mirror of
https://github.com/shivammehta25/Matcha-TTS.git
synced 2026-02-05 02:09:21 +08:00
Compare commits
16 Commits
v0.0.1.dev
...
0.0.3
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d373e9a5b1 | ||
|
|
f12be190a4 | ||
|
|
be998ae31f | ||
|
|
a49af19f48 | ||
|
|
7850aa0910 | ||
|
|
309739b7cc | ||
|
|
0aaabf90c4 | ||
|
|
c5dab67d9f | ||
|
|
d098f32730 | ||
|
|
281a098337 | ||
|
|
db95158043 | ||
|
|
267bf96651 | ||
|
|
72635012b0 | ||
|
|
9ceee279f0 | ||
|
|
d7b9a37359 | ||
|
|
ec43ef0732 |
1
.github/dependabot.yml
vendored
1
.github/dependabot.yml
vendored
@@ -7,6 +7,7 @@ version: 2
|
||||
updates:
|
||||
- package-ecosystem: "pip" # See documentation for possible values
|
||||
directory: "/" # Location of package manifests
|
||||
target-branch: "dev"
|
||||
schedule:
|
||||
interval: "daily"
|
||||
ignore:
|
||||
|
||||
2
Makefile
2
Makefile
@@ -17,7 +17,7 @@ create-package: ## Create wheel and tar gz
|
||||
rm -rf dist/
|
||||
python setup.py bdist_wheel --plat-name=manylinux1_x86_64
|
||||
python setup.py sdist
|
||||
python -m twine upload dist/* --verbose
|
||||
python -m twine upload dist/* --verbose --skip-existing
|
||||
|
||||
format: ## Run pre-commit hooks
|
||||
pre-commit run -a
|
||||
|
||||
53
README.md
53
README.md
@@ -19,20 +19,23 @@
|
||||
|
||||
> This is the official code implementation of 🍵 Matcha-TTS.
|
||||
|
||||
We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up ODE-based speech synthesis. Our method:
|
||||
We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses [conditional flow matching](https://arxiv.org/abs/2210.02747) (similar to [rectified flows](https://arxiv.org/abs/2209.03003)) to speed up ODE-based speech synthesis. Our method:
|
||||
|
||||
- Is probabilistic
|
||||
- Has compact memory footprint
|
||||
- Sounds highly natural
|
||||
- Is very fast to synthesise from
|
||||
|
||||
Check out our [demo page](https://shivammehta25.github.io/Matcha-TTS). Read our [arXiv preprint for more details](https://arxiv.org/abs/2309.03199).
|
||||
Check out our [demo page](https://shivammehta25.github.io/Matcha-TTS) and read [our arXiv preprint](https://arxiv.org/abs/2309.03199) for more details.
|
||||
|
||||
[Pretrained models](https://drive.google.com/drive/folders/17C_gYgEHOxI5ZypcfE_k1piKCtyR0isJ?usp=sharing) will be auto downloaded with the CLI or gradio interface.
|
||||
[Pre-trained models](https://drive.google.com/drive/folders/17C_gYgEHOxI5ZypcfE_k1piKCtyR0isJ?usp=sharing) will be automatically downloaded with the CLI or gradio interface.
|
||||
|
||||
[Try 🍵 Matcha-TTS on HuggingFace 🤗 spaces!](https://huggingface.co/spaces/shivammehta25/Matcha-TTS)
|
||||
|
||||
<br>
|
||||
## Watch the teaser
|
||||
|
||||
[](https://youtu.be/xmvJkz3bqw0)
|
||||
|
||||
|
||||
## Installation
|
||||
|
||||
@@ -110,26 +113,13 @@ matcha-tts --text "<INPUT TEXT>" --temperature 0.667
|
||||
matcha-tts --text "<INPUT TEXT>" --steps 10
|
||||
```
|
||||
|
||||
## Citation information
|
||||
|
||||
If you find this work useful, please cite our paper:
|
||||
|
||||
```text
|
||||
@article{mehta2023matcha,
|
||||
title={Matcha-TTS: A fast TTS architecture with conditional flow matching},
|
||||
author={Mehta, Shivam and Tu, Ruibo and Beskow, Jonas and Sz{\'e}kely, {\'E}va and Henter, Gustav Eje},
|
||||
journal={arXiv preprint arXiv:2309.03199},
|
||||
year={2023}
|
||||
}
|
||||
```
|
||||
|
||||
## Train with your own dataset
|
||||
|
||||
Let's assume we are training with LJ Speech
|
||||
|
||||
1. Download the dataset from [here](https://keithito.com/LJ-Speech-Dataset/), extract it to `data/LJSpeech-1.1`, and prepare the filelists to point to the extracted data like the [5th point of setup in Tacotron2 repo](https://github.com/NVIDIA/tacotron2#setup).
|
||||
1. Download the dataset from [here](https://keithito.com/LJ-Speech-Dataset/), extract it to `data/LJSpeech-1.1`, and prepare the file lists to point to the extracted data like for [item 5 in the setup of the NVIDIA Tacotron 2 repo](https://github.com/NVIDIA/tacotron2#setup).
|
||||
|
||||
2. Clone and enter this repository
|
||||
2. Clone and enter the Matcha-TTS repository
|
||||
|
||||
```bash
|
||||
git clone https://github.com/shivammehta25/Matcha-TTS.git
|
||||
@@ -167,7 +157,7 @@ data_statistics: # Computed for ljspeech dataset
|
||||
|
||||
to the paths of your train and validation filelists.
|
||||
|
||||
5. Run the training script
|
||||
6. Run the training script
|
||||
|
||||
```bash
|
||||
make train-ljspeech
|
||||
@@ -191,20 +181,33 @@ python matcha/train.py experiment=ljspeech_min_memory
|
||||
python matcha/train.py experiment=ljspeech trainer.devices=[0,1]
|
||||
```
|
||||
|
||||
6. Synthesise from the custom trained model
|
||||
7. Synthesise from the custom trained model
|
||||
|
||||
```bash
|
||||
matcha-tts --text "<INPUT TEXT>" --checkpoint_path <PATH TO CHECKPOINT>
|
||||
```
|
||||
|
||||
## Citation information
|
||||
|
||||
If you use our code or otherwise find this work useful, please cite our paper:
|
||||
|
||||
```text
|
||||
@article{mehta2023matcha,
|
||||
title={Matcha-TTS: A fast TTS architecture with conditional flow matching},
|
||||
author={Mehta, Shivam and Tu, Ruibo and Beskow, Jonas and Sz{\'e}kely, {\'E}va and Henter, Gustav Eje},
|
||||
journal={arXiv preprint arXiv:2309.03199},
|
||||
year={2023}
|
||||
}
|
||||
```
|
||||
|
||||
## Acknowledgements
|
||||
|
||||
Since this code uses: [Lightning-Hydra-Template](https://github.com/ashleve/lightning-hydra-template), you have all the powers that comes with it.
|
||||
Since this code uses [Lightning-Hydra-Template](https://github.com/ashleve/lightning-hydra-template), you have all the powers that come with it.
|
||||
|
||||
Other source codes I would like to acknowledge:
|
||||
Other source code I would like to acknowledge:
|
||||
|
||||
- [Coqui-TTS](https://github.com/coqui-ai/TTS/tree/dev): For helping me figure out how to make cython binaries pip installable and encouragement
|
||||
- [Hugging Face Diffusers](https://huggingface.co/): For their awesome diffusers library and its components
|
||||
- [Grad-TTS](https://github.com/huawei-noah/Speech-Backbones/tree/main/Grad-TTS): For source code of MAS
|
||||
- [Grad-TTS](https://github.com/huawei-noah/Speech-Backbones/tree/main/Grad-TTS): For the monotonic alignment search source code
|
||||
- [torchdyn](https://github.com/DiffEqML/torchdyn): Useful for trying other ODE solvers during research and development
|
||||
- [labml.ai](https://nn.labml.ai/transformers/rope/index.html): For RoPE implementation
|
||||
- [labml.ai](https://nn.labml.ai/transformers/rope/index.html): For the RoPE implementation
|
||||
|
||||
@@ -7,8 +7,8 @@
|
||||
task_name: "debug"
|
||||
|
||||
# disable callbacks and loggers during debugging
|
||||
callbacks: null
|
||||
logger: null
|
||||
# callbacks: null
|
||||
# logger: null
|
||||
|
||||
extras:
|
||||
ignore_warnings: False
|
||||
|
||||
@@ -7,6 +7,9 @@ defaults:
|
||||
|
||||
trainer:
|
||||
max_epochs: 1
|
||||
profiler: "simple"
|
||||
# profiler: "advanced"
|
||||
# profiler: "simple"
|
||||
profiler: "advanced"
|
||||
# profiler: "pytorch"
|
||||
accelerator: gpu
|
||||
|
||||
limit_train_batches: 0.02
|
||||
|
||||
@@ -1 +1 @@
|
||||
0.0.1.dev4
|
||||
0.0.3
|
||||
|
||||
191
matcha/app.py
191
matcha/app.py
@@ -8,7 +8,7 @@ import torch
|
||||
|
||||
from matcha.cli import (
|
||||
MATCHA_URLS,
|
||||
VOCODER_URL,
|
||||
VOCODER_URLS,
|
||||
assert_model_downloaded,
|
||||
get_device,
|
||||
load_matcha,
|
||||
@@ -22,20 +22,73 @@ LOCATION = Path(get_user_data_dir())
|
||||
|
||||
args = Namespace(
|
||||
cpu=False,
|
||||
model="matcha_ljspeech",
|
||||
vocoder="hifigan_T2_v1",
|
||||
spk=None,
|
||||
model="matcha_vctk",
|
||||
vocoder="hifigan_univ_v1",
|
||||
spk=0,
|
||||
)
|
||||
|
||||
MATCHA_TTS_LOC = LOCATION / f"{args.model}.ckpt"
|
||||
VOCODER_LOC = LOCATION / f"{args.vocoder}"
|
||||
CURRENTLY_LOADED_MODEL = args.model
|
||||
|
||||
MATCHA_TTS_LOC = lambda x: LOCATION / f"{x}.ckpt" # noqa: E731
|
||||
VOCODER_LOC = lambda x: LOCATION / f"{x}" # noqa: E731
|
||||
LOGO_URL = "https://shivammehta25.github.io/Matcha-TTS/images/logo.png"
|
||||
assert_model_downloaded(MATCHA_TTS_LOC, MATCHA_URLS[args.model])
|
||||
assert_model_downloaded(VOCODER_LOC, VOCODER_URL[args.vocoder])
|
||||
RADIO_OPTIONS = {
|
||||
"Multi Speaker (VCTK)": {
|
||||
"model": "matcha_vctk",
|
||||
"vocoder": "hifigan_univ_v1",
|
||||
},
|
||||
"Single Speaker (LJ Speech)": {
|
||||
"model": "matcha_ljspeech",
|
||||
"vocoder": "hifigan_T2_v1",
|
||||
},
|
||||
}
|
||||
|
||||
# Ensure all the required models are downloaded
|
||||
assert_model_downloaded(MATCHA_TTS_LOC("matcha_ljspeech"), MATCHA_URLS["matcha_ljspeech"])
|
||||
assert_model_downloaded(VOCODER_LOC("hifigan_T2_v1"), VOCODER_URLS["hifigan_T2_v1"])
|
||||
assert_model_downloaded(MATCHA_TTS_LOC("matcha_vctk"), MATCHA_URLS["matcha_vctk"])
|
||||
assert_model_downloaded(VOCODER_LOC("hifigan_univ_v1"), VOCODER_URLS["hifigan_univ_v1"])
|
||||
|
||||
device = get_device(args)
|
||||
|
||||
model = load_matcha(args.model, MATCHA_TTS_LOC, device)
|
||||
vocoder, denoiser = load_vocoder(args.vocoder, VOCODER_LOC, device)
|
||||
# Load default model
|
||||
model = load_matcha(args.model, MATCHA_TTS_LOC(args.model), device)
|
||||
vocoder, denoiser = load_vocoder(args.vocoder, VOCODER_LOC(args.vocoder), device)
|
||||
|
||||
|
||||
def load_model(model_name, vocoder_name):
|
||||
model = load_matcha(model_name, MATCHA_TTS_LOC(model_name), device)
|
||||
vocoder, denoiser = load_vocoder(vocoder_name, VOCODER_LOC(vocoder_name), device)
|
||||
return model, vocoder, denoiser
|
||||
|
||||
|
||||
def load_model_ui(model_type, textbox):
|
||||
model_name, vocoder_name = RADIO_OPTIONS[model_type]["model"], RADIO_OPTIONS[model_type]["vocoder"]
|
||||
|
||||
global model, vocoder, denoiser, CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
|
||||
if CURRENTLY_LOADED_MODEL != model_name:
|
||||
model, vocoder, denoiser = load_model(model_name, vocoder_name)
|
||||
CURRENTLY_LOADED_MODEL = model_name
|
||||
|
||||
if model_name == "matcha_ljspeech":
|
||||
spk_slider = gr.update(visible=False, value=-1)
|
||||
single_speaker_examples = gr.update(visible=True)
|
||||
multi_speaker_examples = gr.update(visible=False)
|
||||
length_scale = gr.update(value=0.95)
|
||||
else:
|
||||
spk_slider = gr.update(visible=True, value=0)
|
||||
single_speaker_examples = gr.update(visible=False)
|
||||
multi_speaker_examples = gr.update(visible=True)
|
||||
length_scale = gr.update(value=0.85)
|
||||
|
||||
return (
|
||||
textbox,
|
||||
gr.update(interactive=True),
|
||||
spk_slider,
|
||||
single_speaker_examples,
|
||||
multi_speaker_examples,
|
||||
length_scale,
|
||||
)
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
@@ -45,13 +98,14 @@ def process_text_gradio(text):
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale):
|
||||
def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale, spk):
|
||||
spk = torch.tensor([spk], device=device, dtype=torch.long) if spk >= 0 else None
|
||||
output = model.synthesise(
|
||||
text,
|
||||
text_length,
|
||||
n_timesteps=n_timesteps,
|
||||
temperature=temperature,
|
||||
spks=args.spk,
|
||||
spks=spk,
|
||||
length_scale=length_scale,
|
||||
)
|
||||
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser)
|
||||
@@ -61,9 +115,27 @@ def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale):
|
||||
return fp.name, plot_tensor(output["mel"].squeeze().cpu().numpy())
|
||||
|
||||
|
||||
def run_full_synthesis(text, n_timesteps, mel_temp, length_scale):
|
||||
def multispeaker_example_cacher(text, n_timesteps, mel_temp, length_scale, spk):
|
||||
global CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
|
||||
if CURRENTLY_LOADED_MODEL != "matcha_vctk":
|
||||
global model, vocoder, denoiser # pylint: disable=global-statement
|
||||
model, vocoder, denoiser = load_model("matcha_vctk", "hifigan_univ_v1")
|
||||
CURRENTLY_LOADED_MODEL = "matcha_vctk"
|
||||
|
||||
phones, text, text_lengths = process_text_gradio(text)
|
||||
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale)
|
||||
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
|
||||
return phones, audio, mel_spectrogram
|
||||
|
||||
|
||||
def ljspeech_example_cacher(text, n_timesteps, mel_temp, length_scale, spk=-1):
|
||||
global CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
|
||||
if CURRENTLY_LOADED_MODEL != "matcha_ljspeech":
|
||||
global model, vocoder, denoiser # pylint: disable=global-statement
|
||||
model, vocoder, denoiser = load_model("matcha_ljspeech", "hifigan_T2_v1")
|
||||
CURRENTLY_LOADED_MODEL = "matcha_ljspeech"
|
||||
|
||||
phones, text, text_lengths = process_text_gradio(text)
|
||||
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
|
||||
return phones, audio, mel_spectrogram
|
||||
|
||||
|
||||
@@ -92,20 +164,31 @@ def main():
|
||||
with gr.Box():
|
||||
with gr.Row():
|
||||
gr.Markdown(description, scale=3)
|
||||
gr.Image(LOGO_URL, label="Matcha-TTS logo", height=150, width=150, scale=1, show_label=False)
|
||||
with gr.Column():
|
||||
gr.Image(LOGO_URL, label="Matcha-TTS logo", height=50, width=50, scale=1, show_label=False)
|
||||
html = '<br><iframe width="560" height="315" src="https://www.youtube.com/embed/xmvJkz3bqw0?si=jN7ILyDsbPwJCGoa" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>'
|
||||
gr.HTML(html)
|
||||
|
||||
with gr.Box():
|
||||
radio_options = list(RADIO_OPTIONS.keys())
|
||||
model_type = gr.Radio(
|
||||
radio_options, value=radio_options[0], label="Choose a Model", interactive=True, container=False
|
||||
)
|
||||
|
||||
with gr.Row():
|
||||
gr.Markdown("# Text Input")
|
||||
with gr.Row():
|
||||
text = gr.Textbox(value="", lines=2, label="Text to synthesise")
|
||||
text = gr.Textbox(value="", lines=2, label="Text to synthesise", scale=3)
|
||||
spk_slider = gr.Slider(
|
||||
minimum=0, maximum=107, step=1, value=args.spk, label="Speaker ID", interactive=True, scale=1
|
||||
)
|
||||
|
||||
with gr.Row():
|
||||
gr.Markdown("### Hyper parameters")
|
||||
with gr.Row():
|
||||
n_timesteps = gr.Slider(
|
||||
label="Number of ODE steps",
|
||||
minimum=0,
|
||||
minimum=1,
|
||||
maximum=100,
|
||||
step=1,
|
||||
value=10,
|
||||
@@ -142,58 +225,110 @@ def main():
|
||||
# with gr.Row():
|
||||
audio = gr.Audio(interactive=False, label="Audio")
|
||||
|
||||
with gr.Row():
|
||||
with gr.Row(visible=False) as example_row_lj_speech:
|
||||
examples = gr.Examples( # pylint: disable=unused-variable
|
||||
examples=[
|
||||
[
|
||||
"We propose Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up O D E-based speech synthesis.",
|
||||
50,
|
||||
0.677,
|
||||
1.0,
|
||||
0.95,
|
||||
],
|
||||
[
|
||||
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
||||
2,
|
||||
0.677,
|
||||
1.0,
|
||||
0.95,
|
||||
],
|
||||
[
|
||||
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
||||
4,
|
||||
0.677,
|
||||
1.0,
|
||||
0.95,
|
||||
],
|
||||
[
|
||||
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
||||
10,
|
||||
0.677,
|
||||
1.0,
|
||||
0.95,
|
||||
],
|
||||
[
|
||||
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
||||
50,
|
||||
0.677,
|
||||
1.0,
|
||||
0.95,
|
||||
],
|
||||
[
|
||||
"The narrative of these events is based largely on the recollections of the participants.",
|
||||
10,
|
||||
0.677,
|
||||
1.0,
|
||||
0.95,
|
||||
],
|
||||
[
|
||||
"The jury did not believe him, and the verdict was for the defendants.",
|
||||
10,
|
||||
0.677,
|
||||
1.0,
|
||||
0.95,
|
||||
],
|
||||
],
|
||||
fn=run_full_synthesis,
|
||||
fn=ljspeech_example_cacher,
|
||||
inputs=[text, n_timesteps, mel_temp, length_scale],
|
||||
outputs=[phonetised_text, audio, mel_spectrogram],
|
||||
cache_examples=True,
|
||||
)
|
||||
|
||||
with gr.Row() as example_row_multispeaker:
|
||||
multi_speaker_examples = gr.Examples( # pylint: disable=unused-variable
|
||||
examples=[
|
||||
[
|
||||
"Hello everyone! I am speaker 0 and I am here to tell you that Matcha-TTS is amazing!",
|
||||
10,
|
||||
0.677,
|
||||
0.85,
|
||||
0,
|
||||
],
|
||||
[
|
||||
"Hello everyone! I am speaker 16 and I am here to tell you that Matcha-TTS is amazing!",
|
||||
10,
|
||||
0.677,
|
||||
0.85,
|
||||
16,
|
||||
],
|
||||
[
|
||||
"Hello everyone! I am speaker 44 and I am here to tell you that Matcha-TTS is amazing!",
|
||||
50,
|
||||
0.677,
|
||||
0.85,
|
||||
44,
|
||||
],
|
||||
[
|
||||
"Hello everyone! I am speaker 45 and I am here to tell you that Matcha-TTS is amazing!",
|
||||
50,
|
||||
0.677,
|
||||
0.85,
|
||||
45,
|
||||
],
|
||||
[
|
||||
"Hello everyone! I am speaker 58 and I am here to tell you that Matcha-TTS is amazing!",
|
||||
4,
|
||||
0.677,
|
||||
0.85,
|
||||
58,
|
||||
],
|
||||
],
|
||||
fn=multispeaker_example_cacher,
|
||||
inputs=[text, n_timesteps, mel_temp, length_scale, spk_slider],
|
||||
outputs=[phonetised_text, audio, mel_spectrogram],
|
||||
cache_examples=True,
|
||||
label="Multi Speaker Examples",
|
||||
)
|
||||
|
||||
model_type.change(lambda x: gr.update(interactive=False), inputs=[synth_btn], outputs=[synth_btn]).then(
|
||||
load_model_ui,
|
||||
inputs=[model_type, text],
|
||||
outputs=[text, synth_btn, spk_slider, example_row_lj_speech, example_row_multispeaker, length_scale],
|
||||
)
|
||||
|
||||
synth_btn.click(
|
||||
fn=process_text_gradio,
|
||||
inputs=[
|
||||
@@ -204,11 +339,11 @@ def main():
|
||||
queue=True,
|
||||
).then(
|
||||
fn=synthesise_mel,
|
||||
inputs=[processed_text, processed_text_len, n_timesteps, mel_temp, length_scale],
|
||||
inputs=[processed_text, processed_text_len, n_timesteps, mel_temp, length_scale, spk_slider],
|
||||
outputs=[audio, mel_spectrogram],
|
||||
)
|
||||
|
||||
demo.queue(concurrency_count=5).launch(share=True)
|
||||
demo.queue().launch(share=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
111
matcha/cli.py
111
matcha/cli.py
@@ -1,6 +1,7 @@
|
||||
import argparse
|
||||
import datetime as dt
|
||||
import os
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
@@ -17,13 +18,20 @@ from matcha.text import sequence_to_text, text_to_sequence
|
||||
from matcha.utils.utils import assert_model_downloaded, get_user_data_dir, intersperse
|
||||
|
||||
MATCHA_URLS = {
|
||||
"matcha_ljspeech": "https://drive.google.com/file/d/1BBzmMU7k3a_WetDfaFblMoN18GqQeHCg/view?usp=drive_link"
|
||||
} # , "matcha_vctk": ""} # Coming soon
|
||||
"matcha_ljspeech": "https://drive.google.com/file/d/1BBzmMU7k3a_WetDfaFblMoN18GqQeHCg/view?usp=drive_link",
|
||||
"matcha_vctk": "https://drive.google.com/file/d/1enuxmfslZciWGAl63WGh2ekVo00FYuQ9/view?usp=drive_link",
|
||||
}
|
||||
|
||||
MULTISPEAKER_MODEL = {"matcha_vctk"}
|
||||
SINGLESPEAKER_MODEL = {"matcha_ljspeech"}
|
||||
VOCODER_URLS = {
|
||||
"hifigan_T2_v1": "https://drive.google.com/file/d/14NENd4equCBLyyCSke114Mv6YR_j_uFs/view?usp=drive_link",
|
||||
"hifigan_univ_v1": "https://drive.google.com/file/d/1qpgI41wNXFcH-iKq1Y42JlBC9j0je8PW/view?usp=drive_link",
|
||||
}
|
||||
|
||||
VOCODER_URL = {"hifigan_T2_v1": "https://drive.google.com/file/d/14NENd4equCBLyyCSke114Mv6YR_j_uFs/view?usp=drive_link"}
|
||||
MULTISPEAKER_MODEL = {
|
||||
"matcha_vctk": {"vocoder": "hifigan_univ_v1", "speaking_rate": 0.85, "spk": 0, "spk_range": (0, 107)}
|
||||
}
|
||||
|
||||
SINGLESPEAKER_MODEL = {"matcha_ljspeech": {"vocoder": "hifigan_T2_v1", "speaking_rate": 0.95, "spk": None}}
|
||||
|
||||
|
||||
def plot_spectrogram_to_numpy(spectrogram, filename):
|
||||
@@ -62,10 +70,14 @@ def get_texts(args):
|
||||
|
||||
def assert_required_models_available(args):
|
||||
save_dir = get_user_data_dir()
|
||||
if not hasattr(args, "checkpoint_path") and args.checkpoint_path is None:
|
||||
model_path = args.checkpoint_path
|
||||
else:
|
||||
model_path = save_dir / f"{args.model}.ckpt"
|
||||
vocoder_path = save_dir / f"{args.vocoder}"
|
||||
assert_model_downloaded(model_path, MATCHA_URLS[args.model])
|
||||
assert_model_downloaded(vocoder_path, VOCODER_URL[args.vocoder])
|
||||
|
||||
vocoder_path = save_dir / f"{args.vocoder}"
|
||||
assert_model_downloaded(vocoder_path, VOCODER_URLS[args.vocoder])
|
||||
return {"matcha": model_path, "vocoder": vocoder_path}
|
||||
|
||||
|
||||
@@ -81,7 +93,7 @@ def load_hifigan(checkpoint_path, device):
|
||||
def load_vocoder(vocoder_name, checkpoint_path, device):
|
||||
print(f"[!] Loading {vocoder_name}!")
|
||||
vocoder = None
|
||||
if vocoder_name == "hifigan_T2_v1":
|
||||
if vocoder_name in ("hifigan_T2_v1", "hifigan_univ_v1"):
|
||||
vocoder = load_hifigan(checkpoint_path, device)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
@@ -124,21 +136,70 @@ def validate_args(args):
|
||||
args.text or args.file
|
||||
), "Either text or file must be provided Matcha-T(ea)TTS need sometext to whisk the waveforms."
|
||||
assert args.temperature >= 0, "Sampling temperature cannot be negative"
|
||||
assert args.speaking_rate > 0, "Speaking rate must be greater than 0"
|
||||
assert args.steps > 0, "Number of ODE steps must be greater than 0"
|
||||
if args.model in SINGLESPEAKER_MODEL:
|
||||
assert args.spk is None, f"Speaker ID is not supported for {args.model}"
|
||||
if args.spk is not None:
|
||||
assert args.spk >= 0 and args.spk < 109, "Speaker ID must be between 0 and 108"
|
||||
assert args.model in MULTISPEAKER_MODEL, "Speaker ID is only supported for multispeaker model"
|
||||
|
||||
if args.checkpoint_path is None:
|
||||
# When using pretrained models
|
||||
if args.model in SINGLESPEAKER_MODEL.keys():
|
||||
args = validate_args_for_single_speaker_model(args)
|
||||
|
||||
if args.model in MULTISPEAKER_MODEL:
|
||||
if args.spk is None:
|
||||
print("[!] Speaker ID not provided! Using speaker ID 0")
|
||||
args.spk = 0
|
||||
args = validate_args_for_multispeaker_model(args)
|
||||
else:
|
||||
# When using a custom model
|
||||
if args.vocoder != "hifigan_univ_v1":
|
||||
warn_ = "[-] Using custom model checkpoint! I would suggest passing --vocoder hifigan_univ_v1, unless the custom model is trained on LJ Speech."
|
||||
warnings.warn(warn_, UserWarning)
|
||||
if args.speaking_rate is None:
|
||||
args.speaking_rate = 1.0
|
||||
|
||||
if args.batched:
|
||||
assert args.batch_size > 0, "Batch size must be greater than 0"
|
||||
assert args.speaking_rate > 0, "Speaking rate must be greater than 0"
|
||||
|
||||
return args
|
||||
|
||||
|
||||
def validate_args_for_multispeaker_model(args):
|
||||
if args.vocoder is not None:
|
||||
if args.vocoder != MULTISPEAKER_MODEL[args.model]["vocoder"]:
|
||||
warn_ = f"[-] Using {args.model} model! I would suggest passing --vocoder {MULTISPEAKER_MODEL[args.model]['vocoder']}"
|
||||
warnings.warn(warn_, UserWarning)
|
||||
else:
|
||||
args.vocoder = MULTISPEAKER_MODEL[args.model]["vocoder"]
|
||||
|
||||
if args.speaking_rate is None:
|
||||
args.speaking_rate = MULTISPEAKER_MODEL[args.model]["speaking_rate"]
|
||||
|
||||
spk_range = MULTISPEAKER_MODEL[args.model]["spk_range"]
|
||||
if args.spk is not None:
|
||||
assert (
|
||||
args.spk >= spk_range[0] and args.spk <= spk_range[-1]
|
||||
), f"Speaker ID must be between {spk_range} for this model."
|
||||
else:
|
||||
available_spk_id = MULTISPEAKER_MODEL[args.model]["spk"]
|
||||
warn_ = f"[!] Speaker ID not provided! Using speaker ID {available_spk_id}"
|
||||
warnings.warn(warn_, UserWarning)
|
||||
args.spk = available_spk_id
|
||||
|
||||
return args
|
||||
|
||||
|
||||
def validate_args_for_single_speaker_model(args):
|
||||
if args.vocoder is not None:
|
||||
if args.vocoder != SINGLESPEAKER_MODEL[args.model]["vocoder"]:
|
||||
warn_ = f"[-] Using {args.model} model! I would suggest passing --vocoder {SINGLESPEAKER_MODEL[args.model]['vocoder']}"
|
||||
warnings.warn(warn_, UserWarning)
|
||||
else:
|
||||
args.vocoder = SINGLESPEAKER_MODEL[args.model]["vocoder"]
|
||||
|
||||
if args.speaking_rate is None:
|
||||
args.speaking_rate = SINGLESPEAKER_MODEL[args.model]["speaking_rate"]
|
||||
|
||||
if args.spk != SINGLESPEAKER_MODEL[args.model]["spk"]:
|
||||
warn_ = f"[-] Ignoring speaker id {args.spk} for {args.model}"
|
||||
warnings.warn(warn_, UserWarning)
|
||||
args.spk = SINGLESPEAKER_MODEL[args.model]["spk"]
|
||||
|
||||
return args
|
||||
|
||||
@@ -166,9 +227,9 @@ def cli():
|
||||
parser.add_argument(
|
||||
"--vocoder",
|
||||
type=str,
|
||||
default="hifigan_T2_v1",
|
||||
help="Vocoder to use",
|
||||
choices=VOCODER_URL.keys(),
|
||||
default=None,
|
||||
help="Vocoder to use (default: will use the one suggested with the pretrained model))",
|
||||
choices=VOCODER_URLS.keys(),
|
||||
)
|
||||
parser.add_argument("--text", type=str, default=None, help="Text to synthesize")
|
||||
parser.add_argument("--file", type=str, default=None, help="Text file to synthesize")
|
||||
@@ -182,7 +243,7 @@ def cli():
|
||||
parser.add_argument(
|
||||
"--speaking_rate",
|
||||
type=float,
|
||||
default=1.0,
|
||||
default=None,
|
||||
help="change the speaking rate, a higher value means slower speaking rate (default: 1.0)",
|
||||
)
|
||||
parser.add_argument("--steps", type=int, default=10, help="Number of ODE steps (default: 10)")
|
||||
@@ -199,8 +260,10 @@ def cli():
|
||||
default=os.getcwd(),
|
||||
help="Output folder to save results (default: current dir)",
|
||||
)
|
||||
parser.add_argument("--batched", action="store_true")
|
||||
parser.add_argument("--batch_size", type=int, default=32)
|
||||
parser.add_argument("--batched", action="store_true", help="Batched inference (default: False)")
|
||||
parser.add_argument(
|
||||
"--batch_size", type=int, default=32, help="Batch size only useful when --batched (default: 32)"
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
@@ -333,6 +396,8 @@ def unbatched_synthesis(args, device, model, vocoder, denoiser, texts, spk):
|
||||
|
||||
def print_config(args):
|
||||
print("[!] Configurations: ")
|
||||
print(f"\t- Model: {args.model}")
|
||||
print(f"\t- Vocoder: {args.vocoder}")
|
||||
print(f"\t- Temperature: {args.temperature}")
|
||||
print(f"\t- Speaking rate: {args.speaking_rate}")
|
||||
print(f"\t- Number of ODE steps: {args.steps}")
|
||||
|
||||
@@ -35,7 +35,7 @@ torchaudio
|
||||
matplotlib
|
||||
pandas
|
||||
conformer==0.3.2
|
||||
diffusers==0.21.1
|
||||
diffusers==0.21.2
|
||||
notebook
|
||||
ipywidgets
|
||||
gradio
|
||||
|
||||
Reference in New Issue
Block a user