Update to MiniCPM-Llama3-V 2.5

This commit is contained in:
yiranyyu
2024-05-20 12:44:33 +08:00
parent c0e39dbfe2
commit 2c75097411
27 changed files with 1944 additions and 985 deletions

802
README.md
View File

@@ -2,32 +2,34 @@
<!-- <!-- <h1 style="color: #33A6B8; font-family: Helvetica"> OmniLMM </h1> -->
<img src="./assets/minicpmv-omnilmm.png" width="400em" ></img>
<img src="./assets/minicpmv.png" width="300em" ></img>
**性能领先且部署高效的多模态大模型**
**端侧可用的 GPT-4V 级多模态大模型**
<strong>中文 |
[English](./README_en.md)</strong>
<p align="center">
MiniCPM-Llama3-V 2.5 <a href="https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5/">🤗</a> <a href="http://120.92.209.146:8889/">🤖</a> |
MiniCPM-V 2.0 <a href="https://huggingface.co/openbmb/MiniCPM-V-2/">🤗</a> <a href="https://huggingface.co/spaces/openbmb/MiniCPM-V-2">🤖</a> |
OmniLMM-12B <a href="https://huggingface.co/openbmb/OmniLMM-12B/">🤗</a> <a href="http://120.92.209.146:8081">🤖</a> |
<a href="https://openbmb.vercel.app/minicpm-v-2">MiniCPM-V 2.0 技术博客</a>
</p>
</div>
**MiniCPM-V**和**OmniLMM** 是面向图文理解的开源多模态大模型系列。该系列模型接受图像和文本输入,并提供高质量的文本输出。我们发布了个版本模型,旨在实现**领先的性能和高效的部署**
**MiniCPM-V**是面向图文理解的端侧多模态大模型系列。该系列模型接受图像和文本输入,并提供高质量的文本输出。自2024年2月以来我们发布了4个版本模型,旨在实现**领先的性能和高效的部署**,目前该系列最值得关注的模型包括
- **MiniCPM-V 2.8B**可在终端设备上部署的先进多模态大模型。最新发布的 MiniCPM-V 2.0 可以接受 180 万像素的任意长宽比图像输入,实现了和 Gemini Pro 相近的场景文字识别能力以及和 GPT-4V 相匹的低幻觉率
- **MiniCPM-Llama3-V 2.5**🔥🔥🔥 MiniCPM-V系列的最新、性能最佳模型。总参数量8B多模态综合性能超越 GPT-4V-1106、Gemini Pro、Claude 3、Qwen-VL-Max 等商用闭源模型OCR 能力及指令跟随能力进一步提升并支持超过30种语言的多模态交互。通过系统使用模型量化、CPU、NPU、编译优化等高效推理技术MiniCPM-Llama3-V 2.5 可以实现高效的终端设备部署
- **MiniCPM-V 2.0**MiniCPM-V系列的最轻量级模型。总参数量2B多模态综合性能超越 Yi-VL 34B、CogVLM-Chat 17B、Qwen-VL-Chat 10B 等更大参数规模的模型,可接受 180 万像素的任意长宽比图像输入,实现了和 Gemini Pro 相近的场景文字识别能力以及和 GPT-4V 相匹的低幻觉率。
- **OmniLMM-12B**:相比同规模其他模型在多个基准测试中具有领先性能,实现了相比 GPT-4V 更低的幻觉率。
## 更新日志 <!-- omit in toc -->
* [2024.04.23] 我们增加了对 [vllm](#vllm) 的支持,欢迎体验
* [2024.05.20] 我们开源了 MiniCPM-Llama3-V 2.5,增强了 OCR 能力,支持 30 多种语言,并首次在端侧实现了 GPT-4V 级的多模态能力!我们提供了[高效推理](#手机端部署)和[简易微调](./finetune/readme.md)的支持,欢迎试用
* [2024.04.23] 我们增加了对 [vLLM](#vllm) 的支持,欢迎体验!
* [2024.04.18] 我们在 HuggingFace Space 新增了 MiniCPM-V 2.0 的 [demo](https://huggingface.co/spaces/openbmb/MiniCPM-V-2),欢迎体验!
* [2024.04.17] MiniCPM-V 2.0 现在支持用户部署本地 [WebUI Demo](#本地webui-demo部署) 了,欢迎试用!
* [2024.04.15] MiniCPM-V 2.0 现在可以通过 SWIFT 框架 [微调](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v-2最佳实践.md) 了,支持流式输出!
@@ -39,9 +41,10 @@
## 目录 <!-- omit in toc -->
- [MiniCPM-V 2.8B](#minicpm-v-28b)
- [OmniLMM-12B](#omnilmm-12b)
- [MiniCPM-Llama3-V 2.5](#minicpm-llama3-v-25)
- [性能评估](#性能评估)
- [典型示例](#典型示例)
- [MiniCPM-V 2.0](#minicpm-v-20)
- [Online Demo](#online-demo)
- [安装](#安装)
- [推理](#推理)
@@ -50,14 +53,334 @@
- [Mac 推理](#mac-推理)
- [手机端部署](#手机端部署)
- [本地WebUI Demo部署](#本地webui-demo部署)
- [vLLM 部署 ](#vllm-部署-)
- [微调](#微调)
- [未来计划](#未来计划)
- [引用](#引用)
## MiniCPM-V 2.8B
## MiniCPM-Llama3-V 2.5
**MiniCPM-Llama3-V 2.5** 是 MiniCPM-V 系列的最新版本模型,基于 SigLip-400M 和 Llama3-8B-Instruct 构建,共 8B 参数量,相较于 MiniCPM-V 2.0 性能取得较大幅度提升。MiniCPM-Llama3-V 2.5 值得关注的特点包括:
**MiniCPM-V 2.8B**可以高效部署到终端设备。该模型基于 SigLip-400M 和 [MiniCPM-2.4B](https://github.com/OpenBMB/MiniCPM/)构建通过perceiver resampler连接。最新发布的 MiniCPM-V 2.0 的特点包括:
- 🔥 **领先的性能。**
MiniCPM-Llama3-V 2.5 在综合了 11 个主流多模态大模型评测基准的 OpenCompass 榜单上平均得分 65.1**以 8B 量级的大小超过了 GPT-4V-1106、Gemini Pro、Claude 3、Qwen-VL-Max 等主流商用闭源多模态大模型**大幅超越基于Llama 3构建的其他多模态大模型。
- 💪 **优秀的 OCR 能力。**
MiniCPM-Llama3-V 2.5 可接受 180 万像素的任意宽高比图像输入,**OCRBench 得分达到 725超越 GPT-4o、GPT-4V、Gemini Pro、Qwen-VL-Max 等商用闭源模型**达到最佳水平。基于近期用户反馈建议MiniCPM-Llama3-V 2.5 增强了全文 OCR 信息提取、表格图像转 markdown 等高频实用能力,并且进一步加强了指令跟随、复杂推理能力,带来更好的多模态交互体感。
- 🏆 **可信行为。**
借助最新的 [RLAIF-V](https://github.com/RLHF-V/RLAIF-V/) 对齐技术([RLHF-V](https://github.com/RLHF-V/) [CVPR'24]系列的最新技术MiniCPM-Llama3-V 2.5 具有更加可信的多模态行为 Object HalBench 的幻觉率降低到了 **10.3%**,显著低于 GPT-4V-1106 (13.6%),达到开源社区最佳水平。
- 🌏 **多语言支持。**
得益于 Llama 3 强大的多语言能力和 VisCPM 的跨语言泛化技术MiniCPM-Llama3-V 2.5 在中英双语多模态能力的基础上,仅通过少量翻译的多模态数据的指令微调,高效泛化支持了**德语、法语、西班牙语、意大利语、俄语等 30+ 种语言**的多模态能力,并表现出了良好的多语言多模态对话性能。[查看所有支持语言](./assets/minicpm-llama-v-2-5_languages.md)
- 🚀 **高效部署。**
MiniCPM-Llama3-V 2.5 较为系统地通过**模型量化、CPU、NPU、编译优化**等高效加速技术,实现高效的终端设备部署。对于高通芯片的移动手机,我们首次将 NPU 加速框架 QNN 整合进了 llama.cpp。经过系统优化后MiniCPM-Llama3-V 2.5 实现了多模态大模型端侧**语言解码速度 3 倍加速**、**图像编码 150 倍加速**的巨大提升。
### 性能评估
<div align="center">
<img src="assets/MiniCPM-Llama3-V-2.5-peformance.png" width="66%" />
</div>
<details>
<summary>TextVQA, DocVQA, OCRBench, OpenCompass, MME, MMBench, MMMU, MathVista, LLaVA Bench, RealWorld QA, Object HalBench上的详细评测结果。 </summary>
<div align="center">
<table style="margin: 0px auto;">
<thead>
<tr>
<th align="left">Model</th>
<th>Size</th>
<th>OCRBench</th>
<th>TextVQA val</th>
<th>DocVQA test</th>
<th>Open-Compass</th>
<th>MME</th>
<th>MMB test (en)</th>
<th>MMB test (cn)</th>
<th>MMMU val</th>
<th>Math-Vista</th>
<th>LLaVA Bench</th>
<th>RealWorld QA</th>
<th>Object HalBench</th>
</tr>
</thead>
<tbody align="center">
<tr>
<td colspan="14" align="left"><strong>Proprietary</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Gemini Pro</td>
<td>-</td>
<td>680</td>
<td>74.6</td>
<td>88.1</td>
<td>62.9</td>
<td>2148.9</td>
<td>73.6</td>
<td>74.3</td>
<td>48.9</td>
<td>45.8</td>
<td>79.9</td>
<td>60.4</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">GPT-4V (2023.11.06)</td>
<td>-</td>
<td>645</td>
<td>78.0</td>
<td>88.4</td>
<td>63.5</td>
<td>1771.5</td>
<td>77.0</td>
<td>74.4</td>
<td>53.8</td>
<td>47.8</td>
<td>93.1</td>
<td>63.0</td>
<td>86.4</td>
</tr>
<tr>
<td colspan="14" align="left"><strong>Open-source</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Mini-Gemini</td>
<td>2.2B</td>
<td>-</td>
<td>56.2</td>
<td>34.2*</td>
<td>-</td>
<td>1653.0</td>
<td>-</td>
<td>-</td>
<td>31.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Qwen-VL-Chat</td>
<td>9.6B</td>
<td>488</td>
<td>61.5</td>
<td>62.6</td>
<td>51.6</td>
<td>1860.0</td>
<td>61.8</td>
<td>56.3</td>
<td>37.0</td>
<td>33.8</td>
<td>67.7</td>
<td>49.3</td>
<td>56.2</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">DeepSeek-VL-7B</td>
<td>7.3B</td>
<td>435</td>
<td>64.7*</td>
<td>47.0*</td>
<td>54.6</td>
<td>1765.4</td>
<td>73.8</td>
<td>71.4</td>
<td>38.3</td>
<td>36.8</td>
<td>77.8</td>
<td>54.2</td>
<td></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Yi-VL-34B</td>
<td>34B</td>
<td>290</td>
<td>43.4*</td>
<td>16.9*</td>
<td>52.2</td>
<td>2050.2</td>
<td>72.4</td>
<td>70.7</td>
<td>45.1</td>
<td>30.7</td>
<td>62.3</td>
<td>54.8</td>
<td>79.3</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">CogVLM-Chat</td>
<td>17.4B</td>
<td>590</td>
<td>70.4</td>
<td>33.3*</td>
<td>54.2</td>
<td>1736.6</td>
<td>65.8</td>
<td>55.9</td>
<td>37.3</td>
<td>34.7</td>
<td>73.9</td>
<td>60.3</td>
<td>73.6</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">TextMonkey</td>
<td>9.7B</td>
<td>558</td>
<td>64.3</td>
<td>66.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">IDEFICS2-8B</td>
<td>8.0B</td>
<td>-</td>
<td>73.0</td>
<td>74.0</td>
<td>57.2</td>
<td>1847.6</td>
<td>75.7</td>
<td>68.6</td>
<td>45.2</td>
<td>52.2</td>
<td>49.1</td>
<td>60.7</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Bunny-LLama-3-8B</td>
<td>8.4B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>54.3</td>
<td>1920.3</td>
<td>77.0</td>
<td>73.9</td>
<td>41.3</td>
<td>31.5</td>
<td>61.2</td>
<td>58.8</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">LLaVA-NeXT Llama-3-8B</td>
<td>8.4B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1971.5</td>
<td>-</td>
<td>-</td>
<td>41.7</td>
<td>-</td>
<td>80.1</td>
<td>60.0</td>
<td>-</td>
</tr>
<tr style="background-color: #e6f2ff;">
<td nowrap="nowrap" align="left">MiniCPM-V 1.0</td>
<td>2.8B</td>
<td>366</td>
<td>60.6</td>
<td>38.2</td>
<td>47.5</td>
<td>1650.2</td>
<td>64.1</td>
<td>62.6</td>
<td>38.3</td>
<td>28.9</td>
<td>51.3</td>
<td>51.2</td>
<td>78.4</td>
</tr>
<tr style="background-color: #e6f2ff;">
<td nowrap="nowrap" align="left">MiniCPM-V 2.0</td>
<td>2.8B</td>
<td>605</td>
<td>74.1</td>
<td>71.9</td>
<td>54.5</td>
<td>1808.6</td>
<td>69.1</td>
<td>66.5</td>
<td>38.2</td>
<td>38.7</td>
<td>69.2</td>
<td>55.8</td>
<td>85.5</td>
</tr>
<tr style="background-color: #e6f2ff;">
<td nowrap="nowrap" align="left">MiniCPM-Llama3-V 2.5</td>
<td>8.5B</td>
<td><strong>725</strong></td>
<td><strong>76.6</strong></td>
<td><strong>84.8</strong></td>
<td><strong>65.1</strong></td>
<td>2024.6</td>
<td><strong>77.2</strong></td>
<td><strong>74.2</strong></td>
<td><strong>45.8</strong></td>
<td><strong>54.3</strong></td>
<td><strong>86.7</strong></td>
<td><strong>63.5</strong></td>
<td><strong>89.7</strong></td>
</tr>
</tbody>
</table>
</div>
* 正式开源模型权重的评测结果。
</details>
<div align="center">
<img src="assets/llavabench_compare.png" width="66%" />
<br>
多语言LLaVABench评测结果
</div>
### 典型示例
<table align="center">
<p align="center">
<img src="assets/minicpmv-llama3-v2.5/cases_all.png" width=95%/>
</p>
</table>
我们将 MiniCPM-Llama3-V 2.5 部署在小米 14 Pro 上并录制了以下演示视频我们以2倍速播放视频。
<table align="center">
<p align="center">
<img src="assets/gif_cases/ticket.gif" width=32%/>
<img src="assets/gif_cases/meal_plan.gif" width=32%/>
</p>
</table>
<table align="center">
<p align="center" width=80%>
<img src="assets/gif_cases/1-4.gif" width=72%/>
</p>
</table>
## MiniCPM-V 2.0
<details>
<summary>查看 MiniCPM-V 2.0 的详细信息</summary>
**MiniCPM-V 2.0**可以高效部署到终端设备。该模型基于 SigLip-400M 和 [MiniCPM-2.4B](https://github.com/OpenBMB/MiniCPM/)构建通过perceiver resampler连接。其特点包括
- 🔥 **优秀的性能。**
@@ -83,246 +406,6 @@
MiniCPM-V 2.0 **提供领先的中英双语多模态能力支持**
该能力通过 [VisCPM](https://arxiv.org/abs/2308.12038) [ICLR'24] 论文中提出的多模态能力的跨语言泛化技术实现。
### 性能评估 <!-- omit in toc -->
<div align="center">
<img src=assets/minicpmv-2-peformance.png width=66% />
</div>
<details>
<summary>TextVQA, DocVQA, OCRBench, OpenCompass, MME, MMBench, MMMU, MathVista, LLaVA Bench, Object HalBench 上的详细评测结果。 </summary>
<div align="center">
<table style="margin: 0px auto;">
<thead>
<tr>
<th align="left">Model</th>
<th>Size</th>
<th>TextVQA val</th>
<th>DocVQA test</th>
<th>OCRBench</th>
<th>OpenCompass</th>
<th nowrap="nowrap" >MME</th>
<th>MMB dev(en)</th>
<th>MMB dev(zh)</th>
<th>MMMU val</th>
<th>MathVista</th>
<th>LLaVA Bench</th>
<th nowrap="nowrap">Object HalBench</th>
</tr>
</thead>
<tbody align="center">
<tr>
<td colspan="12" align="left"><strong>Proprietary models</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Gemini Pro Vision</td>
<td>- </td>
<td>74.6</td>
<td>88.1</td>
<td>680</td>
<td>63.8</td>
<td>2148.9</td>
<td>75.2</td>
<td>74.0</td>
<td>48.9</td>
<td>45.8</td>
<td>79.9</td>
<td>- </td>
</tr>
<tr>
<td nowrap="nowrap" align="left">GPT-4V</td>
<td>- </td>
<td>78.0</td>
<td>88.4</td>
<td>645</td>
<td>63.2</td>
<td>1771.5</td>
<td>75.1</td>
<td>75.0</td>
<td>53.8</td>
<td>47.8</td>
<td>93.1</td>
<td>86.4 / 92.7</td>
</tr>
<tr>
<td colspan="12" align="left"><strong>Open-source models 6B~34B</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left" >Yi-VL-6B</td>
<td align="right" >6.7B</td>
<td>45.5*</td>
<td>17.1*</td>
<td>290</td>
<td>49.3</td>
<td>1915.1 </td>
<td>68.6 </td>
<td>68.3 </td>
<td>40.3 </td>
<td>28.8 </td>
<td>51.9 </td>
<td>- </td>
</tr>
<tr>
<td nowrap="nowrap" align="left" >Qwen-VL-Chat</td>
<td align="right" >9.6B</td>
<td>61.5</td>
<td>62.6</td>
<td>488 </td>
<td>52.1 </td>
<td>1860.0 </td>
<td>60.6 </td>
<td>56.7 </td>
<td>37.0 </td>
<td>33.8 </td>
<td>67.7 </td>
<td>56.2 / 80.0</td>
</tr>
<tr>
<td nowrap="nowrap" align="left" >Yi-VL-34B</td>
<td align="right" >34B</td>
<td>43.4*</td>
<td>16.9*</td>
<td>290</td>
<td>52.6 </td>
<td>2050.2</td>
<td>71.1</td>
<td>71.4</td>
<td>45.1</td>
<td>30.7</td>
<td>62.3</td>
<td>- </td>
</tr>
<tr>
<td nowrap="nowrap" align="left" >DeepSeek-VL-7B</td>
<td align="right" >7.3B</td>
<td>64.7*</td>
<td>47.0* </td>
<td>435</td>
<td>55.6 </td>
<td>1765.4 </td>
<td>74.1 </td>
<td>72.8 </td>
<td>38.3 </td>
<td>36.8</td>
<td>77.8 </td>
<td>- </td>
</tr>
<tr>
<td nowrap="nowrap" align="left" >TextMonkey</td>
<td align="right" >9.7B</td>
<td>64.3</td>
<td>66.7 </td>
<td>558</td>
<td>- </td>
<td>- </td>
<td>- </td>
<td>- </td>
<td>- </td>
<td>-</td>
<td>- </td>
<td>- </td>
</tr>
<tr>
<td nowrap="nowrap" align="left" >CogVLM-Chat</td>
<td align="right" >17.4B</td>
<td>70.4</td>
<td>33.3*</td>
<td>590 </td>
<td>52.5 </td>
<td>1736.6 </td>
<td>63.7 </td>
<td>53.8 </td>
<td>37.3 </td>
<td>34.7 </td>
<td>73.9 </td>
<td>73.6 / 87.4 </td>
</tr>
<tr>
<td colspan="12" align="left"><strong>Open-source models 1B~3B </strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left" >DeepSeek-VL-1.3B</td>
<td align="right" >1.7B</td>
<td>58.4*</td>
<td>37.9*</td>
<td>413</td>
<td>46.0 </td>
<td>1531.6 </td>
<td>64.0 </td>
<td>61.2 </td>
<td>33.8 </td>
<td>29.4 </td>
<td>51.1 </td>
<td>- </td>
</tr>
<tr>
<td nowrap="nowrap" align="left" >MobileVLM V2</td>
<td align="right" >3.1B</td>
<td>57.5</td>
<td>19.4*</td>
<td>-</td>
<td>-</td>
<td>1440.5(P) </td>
<td>63.2 </td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left" >Mini-Gemini</td>
<td align="right" >2.2B</td>
<td>56.2</td>
<td>34.2*</td>
<td>-</td>
<td>-</td>
<td>1653.0 </td>
<td>59.8 </td>
<td>- </td>
<td>31.7 </td>
<td>-</td>
<td>- </td>
<td>- </td>
</tr>
<tr>
<td nowrap="nowrap" align="left" >MiniCPM-V</td>
<td align="right" >2.8B </td>
<td>60.6</td>
<td>38.2 </td>
<td>366</td>
<td>47.6</td>
<td>1650.2 </td>
<td>67.9 </td>
<td>65.3 </td>
<td><strong>38.3</strong></td>
<td>28.9</td>
<td>51.3 </td>
<td>78.4 / 88.5 </td>
</tr>
<tr>
<td nowrap="nowrap" align="left" ><strong>MiniCPM-V 2.0</strong></td>
<td align="right" >2.8B </td>
<td><strong>74.1</strong></td>
<td><strong>71.9</strong> </td>
<td><strong>605</strong></td>
<td><strong>55.0</strong></td>
<td><strong>1808.6</strong> </td>
<td><strong>69.6</strong> </td>
<td><strong>68.1</strong> </td>
<td>38.2 </td>
<td><strong>38.7</strong></td>
<td><strong>69.2</strong> </td>
<td><strong>85.5 / 92.2 </strong></td>
</tr>
</tbody>
</table>
</div>
* 我们自己评测了正式开源的模型权重。
</details>
### 典型示例 <!-- omit in toc -->
@@ -341,158 +424,23 @@
</p>
</table>
### MiniCPM-V 1.0 <!-- omit in toc -->
请参考[这里](./minicpm_v1.md)了解 MiniCPM-V 1.0 的信息和使用教程。
## OmniLMM-12B
**OmniLMM-12B** 是当前系列中性能最佳的版本。该模型基于EVA02-5B和Zephyr-7B-β初始化构建并使用perceiver resampler连接采用了课程学习的方法在多模态数据上进行训练。该模型具有三个特点
- 🔥 **性能领先。**
OmniLMM-12B 相比其他同规模模型在多个基准测试中取得**领先的性能**(包括 MME、MMBench、SEED-Bench 等),模型掌握了较为丰富的多模态世界知识。
- 🏆 **行为可信。**
多模态大模型的幻觉问题备受关注模型经常生成和图像中的事实不符的文本例如确信地描述图片中并不存在的物体。OmniLMM-12B是 **第一个通过多模态 RLHF 对齐的综合能力优秀的开源多模态大模型**(借助 [RLHF-V](https://rlhf-v.github.io/) [CVPR'24] 系列技术)。该模型在 [MMHal-Bench](https://huggingface.co/datasets/Shengcao1006/MMHal-Bench) 幻觉评测基准上达到**开源模型最佳水平**,并在 [Object HalBench](https://arxiv.org/abs/2312.00849) 中**优于GPT-4V**。
- 🕹 **实时多模态交互。**
我们尝试结合OmniLMM-12B和GPT-3.5 (纯文本模型) ,实现**实时多模态交互助手**。该模型接受来自摄像头的视频流,并借助工具处理语音输入输出。虽然还很初步,我们发现该模型无需视频编辑可以**复现Gemini演示视频中的一些有趣例子**。
### 评测结果 <!-- omit in toc -->
<div align="center">
<img src=assets/radar_omnilmm12b.png width=66% />
</div>
<details>
<summary> MME, MMBench, MMMU, MMBench, MMHal-Bench, Object HalBench, SeedBench, LLaVA Bench W, MathVista 上的详细评测结果。 </summary>
<table>
<thead>
<tr>
<th align="left">Model</th>
<th>Size</th>
<th>MME</th>
<th nowrap="nowrap">MMB dev (en)</th>
<th nowrap="nowrap" >MMMU val</th>
<th nowrap="nowrap" >MMHal-Bench</th>
<th nowrap="nowrap" >Object HalBench</th>
<th nowrap="nowrap" >SeedBench-I</th>
<th>MathVista</th>
<th nowrap="nowrap" >LLaVA Bench</th>
</tr>
</thead>
<tbody align="center">
<tr>
<td align="left">GPT-4V†</td>
<td>-</td>
<td>1771.5</td>
<td>75.1 </td>
<td>56.8</td>
<td>3.53 / 70.8</td>
<td>86.4 / 92.7</td>
<td>71.6 </td>
<td>47.8 </td>
<td>93.1 </td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Qwen-VL-Plus†</td>
<td>-</td>
<td>2183.4</td>
<td>66.2 </td>
<td>45.2</td>
<td>- </td>
<td>- </td>
<td>65.7 </td>
<td>36.0 </td>
<td>73.7 </td>
</tr>
<tr>
<td align="left">Yi-VL 6B</td>
<td align="right">6.7B </td>
<td>1915.1 </td>
<td>68.6 </td>
<td>40.3 </td>
<td>- </td>
<td>- </td>
<td>67.5 </td>
<td>28.8 </td>
<td>51.9 </td>
</tr>
<tr>
<td nowrap="nowrap" align="left" >Qwen-VL-Chat</td>
<td align="right">9.6B</td>
<td>1860.0</td>
<td>60.6 </td>
<td>35.9</td>
<td>2.93 / 59.4</td>
<td>56.2 / 80.0</td>
<td>64.8 </td>
<td>33.8 </td>
<td>67.7 </td>
</tr>
<tr>
<td align="left" >CogVLM-Chat</td>
<td align="right">17.4B</td>
<td>1736.6</td>
<td>63.7 </td>
<td>32.1 </td>
<td>2.68 / 52.1 </td>
<td>73.6 / 87.4 </td>
<td>68.8 </td>
<td>34.7 </td>
<td>73.9 </td>
</tr>
<tr>
<td align="left" >LLaVA 1.5</td>
<td align="right">13.6B </td>
<td>1808.4 </td>
<td>68.2 </td>
<td>36.4 </td>
<td>2.71 / 51.0 </td>
<td>53.7 / 77.4 </td>
<td>68.1 </td>
<td>26.4 </td>
<td>64.6 </td>
</tr>
<tr>
<td nowrap="nowrap" align="left" ><b>OmniLMM-12B</b></td>
<td align="right">11.6B </td>
<td>1935.8 </td>
<td>71.6 </td>
<td>40.7 </td>
<td>3.45 / 68.8 </td>
<td>90.3 / 95.5 </td>
<td>71.1 </td>
<td>34.9 </td>
<td>72.0 </td>
</tr>
</tbody>
</table>
<small>†: 闭源模型</small>
<br>
</details>
### 典型示例 <!-- omit in toc -->
<table align="center" >
<p align="center" >
<img src="assets/omnilmm-12b-examples_2.png" />
</p>
</table>
<a id='legacy-models'></a>
## 历史版本模型 <!-- omit in toc -->
我们结合 OmniLMM-12B 和 ChatGPT-3.5 (纯文本模型) 尝试构建 **实时多模态交互助手**. OmniLMM-12B 将视频帧转为对应的图像描述并输入给ChatGPT-3.5来生成对用户指令的响应。演示视频未经编辑。
| 模型 | 介绍信息和使用教程 |
|:----------------------|:-------------------:|
| MiniCPM-V 1.0 | [文档](./minicpm_v1.md) |
| OmniLMM-12B | [文档](./omnilmm.md) |
<div align="center" >
<video controls src="https://github.com/OpenBMB/OmniLMM/assets/157115220/8fec13bf-bb47-4bf8-8f8c-d0b716a964ec" type="video/mp4" width=80%/>
</div>
## Online Demo
欢迎通过以下链接使用我们的网页端推理服务: [OmniLMM-12B](http://120.92.209.146:8081) [MiniCPM-V 2.0](http://120.92.209.146:80).
欢迎通过以下链接使用我们的网页端推理服务: [MiniCPM-Llama3-V 2.5](http://120.92.209.146:8889/) [MiniCPM-V 2.0](http://120.92.209.146:80).
## 安装
@@ -522,14 +470,16 @@ pip install -r requirements.txt
| 模型 | 简介 | 下载链接 |
|:----------------------|:-------------------|:---------------:|
| MiniCPM-V 2.0 | 最新版本,提供高效而领先的端侧双语多模态理解能力。 | [🤗](https://huggingface.co/openbmb/MiniCPM-V-2) &nbsp;&nbsp; [<img src="./assets/modelscope_logo.png" width="20px"></img>](https://modelscope.cn/models/OpenBMB/MiniCPM-V-2/files) |
| MiniCPM-V | 第一版 MiniCPM-V | [🤗](https://huggingface.co/openbmb/MiniCPM-V) &nbsp;&nbsp; [<img src="./assets/modelscope_logo.png" width="20px"></img>](https://modelscope.cn/models/OpenBMB/MiniCPM-V/files) |
| OmniLMM-12B | 性能最强的版本 | [🤗](https://huggingface.co/openbmb/OmniLMM-12B) &nbsp;&nbsp; [<img src="./assets/modelscope_logo.png" width="20px"></img>](https://modelscope.cn/models/OpenBMB/OmniLMM-12B/files) |
| MiniCPM-Llama3-V 2.5 | 最新版本,提供最佳的端侧多模态理解能力。 | [🤗](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5/) &nbsp;&nbsp; [<img src="./assets/modelscope_logo.png" width="20px"></img>](https://modelscope.cn/models/OpenBMB/MiniCPM-Llama3-V-2_5/files) |
| MiniCPM-Llama3-V 2.5 int4 | int4量化版更低显存占用。 | [🤗](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-int4/) &nbsp;&nbsp; [<img src="./assets/modelscope_logo.png" width="20px"></img>](https://modelscope.cn/models/OpenBMB/MiniCPM-Llama3-V-2_5-int4/files) |
| MiniCPM-V 2.0 | 轻量级版本,平衡计算开销和多模态理解能力。 | [🤗](https://huggingface.co/openbmb/MiniCPM-V-2) &nbsp;&nbsp; [<img src="./assets/modelscope_logo.png" width="20px"></img>](https://modelscope.cn/models/OpenBMB/MiniCPM-V-2/files) |
| MiniCPM-V 1.0 | 最轻量版本, 提供最快的推理速度。 | [🤗](https://huggingface.co/openbmb/MiniCPM-V) &nbsp;&nbsp; [<img src="./assets/modelscope_logo.png" width="20px"></img>](https://modelscope.cn/models/OpenBMB/MiniCPM-V/files) |
更多[历史版本模型](#legacy-models)
### 多轮对话
请参考以下代码使用 `MiniCPM-V``OmniLMM` 进行推理。
请参考以下代码进行推理。
<div align="center">
<img src="assets/hk_OCR.jpg" width="500px">
@@ -538,8 +488,10 @@ pip install -r requirements.txt
```python
from chat import OmniLMMChat, img2base64
import torch
torch.manual_seed(20)
chat_model = OmniLMMChat('openbmb/MiniCPM-V-2') # or 'openbmb/OmniLMM-12B'
chat_model = OmniLMMChat('openbmb/MiniCPM-Llama3-V-2_5')
im_64 = img2base64('./assets/hk_OCR.jpg')
@@ -553,7 +505,7 @@ print(answer)
# Second round chat
# pass history context of multi-turn conversation
msgs.append({"role": "assistant", "content": answer})
msgs.append({"role": "user", "content": "Where is this store in the image?"})
msgs.append({"role": "user", "content": "请用中文回答"})
inputs = {"image": im_64, "question": json.dumps(msgs)}
answer = chat_model.chat(inputs)
@@ -563,27 +515,27 @@ print(answer)
可以得到以下输出:
```
"You should go to the Canon store for a camera."
"You should go to the Nikon store, as indicated by the neon sign on the right side of the image."
"The Canon store is located on the right side of the image."
"你应该去到尼康店,正如指示在图片的右侧。"
```
### Mac 推理
<details>
<summary>点击查看 MiniCPM-V 2.0 基于Mac MPS运行 (Apple silicon or AMD GPUs)的示例。 </summary>
<summary>点击查看 MiniCPM-Llama3-V 2.5 / MiniCPM-V 2.0 基于Mac MPS运行 (Apple silicon AMD GPUs)的示例。 </summary>
```python
# test.py
# test.py Need more than 16GB memory to run.
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer
model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True, torch_dtype=torch.bfloat16)
model = model.to(device='mps', dtype=torch.float16)
model = AutoModel.from_pretrained('openbmb/MiniCPM-Llama3-V-2_5', trust_remote_code=True, low_cpu_mem_usage=True)
model = model.to(device='mps')
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-Llama3-V-2_5', trust_remote_code=True)
model.eval()
image = Image.open('./assets/hk_OCR.jpg').convert('RGB')
@@ -607,25 +559,22 @@ PYTORCH_ENABLE_MPS_FALLBACK=1 python test.py
### 手机端部署
MiniCPM-V 2.0 目前可以部署在Android和Harmony操作系统的手机上。 🚀 点击[这里](https://github.com/OpenBMB/mlc-MiniCPM)开始手机端部署
MiniCPM-V 2.0 可运行在Android手机上, 点击[2.0](https://github.com/OpenBMB/mlc-MiniCPM)安装apk使用; MiniCPM-Llama3-V 2.5 将很快推出,敬请期待
### 本地WebUI Demo部署
<details>
<summary>点击查看本地WebUI demo在Nvidia GPU, Mac等不同设备部署方法 </summary>
<summary>点击查看本地WebUI demo 在 NVIDIA GPU, Mac等不同设备部署方法 </summary>
```shell
pip install -r requirements.txt
```
```shell
# For Nvidia GPUs support BF16 (like A100, H100, RTX3090), run:
python web_demo.py --device cuda --dtype bf16
# For Nvidia GPUs do NOT support BF16 (like V100, T4, RTX2080), run:
python web_demo.py --device cuda --dtype fp16
# For NVIDIA GPUs, run:
python web_demo_2.5.py --device cuda
# For Mac with MPS (Apple silicon or AMD GPUs), run:
PYTORCH_ENABLE_MPS_FALLBACK=1 python web_demo.py --device mps --dtype fp16
PYTORCH_ENABLE_MPS_FALLBACK=1 python web_demo_2.5.py --device mps
```
</details>
@@ -658,16 +607,21 @@ python examples/minicpmv_example.py
## 微调
### MiniCPM-V <!-- omit in toc -->
### 简易微调 <!-- omit in toc -->
我们支持使用 SWIFT 框架微调 MiniCPM-V 系列模型。SWIFT 支持近 200 种 LLM 和 MLLM多模态大模型的训练、推理、评测和部署。支持 PEFT 提供的轻量训练方案和完整的 Adapters 库支持的最新训练技术如 NEFTune、LoRA+、LLaMA-PRO 等。
我们支持使用 Huggingface Transformers 库简易地微调 MiniCPM-V 2.0 和 MiniCPM-Llama3-V 2.5 模型。
参考文档[MiniCPM-V](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v最佳实践.md), [MiniCPM-V-2](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v-2最佳实践.md)
[参考文档](./finetune/readme.md)
### 使用 SWIFT 框架 <!-- omit in toc -->
我们支持使用 SWIFT 框架微调 MiniCPM-V 系列模型。SWIFT 支持近 200 种大语言模型和多模态大模型的训练、推理、评测和部署。支持 PEFT 提供的轻量训练方案和完整的 Adapters 库支持的最新训练技术如 NEFTune、LoRA+、LLaMA-PRO 等。
参考文档:[MiniCPM-V 1.0](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v最佳实践.md), [MiniCPM-V 2.0](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v-2最佳实践.md)
## 未来计划
- [x] 支持 MiniCPM-V 系列模型微调
- [ ] 支持 OmniLMM 系列模型微调
- [ ] 实时多模态交互代码开源
@@ -676,18 +630,18 @@ python examples/minicpmv_example.py
本仓库中代码依照 Apache-2.0 协议开源
OmniLMM 模型权重的使用遵循 “[通用模型许可协议-来源说明-宣传限制-商业授权](https://github.com/OpenBMB/General-Model-License/blob/main/通用模型许可协议-来源说明-宣传限制-商业授权.md)”。
本项目中模型权重的使用遵循 “[通用模型许可协议-来源说明-宣传限制-商业授权](https://github.com/OpenBMB/General-Model-License/blob/main/通用模型许可协议-来源说明-宣传限制-商业授权.md)”。
OmniLMM 模型权重对学术研究完全开放。
本项目中模型权重对学术研究完全开放。
如需将模型用于商业用途,请联系 cpm@modelbest.cn 来获取书面授权,登记后可以免费商业使用。
## 声明 <!-- omit in toc -->
作为多模态大模型MiniCPM-V OmniLMM 通过学习大量的多模态数据来生成内容,但它无法理解、表达个人观点或价值判断,它所输出的任何内容都不代表模型开发者的观点和立场。
作为多模态大模型MiniCPM-V 系列模型(包括 OmniLMM通过学习大量的多模态数据来生成内容,但它无法理解、表达个人观点或价值判断,它所输出的任何内容都不代表模型开发者的观点和立场。
因此用户在使用 MiniCPM-V 和 OmniLMM 生成的内容时,应自行负责对其进行评估和验证。如果由于使用 OmniLMM 开源模型而导致的任何问题,包括但不限于数据安全问题、公共舆论风险,或模型被误导、滥用、传播或不当利用所带来的任何风险和问题,我们将不承担任何责任。
因此用户在使用本项目的系列模型生成的内容时,应自行负责对其进行评估和验证。如果由于使用本项目的系列开源模型而导致的任何问题,包括但不限于数据安全问题、公共舆论风险,或模型被误导、滥用、传播或不当利用所带来的任何风险和问题,我们将不承担任何责任。
## 机构 <!-- omit in toc -->