Files
Matcha-TTS/matcha/app.py
Shivam Mehta f016784049 Initial commit
2023-09-16 17:51:36 +00:00

208 lines
7.9 KiB
Python

import tempfile
from argparse import Namespace
from pathlib import Path
import gradio as gr
import soundfile as sf
import torch
from matcha.cli import (MATCHA_URLS, VOCODER_URL, assert_model_downloaded,
get_device, load_matcha, load_vocoder, process_text,
to_waveform)
from matcha.utils.utils import get_user_data_dir, plot_tensor
LOCATION = Path(get_user_data_dir())
args = Namespace(
cpu=False,
model="matcha_ljspeech",
vocoder="hifigan_T2_v1",
spk=None,
)
MATCHA_TTS_LOC = LOCATION / f"{args.model}.ckpt"
VOCODER_LOC = LOCATION / f"{args.vocoder}"
LOGO_URL = "https://shivammehta25.github.io/Matcha-TTS/images/logo.png"
assert_model_downloaded(MATCHA_TTS_LOC, MATCHA_URLS[args.model], use_wget=True)
assert_model_downloaded(VOCODER_LOC, VOCODER_URL[args.vocoder])
device = get_device(args)
model = load_matcha(args.model, MATCHA_TTS_LOC, device)
vocoder, denoiser = load_vocoder(args.vocoder, VOCODER_LOC, device)
@torch.inference_mode()
def process_text_gradio(text):
output = process_text(1, text, device)
return output["x_phones"][1::2], output["x"], output["x_lengths"]
@torch.inference_mode()
def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale):
output = model.synthesise(
text,
text_length,
n_timesteps=n_timesteps,
temperature=temperature,
spks=args.spk,
length_scale=length_scale,
)
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
sf.write(fp.name, output["waveform"], 22050, "PCM_24")
return fp.name, plot_tensor(output["mel"].squeeze().cpu().numpy())
def run_full_synthesis(text, n_timesteps, mel_temp, length_scale):
phones, text, text_lengths = process_text_gradio(text)
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale)
return phones, audio, mel_spectrogram
def main():
description = """# 🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching
### [Shivam Mehta](https://www.kth.se/profile/smehta), [Ruibo Tu](https://www.kth.se/profile/ruibo), [Jonas Beskow](https://www.kth.se/profile/beskow), [Éva Székely](https://www.kth.se/profile/szekely), and [Gustav Eje Henter](https://people.kth.se/~ghe/)
We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up ODE-based speech synthesis. Our method:
* Is probabilistic
* Has compact memory footprint
* Sounds highly natural
* Is very fast to synthesise from
Check out our [demo page](https://shivammehta25.github.io/Matcha-TTS). Read our [arXiv preprint for more details](https://arxiv.org/abs/2309.03199).
Code is available in our [GitHub repository](https://github.com/shivammehta25/Matcha-TTS), along with pre-trained models.
Cached examples are available at the bottom of the page.
"""
with gr.Blocks(title="🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching") as demo:
processed_text = gr.State(value=None)
processed_text_len = gr.State(value=None)
mel_variable = gr.State(value=None)
with gr.Box():
with gr.Row():
gr.Markdown(description, scale=3)
gr.Image(LOGO_URL, label="Matcha-TTS logo", height=150, width=150, scale=1, show_label=False)
with gr.Box():
with gr.Row():
gr.Markdown("# Text Input")
with gr.Row():
text = gr.Textbox(value="", lines=2, label="Text to synthesise")
with gr.Row():
gr.Markdown("### Hyper parameters")
with gr.Row():
n_timesteps = gr.Slider(
label="Number of ODE steps",
minimum=0,
maximum=100,
step=1,
value=10,
interactive=True,
)
length_scale = gr.Slider(
label="Length scale (Speaking rate)",
minimum=0.01,
maximum=3.0,
step=0.05,
value=1.0,
interactive=True,
)
mel_temp = gr.Slider(
label="Sampling temperature",
minimum=0.00,
maximum=2.001,
step=0.16675,
value=0.667,
interactive=True,
)
synth_btn = gr.Button("Synthesise")
with gr.Box():
with gr.Row():
gr.Markdown("### Phonetised text")
phonetised_text = gr.Textbox(interactive=False, scale=10, label="Phonetised text")
with gr.Box():
with gr.Row():
mel_spectrogram = gr.Image(interactive=False, label="mel spectrogram")
# with gr.Row():
audio = gr.Audio(interactive=False, label="Audio")
with gr.Row():
examples = gr.Examples(
examples=[
[
"We propose Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up O D E-based speech synthesis.",
50,
0.677,
1.0,
],
[
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
2,
0.677,
1.0,
],
[
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
4,
0.677,
1.0,
],
[
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
10,
0.677,
1.0,
],
[
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
50,
0.677,
1.0,
],
[
"The narrative of these events is based largely on the recollections of the participants.",
10,
0.677,
1.0,
],
[
"The jury did not believe him, and the verdict was for the defendants.",
10,
0.677,
1.0,
],
],
fn=run_full_synthesis,
inputs=[text, n_timesteps, mel_temp, length_scale],
outputs=[phonetised_text, audio, mel_spectrogram],
cache_examples=True,
)
synth_btn.click(
fn=process_text_gradio,
inputs=[
text,
],
outputs=[phonetised_text, processed_text, processed_text_len],
api_name="matcha_tts",
queue=True,
).then(
fn=synthesise_mel,
inputs=[processed_text, processed_text_len, n_timesteps, mel_temp, length_scale],
outputs=[audio, mel_spectrogram],
)
demo.queue(concurrency_count=5).launch(share=True)
if __name__ == "__main__":
main()