From 251a4c20bef527f767903e0e3fc472df6e7f52e7 Mon Sep 17 00:00:00 2001 From: YuzaChongyi <490083538@qq.com> Date: Sun, 11 Aug 2024 12:11:01 +0800 Subject: [PATCH] Update readme.md --- finetune/readme.md | 70 ---------------------------------------------- 1 file changed, 70 deletions(-) diff --git a/finetune/readme.md b/finetune/readme.md index 855b583..700609f 100644 --- a/finetune/readme.md +++ b/finetune/readme.md @@ -50,75 +50,6 @@ For the vision-language example with image, you are required to provide **\ -### Full-parameter finetuning - -Full-parameter parameter finetuning requires updating all parameters of LLM in the whole training process. Please specify the correct MODEL path and DATA path in the shell scripts. - -```shell -MODEL="openbmb/MiniCPM-V-2_6" # or openbmb/MiniCPM-Llama3-V-2_5, openbmb/MiniCPM-V-2 -DATA="path/to/trainging_data" # json file -EVAL_DATA="path/to/test_data" # json file -``` - -To launch your training, run the following script: - -``` -sh finetune_ds.sh -``` - -#### Customizing Hyperparameters -To tailor the training process according to your specific requirements, you can adjust various hyperparameters. For comprehensive documentation on available hyperparameters and their functionalities, you can refer to the [official Transformers documentation](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments). Experimentation and fine-tuning of these parameters are essential for achieving optimal model performance tailored to your specific task and dataset. -# MiniCPM-V Finetuning - - -We offer the official scripts for easy finetuning of the pretrained **MiniCPM-Llama3-V 2.5** and **MiniCPM-V 2.0** on downstream tasks. Our finetune scripts use transformers Trainer and DeepSpeed by default. - -### Data preparation - -To prepare your finetuning data, you should formulate each sample as a dictionary consisting of an id, an image path list with an image, and a list of conversations. Then save data samples in JSON files. - -For the vision-language example with image, you are required to provide **\** to define the position to insert the image embeddings. If you don't provide \, the image will be placed at the front of the conversation. - -
- - vision-language example (vl_finetune_data.json) with 1 samples. - - -``` - [ - { - "id": "0", - "image": 'path/to/image_0.jpg', - "conversations": [ - { - 'role': 'user', - 'content': '\nHow many desserts are on the white plate?' - }, - { - 'role': 'assistant', - 'content': 'There are three desserts on the white plate.' - }, - { - 'role': 'user', - 'content': 'What type of desserts are they?' - }, - { - 'role': 'assistant', - 'content': 'The desserts are cakes with bananas and pecans on top. They share similarities with donuts, but the presence of bananas and pecans differentiates them.' - }, - { - 'role': 'user', - 'content': 'What is the setting of the image?'}, - { - 'role': 'assistant', - 'content': 'The image is set on a table top with a plate containing the three desserts.' - }, - ] - }, - ] -``` - -
### Full-parameter finetuning @@ -137,7 +68,6 @@ To launch your training, run the following script: sh finetune_ds.sh ``` -Specially, Llama3 has a different chat_template for training and inference, we modified the chat_template for training, so please take care to restore the chat_template when inference on the training ckpt. ### LoRA finetuning