mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-04 17:59:18 +08:00
update readme
This commit is contained in:
@@ -84,7 +84,7 @@
|
||||
借助最新的 [RLAIF-V](https://github.com/RLHF-V/RLAIF-V/) 对齐技术([RLHF-V](https://github.com/RLHF-V/) [CVPR'24]系列的最新技术),MiniCPM-Llama3-V 2.5 具有更加可信的多模态行为,在 Object HalBench 的幻觉率降低到了 **10.3%**,显著低于 GPT-4V-1106 (13.6%),达到开源社区最佳水平。[数据集已发布](https://huggingface.co/datasets/openbmb/RLAIF-V-Dataset)。
|
||||
|
||||
- 🌏 **多语言支持。**
|
||||
得益于 Llama 3 强大的多语言能力和 VisCPM 的跨语言泛化技术,MiniCPM-Llama3-V 2.5 在中英双语多模态能力的基础上,仅通过少量翻译的多模态数据的指令微调,高效泛化支持了**德语、法语、西班牙语、意大利语、葡萄牙语等 30+ 种语言**的多模态能力,并表现出了良好的多语言多模态对话性能。[查看所有支持语言](./assets/minicpm-llama-v-2-5_languages.md)
|
||||
得益于 Llama 3 强大的多语言能力和 VisCPM 的跨语言泛化技术,MiniCPM-Llama3-V 2.5 在中英双语多模态能力的基础上,仅通过少量翻译的多模态数据的指令微调,高效泛化支持了**德语、法语、西班牙语、意大利语、韩语等 30+ 种语言**的多模态能力,并表现出了良好的多语言多模态对话性能。[查看所有支持语言](./assets/minicpm-llama-v-2-5_languages.md)
|
||||
|
||||
- 🚀 **高效部署。**
|
||||
MiniCPM-Llama3-V 2.5 较为系统地通过**模型量化、CPU、NPU、编译优化**等高效加速技术,实现高效的终端设备部署。对于高通芯片的移动手机,我们首次将 NPU 加速框架 QNN 整合进了 llama.cpp。经过系统优化后,MiniCPM-Llama3-V 2.5 实现了多模态大模型端侧**语言解码速度 3 倍加速**、**图像编码 150 倍加速**的巨大提升。
|
||||
|
||||
Reference in New Issue
Block a user