mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-05 18:29:18 +08:00
注释改成了英文,并且修改了在bnb不能在cpu上推理的bug
This commit is contained in:
@@ -18,29 +18,29 @@ import torch
|
|||||||
import GPUtil
|
import GPUtil
|
||||||
import os
|
import os
|
||||||
|
|
||||||
model_path = '/root/ld/ld_model_pretrain/MiniCPM-Llama3-V-2_5' # 模型下载地址
|
model_path = '/root/ld/ld_model_pretrained/MiniCPM-Llama3-V-2_5' # Model download path
|
||||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
device = 'cpu' # # Select GPU if available, otherwise CPU
|
||||||
save_path = '/root/ld/ld_model_pretrain/MiniCPM-Llama3-V-2_5_int4' # 量化模型保存地址
|
save_path = '/root/ld/ld_model_pretrain/MiniCPM-Llama3-V-2_5_int4' # Quantized model save path
|
||||||
image_path = './assets/airplane.jpeg'
|
image_path = '/root/ld/ld_project/pull_request/MiniCPM-V/assets/airplane.jpeg'
|
||||||
|
|
||||||
# 创建一个配置对象来指定量化参数
|
# Create a configuration object to specify quantization parameters
|
||||||
quantization_config = BitsAndBytesConfig(
|
quantization_config = BitsAndBytesConfig(
|
||||||
load_in_4bit= True, # 是否进行4bit量化
|
load_in_4bit=True, # Whether to perform 4-bit quantization
|
||||||
load_in_8bit=False, # 是否进行8bit量化
|
load_in_8bit=False, # Whether to perform 8-bit quantization
|
||||||
bnb_4bit_compute_dtype=torch.float16, # 计算精度设置
|
bnb_4bit_compute_dtype=torch.float16, # Computation precision setting
|
||||||
bnb_4bit_quant_storage=torch.uint8, # 量化权重的储存格式
|
bnb_4bit_quant_storage=torch.uint8, # Storage format for quantized weights
|
||||||
bnb_4bit_quant_type="nf4", # 量化格式,这里用的是正太分布的int4
|
bnb_4bit_quant_type="nf4", # Quantization format, here using normally distributed int4
|
||||||
bnb_4bit_use_double_quant= True, # 是否采用双量化,即对zeropoint和scaling参数进行量化
|
bnb_4bit_use_double_quant=True, # Whether to use double quantization, i.e., quantizing zeropoint and scaling parameters
|
||||||
llm_int8_enable_fp32_cpu_offload=False, # 是否llm使用int8,cpu上保存的参数使用fp32
|
llm_int8_enable_fp32_cpu_offload=False, # Whether LLM uses int8, with fp32 parameters stored on the CPU
|
||||||
llm_int8_has_fp16_weight=False, # 是否启用混合精度
|
llm_int8_has_fp16_weight=False, # Whether mixed precision is enabled
|
||||||
llm_int8_skip_modules=[ "out_proj", "kv_proj", "lm_head" ], # 不进行量化的模块
|
llm_int8_skip_modules=["out_proj", "kv_proj", "lm_head"], # Modules not to be quantized
|
||||||
llm_int8_threshold= 6.0 # llm.int8()算法中的离群值,根据这个值区分是否进行量化
|
llm_int8_threshold=6.0 # Outlier value in the llm.int8() algorithm, distinguishing whether to perform quantization based on this value
|
||||||
)
|
)
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
model = AutoModel.from_pretrained(
|
model = AutoModel.from_pretrained(
|
||||||
model_path,
|
model_path,
|
||||||
device_map=device, # 分配模型到device
|
device_map=device, # Allocate model to device
|
||||||
quantization_config=quantization_config,
|
quantization_config=quantization_config,
|
||||||
trust_remote_code=True
|
trust_remote_code=True
|
||||||
)
|
)
|
||||||
@@ -52,28 +52,27 @@ response = model.chat(
|
|||||||
msgs=[
|
msgs=[
|
||||||
{
|
{
|
||||||
"role": "user",
|
"role": "user",
|
||||||
"content": "这张图片中有什么?"
|
"content": "What is in this picture?"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
tokenizer=tokenizer
|
tokenizer=tokenizer
|
||||||
) # 模型推理
|
) # 模型推理
|
||||||
print('量化后输出',response)
|
print('Output after quantization:',response)
|
||||||
print('量化后推理用时',time.time()-start)
|
print('Inference time after quantization:',time.time()-start)
|
||||||
print(f"量化后显存占用: {round(gpu_usage/1024,2)}GB")
|
print(f"GPU memory usage after quantization: {round(gpu_usage/1024,2)}GB")
|
||||||
|
|
||||||
"""
|
"""
|
||||||
expected output:
|
Expected output:
|
||||||
|
|
||||||
量化后输出 这张图片中包含了飞机的特定部件,包括机翼、发动机和尾翼。这些部件是大型商用飞机的关键组成部分。
|
Output after quantization: This picture contains specific parts of an airplane, including wings, engines, and tail sections. These components are key parts of large commercial aircraft.
|
||||||
机翼支撑着飞行时的升力,而发动机提供推力使飞机前进。尾翼通常用于稳定飞行,并在航空公司品牌中起到作用。
|
The wings support lift during flight, while the engines provide thrust to move the plane forward. The tail section is typically used for stabilizing flight and plays a role in airline branding.
|
||||||
飞机的设计和颜色表明它属于中国航空公司,很可能是一架客机,因为其庞大的尺寸和双引擎配置。
|
The design and color of the airplane indicate that it belongs to Air China, likely a passenger aircraft due to its large size and twin-engine configuration.
|
||||||
飞机上没有任何标记或标志表明具体的型号或注册编号,这些信息可能需要额外的背景信息或更清晰的视角才能辨别。
|
There are no markings or insignia on the airplane indicating the specific model or registration number; such information may require additional context or a clearer perspective to discern.
|
||||||
量化后用时 8.583992719650269
|
Inference time after quantization: 8.583992719650269 seconds
|
||||||
量化后显存占用: 6.41GB
|
GPU memory usage after quantization: 6.41 GB
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
# Save the model and tokenizer
|
||||||
# 保存模型和分词器
|
|
||||||
os.makedirs(save_path, exist_ok=True)
|
os.makedirs(save_path, exist_ok=True)
|
||||||
model.save_pretrained(save_path, safe_serialization=True)
|
model.save_pretrained(save_path, safe_serialization=True)
|
||||||
tokenizer.save_pretrained(save_path)
|
tokenizer.save_pretrained(save_path)
|
||||||
Reference in New Issue
Block a user