mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-04 09:49:20 +08:00
update readme
This commit is contained in:
@@ -109,7 +109,6 @@
|
||||
|
||||
|
||||
- [MiniCPM-V 4.5](#minicpm-v-45)
|
||||
- [Key Techniques](#key-techniques)
|
||||
- [MiniCPM-o 2.6](#minicpm-o-26)
|
||||
- [MiniCPM-V \& o Cookbook](#minicpm-v--o-cookbook)
|
||||
- [Chat with Our Demo on Gradio 🤗](#chat-with-our-demo-on-gradio-)
|
||||
@@ -149,7 +148,7 @@ Based on [LLaVA-UHD](https://arxiv.org/pdf/2403.11703) architecture, MiniCPM-V 4
|
||||
MiniCPM-V 4.5 can be easily used in various ways: (1) [llama.cpp](https://github.com/tc-mb/llama.cpp/blob/Support-MiniCPM-V-4.5/docs/multimodal/minicpmv4.5.md) and [ollama](https://github.com/tc-mb/ollama/tree/MIniCPM-V) support for efficient CPU inference on local devices, (2) [int4](https://huggingface.co/openbmb/MiniCPM-V-4_5-int4), [GGUF](https://huggingface.co/openbmb/MiniCPM-V-4_5-gguf) and [AWQ](https://github.com/tc-mb/AutoAWQ) format quantized models in 16 sizes, (3) [SGLang](https://github.com/tc-mb/sglang/tree/main) and [vLLM](#efficient-inference-with-llamacpp-ollama-vllm) support for high-throughput and memory-efficient inference, (4) fine-tuning on new domains and tasks with [Transformers](https://github.com/tc-mb/transformers/tree/main) and [LLaMA-Factory](./docs/llamafactory_train_and_infer.md), (5) quick [local WebUI demo](#chat-with-our-demo-on-gradio), (6) optimized [local iOS app](https://github.com/tc-mb/MiniCPM-o-demo-iOS) on iPhone and iPad, and (7) online web demo on [server](http://101.126.42.235:30910/). See our [Cookbook](https://github.com/OpenSQZ/MiniCPM-V-CookBook) for full usages!
|
||||
|
||||
|
||||
### Key Techniques
|
||||
### Key Techniques <!-- omit in toc -->
|
||||
|
||||
|
||||
<div align="center">
|
||||
|
||||
Reference in New Issue
Block a user