mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-05 18:29:18 +08:00
First commit
This commit is contained in:
171
omnilmm/model/resampler.py
Normal file
171
omnilmm/model/resampler.py
Normal file
@@ -0,0 +1,171 @@
|
||||
# Copyright (c) Alibaba Cloud.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from collections import OrderedDict
|
||||
import math
|
||||
import requests
|
||||
from io import BytesIO
|
||||
from functools import partial
|
||||
from PIL import Image
|
||||
from typing import Callable, Optional, Sequence, Tuple, List, Union
|
||||
import numpy as np
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
from torch.nn.init import trunc_normal_
|
||||
from torchvision import transforms
|
||||
from torchvision.transforms import InterpolationMode
|
||||
|
||||
|
||||
def get_abs_pos(abs_pos, tgt_size):
|
||||
# abs_pos: L, C
|
||||
# tgt_size: M
|
||||
# return: M, C
|
||||
src_size = int(math.sqrt(abs_pos.size(0)))
|
||||
tgt_size = int(math.sqrt(tgt_size))
|
||||
dtype = abs_pos.dtype
|
||||
|
||||
if src_size != tgt_size:
|
||||
return F.interpolate(
|
||||
abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2),
|
||||
size=(tgt_size, tgt_size),
|
||||
mode="bicubic",
|
||||
align_corners=False,
|
||||
).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype)
|
||||
else:
|
||||
return abs_pos
|
||||
|
||||
|
||||
# https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
|
||||
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
|
||||
"""
|
||||
grid_size: int of the grid height and width
|
||||
return:
|
||||
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
||||
"""
|
||||
grid_h = np.arange(grid_size, dtype=np.float32)
|
||||
grid_w = np.arange(grid_size, dtype=np.float32)
|
||||
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
||||
grid = np.stack(grid, axis=0)
|
||||
|
||||
grid = grid.reshape([2, 1, grid_size, grid_size])
|
||||
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
||||
if cls_token:
|
||||
pos_embed = np.concatenate(
|
||||
[np.zeros([1, embed_dim]), pos_embed], axis=0)
|
||||
return pos_embed
|
||||
|
||||
|
||||
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
||||
assert embed_dim % 2 == 0
|
||||
|
||||
# use half of dimensions to encode grid_h
|
||||
emb_h = get_1d_sincos_pos_embed_from_grid(
|
||||
embed_dim // 2, grid[0]) # (H*W, D/2)
|
||||
emb_w = get_1d_sincos_pos_embed_from_grid(
|
||||
embed_dim // 2, grid[1]) # (H*W, D/2)
|
||||
|
||||
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
||||
return emb
|
||||
|
||||
|
||||
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
||||
"""
|
||||
embed_dim: output dimension for each position
|
||||
pos: a list of positions to be encoded: size (M,)
|
||||
out: (M, D)
|
||||
"""
|
||||
assert embed_dim % 2 == 0
|
||||
omega = np.arange(embed_dim // 2, dtype=np.float32)
|
||||
omega /= embed_dim / 2.
|
||||
omega = 1. / 10000 ** omega # (D/2,)
|
||||
|
||||
pos = pos.reshape(-1) # (M,)
|
||||
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
|
||||
|
||||
emb_sin = np.sin(out) # (M, D/2)
|
||||
emb_cos = np.cos(out) # (M, D/2)
|
||||
|
||||
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
||||
return emb
|
||||
|
||||
|
||||
class Resampler(nn.Module):
|
||||
"""
|
||||
A 2D perceiver-resampler network with one cross attention layers by
|
||||
(grid_size**2) learnable queries and 2d sincos pos_emb
|
||||
Outputs:
|
||||
A tensor with the shape of (grid_size**2, embed_dim)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
grid_size,
|
||||
embed_dim,
|
||||
num_heads,
|
||||
kv_dim=None,
|
||||
norm_layer=partial(nn.LayerNorm, eps=1e-6)
|
||||
):
|
||||
super().__init__()
|
||||
self.num_queries = grid_size ** 2
|
||||
self.embed_dim = embed_dim
|
||||
self.num_heads = num_heads
|
||||
|
||||
self.pos_embed = nn.Parameter(
|
||||
torch.from_numpy(get_2d_sincos_pos_embed(
|
||||
embed_dim, grid_size)).float()
|
||||
).requires_grad_(False)
|
||||
|
||||
self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
|
||||
trunc_normal_(self.query, std=.02)
|
||||
|
||||
if kv_dim is not None and kv_dim != embed_dim:
|
||||
self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
|
||||
else:
|
||||
self.kv_proj = nn.Identity()
|
||||
|
||||
self.attn = nn.MultiheadAttention(embed_dim, num_heads)
|
||||
self.ln_q = norm_layer(embed_dim)
|
||||
self.ln_kv = norm_layer(embed_dim)
|
||||
|
||||
self.ln_post = norm_layer(embed_dim)
|
||||
self.proj = nn.Parameter(
|
||||
(embed_dim ** -0.5) * torch.randn(embed_dim, embed_dim))
|
||||
|
||||
self.apply(self._init_weights)
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, nn.Linear):
|
||||
trunc_normal_(m.weight, std=.02)
|
||||
if isinstance(m, nn.Linear) and m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.LayerNorm):
|
||||
nn.init.constant_(m.bias, 0)
|
||||
nn.init.constant_(m.weight, 1.0)
|
||||
|
||||
def forward(self, x, attn_mask=None):
|
||||
|
||||
pos_embed = get_abs_pos(self.pos_embed, x.size(1))
|
||||
|
||||
x = self.kv_proj(x)
|
||||
x = self.ln_kv(x).permute(1, 0, 2)
|
||||
|
||||
N = x.shape[1]
|
||||
q = self.ln_q(self.query)
|
||||
# print((self._repeat(q, N) + self.pos_embed.unsqueeze(1)).dtype, (x + pos_embed.unsqueeze(1)).dtype, x.dtype)
|
||||
out = self.attn(
|
||||
self._repeat(q, N) + self.pos_embed.unsqueeze(1),
|
||||
x + pos_embed.unsqueeze(1),
|
||||
x,
|
||||
attn_mask=attn_mask)[0]
|
||||
x = out.permute(1, 0, 2)
|
||||
|
||||
x = self.ln_post(x)
|
||||
x = x @ self.proj
|
||||
return x
|
||||
|
||||
def _repeat(self, query, N: int):
|
||||
return query.unsqueeze(1).repeat(1, N, 1)
|
||||
Reference in New Issue
Block a user