||
|
||||
@@ -285,6 +424,22 @@ def get_grid_placeholder(tokenizer, grid, query_num):
|
||||
for j in range(cols):
|
||||
lines.append(image_placeholder)
|
||||
slices.append("".join(lines))
|
||||
slice_placeholder = tokenizer.slice_start + "\n".join(slices) + tokenizer.slice_end
|
||||
slice_placeholder = tokenizer.slice_start + \
|
||||
"\n".join(slices) + tokenizer.slice_end
|
||||
return slice_placeholder
|
||||
|
||||
|
||||
def reshape_by_patch(image_tensor, patch_size):
|
||||
"""
|
||||
:param image_tensor: shape [3, H, W]
|
||||
:param patch_size:
|
||||
:return: [3, patch_size, HW/patch_size]
|
||||
"""
|
||||
patches = torch.nn.functional.unfold(
|
||||
image_tensor, (patch_size, patch_size), stride=(patch_size, patch_size)
|
||||
)
|
||||
|
||||
patches = patches.reshape(image_tensor.size(0), patch_size, patch_size, -1)
|
||||
patches = patches.permute(0, 1, 3, 2).reshape(
|
||||
image_tensor.size(0), patch_size, -1)
|
||||
return patches
|
||||
|
||||
Reference in New Issue
Block a user