16 Commits

Author SHA1 Message Date
Shivam Mehta
d373e9a5b1 Bumping it to an increased version 2023-09-21 13:43:20 +00:00
Shivam Mehta
f12be190a4 ADding video teaser to readme 2023-09-21 13:41:21 +00:00
Shivam Mehta
be998ae31f Merge pull request #4 from shivammehta25/dev
Another version bump because I am new to twine
2023-09-21 15:26:54 +02:00
Shivam Mehta
a49af19f48 Another version bump because I am new to twine 2023-09-21 13:25:40 +00:00
Shivam Mehta
7850aa0910 Merge pull request #3 from shivammehta25/dev
Adding multispeaker 🍵 Matcha-TTS
2023-09-21 15:23:15 +02:00
Shivam Mehta
309739b7cc Version bump 2023-09-21 13:20:17 +00:00
Shivam Mehta
0aaabf90c4 Minor UI fixes 2023-09-21 13:18:32 +00:00
Shivam Mehta
c5dab67d9f Adding teaser url 2023-09-21 13:15:36 +00:00
Shivam Mehta
d098f32730 bumping diffusers, changing depandabot to open PR to dev branch, adding url for multispeaker matcha checkpoint 2023-09-21 12:32:27 +00:00
Shivam Mehta
281a098337 better default speaking rate 2023-09-20 15:23:46 +00:00
Shivam Mehta
db95158043 Will have to load all models to enable multiple synthesis at the same time 2023-09-20 10:40:01 +00:00
Shivam Mehta
267bf96651 Adding multispeaker model in UI 2023-09-20 10:28:48 +00:00
Shivam Mehta
72635012b0 Adding matcha vctk 2023-09-20 07:08:11 +00:00
Gustav Eje Henter
9ceee279f0 Minor improvements to README.md 2023-09-18 18:44:13 +02:00
Shivam Mehta
d7b9a37359 adding more validation to multispeaker CLI 2023-09-18 11:37:58 +00:00
Shivam Mehta
ec43ef0732 Keeping ODE step slider to be greater than 0 always in gradio 2023-09-17 22:08:29 +00:00
9 changed files with 294 additions and 87 deletions

View File

@@ -7,6 +7,7 @@ version: 2
updates:
- package-ecosystem: "pip" # See documentation for possible values
directory: "/" # Location of package manifests
target-branch: "dev"
schedule:
interval: "daily"
ignore:

View File

@@ -17,7 +17,7 @@ create-package: ## Create wheel and tar gz
rm -rf dist/
python setup.py bdist_wheel --plat-name=manylinux1_x86_64
python setup.py sdist
python -m twine upload dist/* --verbose
python -m twine upload dist/* --verbose --skip-existing
format: ## Run pre-commit hooks
pre-commit run -a

View File

@@ -19,20 +19,23 @@
> This is the official code implementation of 🍵 Matcha-TTS.
We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up ODE-based speech synthesis. Our method:
We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses [conditional flow matching](https://arxiv.org/abs/2210.02747) (similar to [rectified flows](https://arxiv.org/abs/2209.03003)) to speed up ODE-based speech synthesis. Our method:
- Is probabilistic
- Has compact memory footprint
- Sounds highly natural
- Is very fast to synthesise from
Check out our [demo page](https://shivammehta25.github.io/Matcha-TTS). Read our [arXiv preprint for more details](https://arxiv.org/abs/2309.03199).
Check out our [demo page](https://shivammehta25.github.io/Matcha-TTS) and read [our arXiv preprint](https://arxiv.org/abs/2309.03199) for more details.
[Pretrained models](https://drive.google.com/drive/folders/17C_gYgEHOxI5ZypcfE_k1piKCtyR0isJ?usp=sharing) will be auto downloaded with the CLI or gradio interface.
[Pre-trained models](https://drive.google.com/drive/folders/17C_gYgEHOxI5ZypcfE_k1piKCtyR0isJ?usp=sharing) will be automatically downloaded with the CLI or gradio interface.
[Try 🍵 Matcha-TTS on HuggingFace 🤗 spaces!](https://huggingface.co/spaces/shivammehta25/Matcha-TTS)
<br>
## Watch the teaser
[![Watch the video](https://img.youtube.com/vi/xmvJkz3bqw0/hqdefault.jpg)](https://youtu.be/xmvJkz3bqw0)
## Installation
@@ -110,26 +113,13 @@ matcha-tts --text "<INPUT TEXT>" --temperature 0.667
matcha-tts --text "<INPUT TEXT>" --steps 10
```
## Citation information
If you find this work useful, please cite our paper:
```text
@article{mehta2023matcha,
title={Matcha-TTS: A fast TTS architecture with conditional flow matching},
author={Mehta, Shivam and Tu, Ruibo and Beskow, Jonas and Sz{\'e}kely, {\'E}va and Henter, Gustav Eje},
journal={arXiv preprint arXiv:2309.03199},
year={2023}
}
```
## Train with your own dataset
Let's assume we are training with LJ Speech
1. Download the dataset from [here](https://keithito.com/LJ-Speech-Dataset/), extract it to `data/LJSpeech-1.1`, and prepare the filelists to point to the extracted data like the [5th point of setup in Tacotron2 repo](https://github.com/NVIDIA/tacotron2#setup).
1. Download the dataset from [here](https://keithito.com/LJ-Speech-Dataset/), extract it to `data/LJSpeech-1.1`, and prepare the file lists to point to the extracted data like for [item 5 in the setup of the NVIDIA Tacotron 2 repo](https://github.com/NVIDIA/tacotron2#setup).
2. Clone and enter this repository
2. Clone and enter the Matcha-TTS repository
```bash
git clone https://github.com/shivammehta25/Matcha-TTS.git
@@ -167,7 +157,7 @@ data_statistics: # Computed for ljspeech dataset
to the paths of your train and validation filelists.
5. Run the training script
6. Run the training script
```bash
make train-ljspeech
@@ -191,20 +181,33 @@ python matcha/train.py experiment=ljspeech_min_memory
python matcha/train.py experiment=ljspeech trainer.devices=[0,1]
```
6. Synthesise from the custom trained model
7. Synthesise from the custom trained model
```bash
matcha-tts --text "<INPUT TEXT>" --checkpoint_path <PATH TO CHECKPOINT>
```
## Citation information
If you use our code or otherwise find this work useful, please cite our paper:
```text
@article{mehta2023matcha,
title={Matcha-TTS: A fast TTS architecture with conditional flow matching},
author={Mehta, Shivam and Tu, Ruibo and Beskow, Jonas and Sz{\'e}kely, {\'E}va and Henter, Gustav Eje},
journal={arXiv preprint arXiv:2309.03199},
year={2023}
}
```
## Acknowledgements
Since this code uses: [Lightning-Hydra-Template](https://github.com/ashleve/lightning-hydra-template), you have all the powers that comes with it.
Since this code uses [Lightning-Hydra-Template](https://github.com/ashleve/lightning-hydra-template), you have all the powers that come with it.
Other source codes I would like to acknowledge:
Other source code I would like to acknowledge:
- [Coqui-TTS](https://github.com/coqui-ai/TTS/tree/dev): For helping me figure out how to make cython binaries pip installable and encouragement
- [Hugging Face Diffusers](https://huggingface.co/): For their awesome diffusers library and its components
- [Grad-TTS](https://github.com/huawei-noah/Speech-Backbones/tree/main/Grad-TTS): For source code of MAS
- [Grad-TTS](https://github.com/huawei-noah/Speech-Backbones/tree/main/Grad-TTS): For the monotonic alignment search source code
- [torchdyn](https://github.com/DiffEqML/torchdyn): Useful for trying other ODE solvers during research and development
- [labml.ai](https://nn.labml.ai/transformers/rope/index.html): For RoPE implementation
- [labml.ai](https://nn.labml.ai/transformers/rope/index.html): For the RoPE implementation

View File

@@ -7,8 +7,8 @@
task_name: "debug"
# disable callbacks and loggers during debugging
callbacks: null
logger: null
# callbacks: null
# logger: null
extras:
ignore_warnings: False

View File

@@ -7,6 +7,9 @@ defaults:
trainer:
max_epochs: 1
profiler: "simple"
# profiler: "advanced"
# profiler: "simple"
profiler: "advanced"
# profiler: "pytorch"
accelerator: gpu
limit_train_batches: 0.02

View File

@@ -1 +1 @@
0.0.1.dev4
0.0.3

View File

@@ -8,7 +8,7 @@ import torch
from matcha.cli import (
MATCHA_URLS,
VOCODER_URL,
VOCODER_URLS,
assert_model_downloaded,
get_device,
load_matcha,
@@ -22,20 +22,73 @@ LOCATION = Path(get_user_data_dir())
args = Namespace(
cpu=False,
model="matcha_ljspeech",
vocoder="hifigan_T2_v1",
spk=None,
model="matcha_vctk",
vocoder="hifigan_univ_v1",
spk=0,
)
MATCHA_TTS_LOC = LOCATION / f"{args.model}.ckpt"
VOCODER_LOC = LOCATION / f"{args.vocoder}"
CURRENTLY_LOADED_MODEL = args.model
MATCHA_TTS_LOC = lambda x: LOCATION / f"{x}.ckpt" # noqa: E731
VOCODER_LOC = lambda x: LOCATION / f"{x}" # noqa: E731
LOGO_URL = "https://shivammehta25.github.io/Matcha-TTS/images/logo.png"
assert_model_downloaded(MATCHA_TTS_LOC, MATCHA_URLS[args.model])
assert_model_downloaded(VOCODER_LOC, VOCODER_URL[args.vocoder])
RADIO_OPTIONS = {
"Multi Speaker (VCTK)": {
"model": "matcha_vctk",
"vocoder": "hifigan_univ_v1",
},
"Single Speaker (LJ Speech)": {
"model": "matcha_ljspeech",
"vocoder": "hifigan_T2_v1",
},
}
# Ensure all the required models are downloaded
assert_model_downloaded(MATCHA_TTS_LOC("matcha_ljspeech"), MATCHA_URLS["matcha_ljspeech"])
assert_model_downloaded(VOCODER_LOC("hifigan_T2_v1"), VOCODER_URLS["hifigan_T2_v1"])
assert_model_downloaded(MATCHA_TTS_LOC("matcha_vctk"), MATCHA_URLS["matcha_vctk"])
assert_model_downloaded(VOCODER_LOC("hifigan_univ_v1"), VOCODER_URLS["hifigan_univ_v1"])
device = get_device(args)
model = load_matcha(args.model, MATCHA_TTS_LOC, device)
vocoder, denoiser = load_vocoder(args.vocoder, VOCODER_LOC, device)
# Load default model
model = load_matcha(args.model, MATCHA_TTS_LOC(args.model), device)
vocoder, denoiser = load_vocoder(args.vocoder, VOCODER_LOC(args.vocoder), device)
def load_model(model_name, vocoder_name):
model = load_matcha(model_name, MATCHA_TTS_LOC(model_name), device)
vocoder, denoiser = load_vocoder(vocoder_name, VOCODER_LOC(vocoder_name), device)
return model, vocoder, denoiser
def load_model_ui(model_type, textbox):
model_name, vocoder_name = RADIO_OPTIONS[model_type]["model"], RADIO_OPTIONS[model_type]["vocoder"]
global model, vocoder, denoiser, CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
if CURRENTLY_LOADED_MODEL != model_name:
model, vocoder, denoiser = load_model(model_name, vocoder_name)
CURRENTLY_LOADED_MODEL = model_name
if model_name == "matcha_ljspeech":
spk_slider = gr.update(visible=False, value=-1)
single_speaker_examples = gr.update(visible=True)
multi_speaker_examples = gr.update(visible=False)
length_scale = gr.update(value=0.95)
else:
spk_slider = gr.update(visible=True, value=0)
single_speaker_examples = gr.update(visible=False)
multi_speaker_examples = gr.update(visible=True)
length_scale = gr.update(value=0.85)
return (
textbox,
gr.update(interactive=True),
spk_slider,
single_speaker_examples,
multi_speaker_examples,
length_scale,
)
@torch.inference_mode()
@@ -45,13 +98,14 @@ def process_text_gradio(text):
@torch.inference_mode()
def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale):
def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale, spk):
spk = torch.tensor([spk], device=device, dtype=torch.long) if spk >= 0 else None
output = model.synthesise(
text,
text_length,
n_timesteps=n_timesteps,
temperature=temperature,
spks=args.spk,
spks=spk,
length_scale=length_scale,
)
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser)
@@ -61,9 +115,27 @@ def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale):
return fp.name, plot_tensor(output["mel"].squeeze().cpu().numpy())
def run_full_synthesis(text, n_timesteps, mel_temp, length_scale):
def multispeaker_example_cacher(text, n_timesteps, mel_temp, length_scale, spk):
global CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
if CURRENTLY_LOADED_MODEL != "matcha_vctk":
global model, vocoder, denoiser # pylint: disable=global-statement
model, vocoder, denoiser = load_model("matcha_vctk", "hifigan_univ_v1")
CURRENTLY_LOADED_MODEL = "matcha_vctk"
phones, text, text_lengths = process_text_gradio(text)
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale)
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
return phones, audio, mel_spectrogram
def ljspeech_example_cacher(text, n_timesteps, mel_temp, length_scale, spk=-1):
global CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
if CURRENTLY_LOADED_MODEL != "matcha_ljspeech":
global model, vocoder, denoiser # pylint: disable=global-statement
model, vocoder, denoiser = load_model("matcha_ljspeech", "hifigan_T2_v1")
CURRENTLY_LOADED_MODEL = "matcha_ljspeech"
phones, text, text_lengths = process_text_gradio(text)
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
return phones, audio, mel_spectrogram
@@ -92,20 +164,31 @@ def main():
with gr.Box():
with gr.Row():
gr.Markdown(description, scale=3)
gr.Image(LOGO_URL, label="Matcha-TTS logo", height=150, width=150, scale=1, show_label=False)
with gr.Column():
gr.Image(LOGO_URL, label="Matcha-TTS logo", height=50, width=50, scale=1, show_label=False)
html = '<br><iframe width="560" height="315" src="https://www.youtube.com/embed/xmvJkz3bqw0?si=jN7ILyDsbPwJCGoa" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>'
gr.HTML(html)
with gr.Box():
radio_options = list(RADIO_OPTIONS.keys())
model_type = gr.Radio(
radio_options, value=radio_options[0], label="Choose a Model", interactive=True, container=False
)
with gr.Row():
gr.Markdown("# Text Input")
with gr.Row():
text = gr.Textbox(value="", lines=2, label="Text to synthesise")
text = gr.Textbox(value="", lines=2, label="Text to synthesise", scale=3)
spk_slider = gr.Slider(
minimum=0, maximum=107, step=1, value=args.spk, label="Speaker ID", interactive=True, scale=1
)
with gr.Row():
gr.Markdown("### Hyper parameters")
with gr.Row():
n_timesteps = gr.Slider(
label="Number of ODE steps",
minimum=0,
minimum=1,
maximum=100,
step=1,
value=10,
@@ -142,58 +225,110 @@ def main():
# with gr.Row():
audio = gr.Audio(interactive=False, label="Audio")
with gr.Row():
with gr.Row(visible=False) as example_row_lj_speech:
examples = gr.Examples( # pylint: disable=unused-variable
examples=[
[
"We propose Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up O D E-based speech synthesis.",
50,
0.677,
1.0,
0.95,
],
[
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
2,
0.677,
1.0,
0.95,
],
[
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
4,
0.677,
1.0,
0.95,
],
[
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
10,
0.677,
1.0,
0.95,
],
[
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
50,
0.677,
1.0,
0.95,
],
[
"The narrative of these events is based largely on the recollections of the participants.",
10,
0.677,
1.0,
0.95,
],
[
"The jury did not believe him, and the verdict was for the defendants.",
10,
0.677,
1.0,
0.95,
],
],
fn=run_full_synthesis,
fn=ljspeech_example_cacher,
inputs=[text, n_timesteps, mel_temp, length_scale],
outputs=[phonetised_text, audio, mel_spectrogram],
cache_examples=True,
)
with gr.Row() as example_row_multispeaker:
multi_speaker_examples = gr.Examples( # pylint: disable=unused-variable
examples=[
[
"Hello everyone! I am speaker 0 and I am here to tell you that Matcha-TTS is amazing!",
10,
0.677,
0.85,
0,
],
[
"Hello everyone! I am speaker 16 and I am here to tell you that Matcha-TTS is amazing!",
10,
0.677,
0.85,
16,
],
[
"Hello everyone! I am speaker 44 and I am here to tell you that Matcha-TTS is amazing!",
50,
0.677,
0.85,
44,
],
[
"Hello everyone! I am speaker 45 and I am here to tell you that Matcha-TTS is amazing!",
50,
0.677,
0.85,
45,
],
[
"Hello everyone! I am speaker 58 and I am here to tell you that Matcha-TTS is amazing!",
4,
0.677,
0.85,
58,
],
],
fn=multispeaker_example_cacher,
inputs=[text, n_timesteps, mel_temp, length_scale, spk_slider],
outputs=[phonetised_text, audio, mel_spectrogram],
cache_examples=True,
label="Multi Speaker Examples",
)
model_type.change(lambda x: gr.update(interactive=False), inputs=[synth_btn], outputs=[synth_btn]).then(
load_model_ui,
inputs=[model_type, text],
outputs=[text, synth_btn, spk_slider, example_row_lj_speech, example_row_multispeaker, length_scale],
)
synth_btn.click(
fn=process_text_gradio,
inputs=[
@@ -204,11 +339,11 @@ def main():
queue=True,
).then(
fn=synthesise_mel,
inputs=[processed_text, processed_text_len, n_timesteps, mel_temp, length_scale],
inputs=[processed_text, processed_text_len, n_timesteps, mel_temp, length_scale, spk_slider],
outputs=[audio, mel_spectrogram],
)
demo.queue(concurrency_count=5).launch(share=True)
demo.queue().launch(share=True)
if __name__ == "__main__":

View File

@@ -1,6 +1,7 @@
import argparse
import datetime as dt
import os
import warnings
from pathlib import Path
import matplotlib.pyplot as plt
@@ -17,13 +18,20 @@ from matcha.text import sequence_to_text, text_to_sequence
from matcha.utils.utils import assert_model_downloaded, get_user_data_dir, intersperse
MATCHA_URLS = {
"matcha_ljspeech": "https://drive.google.com/file/d/1BBzmMU7k3a_WetDfaFblMoN18GqQeHCg/view?usp=drive_link"
} # , "matcha_vctk": ""} # Coming soon
"matcha_ljspeech": "https://drive.google.com/file/d/1BBzmMU7k3a_WetDfaFblMoN18GqQeHCg/view?usp=drive_link",
"matcha_vctk": "https://drive.google.com/file/d/1enuxmfslZciWGAl63WGh2ekVo00FYuQ9/view?usp=drive_link",
}
MULTISPEAKER_MODEL = {"matcha_vctk"}
SINGLESPEAKER_MODEL = {"matcha_ljspeech"}
VOCODER_URLS = {
"hifigan_T2_v1": "https://drive.google.com/file/d/14NENd4equCBLyyCSke114Mv6YR_j_uFs/view?usp=drive_link",
"hifigan_univ_v1": "https://drive.google.com/file/d/1qpgI41wNXFcH-iKq1Y42JlBC9j0je8PW/view?usp=drive_link",
}
VOCODER_URL = {"hifigan_T2_v1": "https://drive.google.com/file/d/14NENd4equCBLyyCSke114Mv6YR_j_uFs/view?usp=drive_link"}
MULTISPEAKER_MODEL = {
"matcha_vctk": {"vocoder": "hifigan_univ_v1", "speaking_rate": 0.85, "spk": 0, "spk_range": (0, 107)}
}
SINGLESPEAKER_MODEL = {"matcha_ljspeech": {"vocoder": "hifigan_T2_v1", "speaking_rate": 0.95, "spk": None}}
def plot_spectrogram_to_numpy(spectrogram, filename):
@@ -62,10 +70,14 @@ def get_texts(args):
def assert_required_models_available(args):
save_dir = get_user_data_dir()
if not hasattr(args, "checkpoint_path") and args.checkpoint_path is None:
model_path = args.checkpoint_path
else:
model_path = save_dir / f"{args.model}.ckpt"
vocoder_path = save_dir / f"{args.vocoder}"
assert_model_downloaded(model_path, MATCHA_URLS[args.model])
assert_model_downloaded(vocoder_path, VOCODER_URL[args.vocoder])
vocoder_path = save_dir / f"{args.vocoder}"
assert_model_downloaded(vocoder_path, VOCODER_URLS[args.vocoder])
return {"matcha": model_path, "vocoder": vocoder_path}
@@ -81,7 +93,7 @@ def load_hifigan(checkpoint_path, device):
def load_vocoder(vocoder_name, checkpoint_path, device):
print(f"[!] Loading {vocoder_name}!")
vocoder = None
if vocoder_name == "hifigan_T2_v1":
if vocoder_name in ("hifigan_T2_v1", "hifigan_univ_v1"):
vocoder = load_hifigan(checkpoint_path, device)
else:
raise NotImplementedError(
@@ -124,21 +136,70 @@ def validate_args(args):
args.text or args.file
), "Either text or file must be provided Matcha-T(ea)TTS need sometext to whisk the waveforms."
assert args.temperature >= 0, "Sampling temperature cannot be negative"
assert args.speaking_rate > 0, "Speaking rate must be greater than 0"
assert args.steps > 0, "Number of ODE steps must be greater than 0"
if args.model in SINGLESPEAKER_MODEL:
assert args.spk is None, f"Speaker ID is not supported for {args.model}"
if args.spk is not None:
assert args.spk >= 0 and args.spk < 109, "Speaker ID must be between 0 and 108"
assert args.model in MULTISPEAKER_MODEL, "Speaker ID is only supported for multispeaker model"
if args.checkpoint_path is None:
# When using pretrained models
if args.model in SINGLESPEAKER_MODEL.keys():
args = validate_args_for_single_speaker_model(args)
if args.model in MULTISPEAKER_MODEL:
if args.spk is None:
print("[!] Speaker ID not provided! Using speaker ID 0")
args.spk = 0
args = validate_args_for_multispeaker_model(args)
else:
# When using a custom model
if args.vocoder != "hifigan_univ_v1":
warn_ = "[-] Using custom model checkpoint! I would suggest passing --vocoder hifigan_univ_v1, unless the custom model is trained on LJ Speech."
warnings.warn(warn_, UserWarning)
if args.speaking_rate is None:
args.speaking_rate = 1.0
if args.batched:
assert args.batch_size > 0, "Batch size must be greater than 0"
assert args.speaking_rate > 0, "Speaking rate must be greater than 0"
return args
def validate_args_for_multispeaker_model(args):
if args.vocoder is not None:
if args.vocoder != MULTISPEAKER_MODEL[args.model]["vocoder"]:
warn_ = f"[-] Using {args.model} model! I would suggest passing --vocoder {MULTISPEAKER_MODEL[args.model]['vocoder']}"
warnings.warn(warn_, UserWarning)
else:
args.vocoder = MULTISPEAKER_MODEL[args.model]["vocoder"]
if args.speaking_rate is None:
args.speaking_rate = MULTISPEAKER_MODEL[args.model]["speaking_rate"]
spk_range = MULTISPEAKER_MODEL[args.model]["spk_range"]
if args.spk is not None:
assert (
args.spk >= spk_range[0] and args.spk <= spk_range[-1]
), f"Speaker ID must be between {spk_range} for this model."
else:
available_spk_id = MULTISPEAKER_MODEL[args.model]["spk"]
warn_ = f"[!] Speaker ID not provided! Using speaker ID {available_spk_id}"
warnings.warn(warn_, UserWarning)
args.spk = available_spk_id
return args
def validate_args_for_single_speaker_model(args):
if args.vocoder is not None:
if args.vocoder != SINGLESPEAKER_MODEL[args.model]["vocoder"]:
warn_ = f"[-] Using {args.model} model! I would suggest passing --vocoder {SINGLESPEAKER_MODEL[args.model]['vocoder']}"
warnings.warn(warn_, UserWarning)
else:
args.vocoder = SINGLESPEAKER_MODEL[args.model]["vocoder"]
if args.speaking_rate is None:
args.speaking_rate = SINGLESPEAKER_MODEL[args.model]["speaking_rate"]
if args.spk != SINGLESPEAKER_MODEL[args.model]["spk"]:
warn_ = f"[-] Ignoring speaker id {args.spk} for {args.model}"
warnings.warn(warn_, UserWarning)
args.spk = SINGLESPEAKER_MODEL[args.model]["spk"]
return args
@@ -166,9 +227,9 @@ def cli():
parser.add_argument(
"--vocoder",
type=str,
default="hifigan_T2_v1",
help="Vocoder to use",
choices=VOCODER_URL.keys(),
default=None,
help="Vocoder to use (default: will use the one suggested with the pretrained model))",
choices=VOCODER_URLS.keys(),
)
parser.add_argument("--text", type=str, default=None, help="Text to synthesize")
parser.add_argument("--file", type=str, default=None, help="Text file to synthesize")
@@ -182,7 +243,7 @@ def cli():
parser.add_argument(
"--speaking_rate",
type=float,
default=1.0,
default=None,
help="change the speaking rate, a higher value means slower speaking rate (default: 1.0)",
)
parser.add_argument("--steps", type=int, default=10, help="Number of ODE steps (default: 10)")
@@ -199,8 +260,10 @@ def cli():
default=os.getcwd(),
help="Output folder to save results (default: current dir)",
)
parser.add_argument("--batched", action="store_true")
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--batched", action="store_true", help="Batched inference (default: False)")
parser.add_argument(
"--batch_size", type=int, default=32, help="Batch size only useful when --batched (default: 32)"
)
args = parser.parse_args()
@@ -333,6 +396,8 @@ def unbatched_synthesis(args, device, model, vocoder, denoiser, texts, spk):
def print_config(args):
print("[!] Configurations: ")
print(f"\t- Model: {args.model}")
print(f"\t- Vocoder: {args.vocoder}")
print(f"\t- Temperature: {args.temperature}")
print(f"\t- Speaking rate: {args.speaking_rate}")
print(f"\t- Number of ODE steps: {args.steps}")

View File

@@ -35,7 +35,7 @@ torchaudio
matplotlib
pandas
conformer==0.3.2
diffusers==0.21.1
diffusers==0.21.2
notebook
ipywidgets
gradio