mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-04 17:59:18 +08:00
update readme
This commit is contained in:
@@ -30,7 +30,7 @@
|
|||||||
* [2024.04.18] We create a HuggingFace Space to host the demo of MiniCPM-V 2.0 at [here](https://huggingface.co/spaces/openbmb/MiniCPM-V-2)!
|
* [2024.04.18] We create a HuggingFace Space to host the demo of MiniCPM-V 2.0 at [here](https://huggingface.co/spaces/openbmb/MiniCPM-V-2)!
|
||||||
* [2024.04.17] MiniCPM-V-2.0 supports deploying [WebUI Demo](#webui-demo) now!
|
* [2024.04.17] MiniCPM-V-2.0 supports deploying [WebUI Demo](#webui-demo) now!
|
||||||
* [2024.04.15] MiniCPM-V-2.0 now also supports [fine-tuning](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v-2最佳实践.md) with the SWIFT framework!
|
* [2024.04.15] MiniCPM-V-2.0 now also supports [fine-tuning](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v-2最佳实践.md) with the SWIFT framework!
|
||||||
* [2024.04.12] We open-source MiniCPM-V-2.0, which achieves comparable performance with Gemini Pro in understanding scene text and outperforms strong Qwen-VL-Chat 9.6B and Yi-VL 34B on <a href="https://rank.opencompass.org.cn/leaderboard-multimodal">OpenCompass</a>, a comprehensive evaluation over 11 popular benchmarks. Click <a href="https://openbmb.vercel.app/minicpm-v-2">here</a> to view the MiniCPM-V 2.0 technical blog.
|
* [2024.04.12] We open-source MiniCPM-V 2.0, which achieves comparable performance with Gemini Pro in understanding scene text and outperforms strong Qwen-VL-Chat 9.6B and Yi-VL 34B on <a href="https://rank.opencompass.org.cn/leaderboard-multimodal">OpenCompass</a>, a comprehensive evaluation over 11 popular benchmarks. Click <a href="https://openbmb.vercel.app/minicpm-v-2">here</a> to view the MiniCPM-V 2.0 technical blog.
|
||||||
* [2024.03.14] MiniCPM-V now supports [fine-tuning](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v最佳实践.md) with the SWIFT framework. Thanks to [Jintao](https://github.com/Jintao-Huang) for the contribution!
|
* [2024.03.14] MiniCPM-V now supports [fine-tuning](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v最佳实践.md) with the SWIFT framework. Thanks to [Jintao](https://github.com/Jintao-Huang) for the contribution!
|
||||||
* [2024.03.01] MiniCPM-V now can be deployed on Mac!
|
* [2024.03.01] MiniCPM-V now can be deployed on Mac!
|
||||||
* [2024.02.01] We open-source MiniCPM-V and OmniLMM-12B, which support efficient end-side deployment and powerful multimodal capabilities correspondingly.
|
* [2024.02.01] We open-source MiniCPM-V and OmniLMM-12B, which support efficient end-side deployment and powerful multimodal capabilities correspondingly.
|
||||||
|
|||||||
@@ -6,9 +6,9 @@ Comparison results of Phi-3-vision-128K-Instruct and MiniCPM-Llama3-V 2.5, regar
|
|||||||
|
|
||||||
## Hardeware Requirements (硬件需求)
|
## Hardeware Requirements (硬件需求)
|
||||||
|
|
||||||
With in4 quantization, MiniCPM-Llama3-V 2.5 delivers smooth inference of 6-8 tokens/s on edge devices with only 8GB of GPU memory.
|
With in4 quantization, MiniCPM-Llama3-V 2.5 delivers smooth inference with only 8GB of GPU memory.
|
||||||
|
|
||||||
通过 in4 量化,MiniCPM-Llama3-V 2.5 仅需 8GB 显存即可提供端侧 6-8 tokens/s 的流畅推理。
|
通过 in4 量化,MiniCPM-Llama3-V 2.5 仅需 8GB 显存即可推理。
|
||||||
|
|
||||||
| Model(模型) | GPU Memory(显存) |
|
| Model(模型) | GPU Memory(显存) |
|
||||||
|:----------------------|:-------------------:|
|
|:----------------------|:-------------------:|
|
||||||
|
|||||||
Reference in New Issue
Block a user