16 Commits

Author SHA1 Message Date
Shivam Mehta
d373e9a5b1 Bumping it to an increased version 2023-09-21 13:43:20 +00:00
Shivam Mehta
f12be190a4 ADding video teaser to readme 2023-09-21 13:41:21 +00:00
Shivam Mehta
be998ae31f Merge pull request #4 from shivammehta25/dev
Another version bump because I am new to twine
2023-09-21 15:26:54 +02:00
Shivam Mehta
a49af19f48 Another version bump because I am new to twine 2023-09-21 13:25:40 +00:00
Shivam Mehta
7850aa0910 Merge pull request #3 from shivammehta25/dev
Adding multispeaker 🍵 Matcha-TTS
2023-09-21 15:23:15 +02:00
Shivam Mehta
309739b7cc Version bump 2023-09-21 13:20:17 +00:00
Shivam Mehta
0aaabf90c4 Minor UI fixes 2023-09-21 13:18:32 +00:00
Shivam Mehta
c5dab67d9f Adding teaser url 2023-09-21 13:15:36 +00:00
Shivam Mehta
d098f32730 bumping diffusers, changing depandabot to open PR to dev branch, adding url for multispeaker matcha checkpoint 2023-09-21 12:32:27 +00:00
Shivam Mehta
281a098337 better default speaking rate 2023-09-20 15:23:46 +00:00
Shivam Mehta
db95158043 Will have to load all models to enable multiple synthesis at the same time 2023-09-20 10:40:01 +00:00
Shivam Mehta
267bf96651 Adding multispeaker model in UI 2023-09-20 10:28:48 +00:00
Shivam Mehta
72635012b0 Adding matcha vctk 2023-09-20 07:08:11 +00:00
Gustav Eje Henter
9ceee279f0 Minor improvements to README.md 2023-09-18 18:44:13 +02:00
Shivam Mehta
d7b9a37359 adding more validation to multispeaker CLI 2023-09-18 11:37:58 +00:00
Shivam Mehta
ec43ef0732 Keeping ODE step slider to be greater than 0 always in gradio 2023-09-17 22:08:29 +00:00
9 changed files with 294 additions and 87 deletions

View File

@@ -7,6 +7,7 @@ version: 2
updates: updates:
- package-ecosystem: "pip" # See documentation for possible values - package-ecosystem: "pip" # See documentation for possible values
directory: "/" # Location of package manifests directory: "/" # Location of package manifests
target-branch: "dev"
schedule: schedule:
interval: "daily" interval: "daily"
ignore: ignore:

View File

@@ -17,7 +17,7 @@ create-package: ## Create wheel and tar gz
rm -rf dist/ rm -rf dist/
python setup.py bdist_wheel --plat-name=manylinux1_x86_64 python setup.py bdist_wheel --plat-name=manylinux1_x86_64
python setup.py sdist python setup.py sdist
python -m twine upload dist/* --verbose python -m twine upload dist/* --verbose --skip-existing
format: ## Run pre-commit hooks format: ## Run pre-commit hooks
pre-commit run -a pre-commit run -a

View File

@@ -19,20 +19,23 @@
> This is the official code implementation of 🍵 Matcha-TTS. > This is the official code implementation of 🍵 Matcha-TTS.
We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up ODE-based speech synthesis. Our method: We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses [conditional flow matching](https://arxiv.org/abs/2210.02747) (similar to [rectified flows](https://arxiv.org/abs/2209.03003)) to speed up ODE-based speech synthesis. Our method:
- Is probabilistic - Is probabilistic
- Has compact memory footprint - Has compact memory footprint
- Sounds highly natural - Sounds highly natural
- Is very fast to synthesise from - Is very fast to synthesise from
Check out our [demo page](https://shivammehta25.github.io/Matcha-TTS). Read our [arXiv preprint for more details](https://arxiv.org/abs/2309.03199). Check out our [demo page](https://shivammehta25.github.io/Matcha-TTS) and read [our arXiv preprint](https://arxiv.org/abs/2309.03199) for more details.
[Pretrained models](https://drive.google.com/drive/folders/17C_gYgEHOxI5ZypcfE_k1piKCtyR0isJ?usp=sharing) will be auto downloaded with the CLI or gradio interface. [Pre-trained models](https://drive.google.com/drive/folders/17C_gYgEHOxI5ZypcfE_k1piKCtyR0isJ?usp=sharing) will be automatically downloaded with the CLI or gradio interface.
[Try 🍵 Matcha-TTS on HuggingFace 🤗 spaces!](https://huggingface.co/spaces/shivammehta25/Matcha-TTS) [Try 🍵 Matcha-TTS on HuggingFace 🤗 spaces!](https://huggingface.co/spaces/shivammehta25/Matcha-TTS)
<br> ## Watch the teaser
[![Watch the video](https://img.youtube.com/vi/xmvJkz3bqw0/hqdefault.jpg)](https://youtu.be/xmvJkz3bqw0)
## Installation ## Installation
@@ -110,26 +113,13 @@ matcha-tts --text "<INPUT TEXT>" --temperature 0.667
matcha-tts --text "<INPUT TEXT>" --steps 10 matcha-tts --text "<INPUT TEXT>" --steps 10
``` ```
## Citation information
If you find this work useful, please cite our paper:
```text
@article{mehta2023matcha,
title={Matcha-TTS: A fast TTS architecture with conditional flow matching},
author={Mehta, Shivam and Tu, Ruibo and Beskow, Jonas and Sz{\'e}kely, {\'E}va and Henter, Gustav Eje},
journal={arXiv preprint arXiv:2309.03199},
year={2023}
}
```
## Train with your own dataset ## Train with your own dataset
Let's assume we are training with LJSpeech Let's assume we are training with LJ Speech
1. Download the dataset from [here](https://keithito.com/LJ-Speech-Dataset/), extract it to `data/LJSpeech-1.1`, and prepare the filelists to point to the extracted data like the [5th point of setup in Tacotron2 repo](https://github.com/NVIDIA/tacotron2#setup). 1. Download the dataset from [here](https://keithito.com/LJ-Speech-Dataset/), extract it to `data/LJSpeech-1.1`, and prepare the file lists to point to the extracted data like for [item 5 in the setup of the NVIDIA Tacotron 2 repo](https://github.com/NVIDIA/tacotron2#setup).
2. Clone and enter this repository 2. Clone and enter the Matcha-TTS repository
```bash ```bash
git clone https://github.com/shivammehta25/Matcha-TTS.git git clone https://github.com/shivammehta25/Matcha-TTS.git
@@ -167,7 +157,7 @@ data_statistics: # Computed for ljspeech dataset
to the paths of your train and validation filelists. to the paths of your train and validation filelists.
5. Run the training script 6. Run the training script
```bash ```bash
make train-ljspeech make train-ljspeech
@@ -191,20 +181,33 @@ python matcha/train.py experiment=ljspeech_min_memory
python matcha/train.py experiment=ljspeech trainer.devices=[0,1] python matcha/train.py experiment=ljspeech trainer.devices=[0,1]
``` ```
6. Synthesise from the custom trained model 7. Synthesise from the custom trained model
```bash ```bash
matcha-tts --text "<INPUT TEXT>" --checkpoint_path <PATH TO CHECKPOINT> matcha-tts --text "<INPUT TEXT>" --checkpoint_path <PATH TO CHECKPOINT>
``` ```
## Citation information
If you use our code or otherwise find this work useful, please cite our paper:
```text
@article{mehta2023matcha,
title={Matcha-TTS: A fast TTS architecture with conditional flow matching},
author={Mehta, Shivam and Tu, Ruibo and Beskow, Jonas and Sz{\'e}kely, {\'E}va and Henter, Gustav Eje},
journal={arXiv preprint arXiv:2309.03199},
year={2023}
}
```
## Acknowledgements ## Acknowledgements
Since this code uses: [Lightning-Hydra-Template](https://github.com/ashleve/lightning-hydra-template), you have all the powers that comes with it. Since this code uses [Lightning-Hydra-Template](https://github.com/ashleve/lightning-hydra-template), you have all the powers that come with it.
Other source codes I would like to acknowledge: Other source code I would like to acknowledge:
- [Coqui-TTS](https://github.com/coqui-ai/TTS/tree/dev) :For helping me figure out how to make cython binaries pip installable and encouragement - [Coqui-TTS](https://github.com/coqui-ai/TTS/tree/dev): For helping me figure out how to make cython binaries pip installable and encouragement
- [Hugging Face Diffusers](https://huggingface.co/): For their awesome diffusers library and its components - [Hugging Face Diffusers](https://huggingface.co/): For their awesome diffusers library and its components
- [Grad-TTS](https://github.com/huawei-noah/Speech-Backbones/tree/main/Grad-TTS): For source code of MAS - [Grad-TTS](https://github.com/huawei-noah/Speech-Backbones/tree/main/Grad-TTS): For the monotonic alignment search source code
- [torchdyn](https://github.com/DiffEqML/torchdyn): Useful for trying other ODE solvers during research and development - [torchdyn](https://github.com/DiffEqML/torchdyn): Useful for trying other ODE solvers during research and development
- [labml.ai](https://nn.labml.ai/transformers/rope/index.html): For RoPE implementation - [labml.ai](https://nn.labml.ai/transformers/rope/index.html): For the RoPE implementation

View File

@@ -7,8 +7,8 @@
task_name: "debug" task_name: "debug"
# disable callbacks and loggers during debugging # disable callbacks and loggers during debugging
callbacks: null # callbacks: null
logger: null # logger: null
extras: extras:
ignore_warnings: False ignore_warnings: False

View File

@@ -7,6 +7,9 @@ defaults:
trainer: trainer:
max_epochs: 1 max_epochs: 1
profiler: "simple" # profiler: "simple"
# profiler: "advanced" profiler: "advanced"
# profiler: "pytorch" # profiler: "pytorch"
accelerator: gpu
limit_train_batches: 0.02

View File

@@ -1 +1 @@
0.0.1.dev4 0.0.3

View File

@@ -8,7 +8,7 @@ import torch
from matcha.cli import ( from matcha.cli import (
MATCHA_URLS, MATCHA_URLS,
VOCODER_URL, VOCODER_URLS,
assert_model_downloaded, assert_model_downloaded,
get_device, get_device,
load_matcha, load_matcha,
@@ -22,20 +22,73 @@ LOCATION = Path(get_user_data_dir())
args = Namespace( args = Namespace(
cpu=False, cpu=False,
model="matcha_ljspeech", model="matcha_vctk",
vocoder="hifigan_T2_v1", vocoder="hifigan_univ_v1",
spk=None, spk=0,
) )
MATCHA_TTS_LOC = LOCATION / f"{args.model}.ckpt" CURRENTLY_LOADED_MODEL = args.model
VOCODER_LOC = LOCATION / f"{args.vocoder}"
MATCHA_TTS_LOC = lambda x: LOCATION / f"{x}.ckpt" # noqa: E731
VOCODER_LOC = lambda x: LOCATION / f"{x}" # noqa: E731
LOGO_URL = "https://shivammehta25.github.io/Matcha-TTS/images/logo.png" LOGO_URL = "https://shivammehta25.github.io/Matcha-TTS/images/logo.png"
assert_model_downloaded(MATCHA_TTS_LOC, MATCHA_URLS[args.model]) RADIO_OPTIONS = {
assert_model_downloaded(VOCODER_LOC, VOCODER_URL[args.vocoder]) "Multi Speaker (VCTK)": {
"model": "matcha_vctk",
"vocoder": "hifigan_univ_v1",
},
"Single Speaker (LJ Speech)": {
"model": "matcha_ljspeech",
"vocoder": "hifigan_T2_v1",
},
}
# Ensure all the required models are downloaded
assert_model_downloaded(MATCHA_TTS_LOC("matcha_ljspeech"), MATCHA_URLS["matcha_ljspeech"])
assert_model_downloaded(VOCODER_LOC("hifigan_T2_v1"), VOCODER_URLS["hifigan_T2_v1"])
assert_model_downloaded(MATCHA_TTS_LOC("matcha_vctk"), MATCHA_URLS["matcha_vctk"])
assert_model_downloaded(VOCODER_LOC("hifigan_univ_v1"), VOCODER_URLS["hifigan_univ_v1"])
device = get_device(args) device = get_device(args)
model = load_matcha(args.model, MATCHA_TTS_LOC, device) # Load default model
vocoder, denoiser = load_vocoder(args.vocoder, VOCODER_LOC, device) model = load_matcha(args.model, MATCHA_TTS_LOC(args.model), device)
vocoder, denoiser = load_vocoder(args.vocoder, VOCODER_LOC(args.vocoder), device)
def load_model(model_name, vocoder_name):
model = load_matcha(model_name, MATCHA_TTS_LOC(model_name), device)
vocoder, denoiser = load_vocoder(vocoder_name, VOCODER_LOC(vocoder_name), device)
return model, vocoder, denoiser
def load_model_ui(model_type, textbox):
model_name, vocoder_name = RADIO_OPTIONS[model_type]["model"], RADIO_OPTIONS[model_type]["vocoder"]
global model, vocoder, denoiser, CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
if CURRENTLY_LOADED_MODEL != model_name:
model, vocoder, denoiser = load_model(model_name, vocoder_name)
CURRENTLY_LOADED_MODEL = model_name
if model_name == "matcha_ljspeech":
spk_slider = gr.update(visible=False, value=-1)
single_speaker_examples = gr.update(visible=True)
multi_speaker_examples = gr.update(visible=False)
length_scale = gr.update(value=0.95)
else:
spk_slider = gr.update(visible=True, value=0)
single_speaker_examples = gr.update(visible=False)
multi_speaker_examples = gr.update(visible=True)
length_scale = gr.update(value=0.85)
return (
textbox,
gr.update(interactive=True),
spk_slider,
single_speaker_examples,
multi_speaker_examples,
length_scale,
)
@torch.inference_mode() @torch.inference_mode()
@@ -45,13 +98,14 @@ def process_text_gradio(text):
@torch.inference_mode() @torch.inference_mode()
def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale): def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale, spk):
spk = torch.tensor([spk], device=device, dtype=torch.long) if spk >= 0 else None
output = model.synthesise( output = model.synthesise(
text, text,
text_length, text_length,
n_timesteps=n_timesteps, n_timesteps=n_timesteps,
temperature=temperature, temperature=temperature,
spks=args.spk, spks=spk,
length_scale=length_scale, length_scale=length_scale,
) )
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser) output["waveform"] = to_waveform(output["mel"], vocoder, denoiser)
@@ -61,9 +115,27 @@ def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale):
return fp.name, plot_tensor(output["mel"].squeeze().cpu().numpy()) return fp.name, plot_tensor(output["mel"].squeeze().cpu().numpy())
def run_full_synthesis(text, n_timesteps, mel_temp, length_scale): def multispeaker_example_cacher(text, n_timesteps, mel_temp, length_scale, spk):
global CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
if CURRENTLY_LOADED_MODEL != "matcha_vctk":
global model, vocoder, denoiser # pylint: disable=global-statement
model, vocoder, denoiser = load_model("matcha_vctk", "hifigan_univ_v1")
CURRENTLY_LOADED_MODEL = "matcha_vctk"
phones, text, text_lengths = process_text_gradio(text) phones, text, text_lengths = process_text_gradio(text)
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale) audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
return phones, audio, mel_spectrogram
def ljspeech_example_cacher(text, n_timesteps, mel_temp, length_scale, spk=-1):
global CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
if CURRENTLY_LOADED_MODEL != "matcha_ljspeech":
global model, vocoder, denoiser # pylint: disable=global-statement
model, vocoder, denoiser = load_model("matcha_ljspeech", "hifigan_T2_v1")
CURRENTLY_LOADED_MODEL = "matcha_ljspeech"
phones, text, text_lengths = process_text_gradio(text)
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
return phones, audio, mel_spectrogram return phones, audio, mel_spectrogram
@@ -92,20 +164,31 @@ def main():
with gr.Box(): with gr.Box():
with gr.Row(): with gr.Row():
gr.Markdown(description, scale=3) gr.Markdown(description, scale=3)
gr.Image(LOGO_URL, label="Matcha-TTS logo", height=150, width=150, scale=1, show_label=False) with gr.Column():
gr.Image(LOGO_URL, label="Matcha-TTS logo", height=50, width=50, scale=1, show_label=False)
html = '<br><iframe width="560" height="315" src="https://www.youtube.com/embed/xmvJkz3bqw0?si=jN7ILyDsbPwJCGoa" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>'
gr.HTML(html)
with gr.Box(): with gr.Box():
radio_options = list(RADIO_OPTIONS.keys())
model_type = gr.Radio(
radio_options, value=radio_options[0], label="Choose a Model", interactive=True, container=False
)
with gr.Row(): with gr.Row():
gr.Markdown("# Text Input") gr.Markdown("# Text Input")
with gr.Row(): with gr.Row():
text = gr.Textbox(value="", lines=2, label="Text to synthesise") text = gr.Textbox(value="", lines=2, label="Text to synthesise", scale=3)
spk_slider = gr.Slider(
minimum=0, maximum=107, step=1, value=args.spk, label="Speaker ID", interactive=True, scale=1
)
with gr.Row(): with gr.Row():
gr.Markdown("### Hyper parameters") gr.Markdown("### Hyper parameters")
with gr.Row(): with gr.Row():
n_timesteps = gr.Slider( n_timesteps = gr.Slider(
label="Number of ODE steps", label="Number of ODE steps",
minimum=0, minimum=1,
maximum=100, maximum=100,
step=1, step=1,
value=10, value=10,
@@ -142,58 +225,110 @@ def main():
# with gr.Row(): # with gr.Row():
audio = gr.Audio(interactive=False, label="Audio") audio = gr.Audio(interactive=False, label="Audio")
with gr.Row(): with gr.Row(visible=False) as example_row_lj_speech:
examples = gr.Examples( # pylint: disable=unused-variable examples = gr.Examples( # pylint: disable=unused-variable
examples=[ examples=[
[ [
"We propose Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up O D E-based speech synthesis.", "We propose Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up O D E-based speech synthesis.",
50, 50,
0.677, 0.677,
1.0, 0.95,
], ],
[ [
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.", "The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
2, 2,
0.677, 0.677,
1.0, 0.95,
], ],
[ [
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.", "The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
4, 4,
0.677, 0.677,
1.0, 0.95,
], ],
[ [
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.", "The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
10, 10,
0.677, 0.677,
1.0, 0.95,
], ],
[ [
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.", "The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
50, 50,
0.677, 0.677,
1.0, 0.95,
], ],
[ [
"The narrative of these events is based largely on the recollections of the participants.", "The narrative of these events is based largely on the recollections of the participants.",
10, 10,
0.677, 0.677,
1.0, 0.95,
], ],
[ [
"The jury did not believe him, and the verdict was for the defendants.", "The jury did not believe him, and the verdict was for the defendants.",
10, 10,
0.677, 0.677,
1.0, 0.95,
], ],
], ],
fn=run_full_synthesis, fn=ljspeech_example_cacher,
inputs=[text, n_timesteps, mel_temp, length_scale], inputs=[text, n_timesteps, mel_temp, length_scale],
outputs=[phonetised_text, audio, mel_spectrogram], outputs=[phonetised_text, audio, mel_spectrogram],
cache_examples=True, cache_examples=True,
) )
with gr.Row() as example_row_multispeaker:
multi_speaker_examples = gr.Examples( # pylint: disable=unused-variable
examples=[
[
"Hello everyone! I am speaker 0 and I am here to tell you that Matcha-TTS is amazing!",
10,
0.677,
0.85,
0,
],
[
"Hello everyone! I am speaker 16 and I am here to tell you that Matcha-TTS is amazing!",
10,
0.677,
0.85,
16,
],
[
"Hello everyone! I am speaker 44 and I am here to tell you that Matcha-TTS is amazing!",
50,
0.677,
0.85,
44,
],
[
"Hello everyone! I am speaker 45 and I am here to tell you that Matcha-TTS is amazing!",
50,
0.677,
0.85,
45,
],
[
"Hello everyone! I am speaker 58 and I am here to tell you that Matcha-TTS is amazing!",
4,
0.677,
0.85,
58,
],
],
fn=multispeaker_example_cacher,
inputs=[text, n_timesteps, mel_temp, length_scale, spk_slider],
outputs=[phonetised_text, audio, mel_spectrogram],
cache_examples=True,
label="Multi Speaker Examples",
)
model_type.change(lambda x: gr.update(interactive=False), inputs=[synth_btn], outputs=[synth_btn]).then(
load_model_ui,
inputs=[model_type, text],
outputs=[text, synth_btn, spk_slider, example_row_lj_speech, example_row_multispeaker, length_scale],
)
synth_btn.click( synth_btn.click(
fn=process_text_gradio, fn=process_text_gradio,
inputs=[ inputs=[
@@ -204,11 +339,11 @@ def main():
queue=True, queue=True,
).then( ).then(
fn=synthesise_mel, fn=synthesise_mel,
inputs=[processed_text, processed_text_len, n_timesteps, mel_temp, length_scale], inputs=[processed_text, processed_text_len, n_timesteps, mel_temp, length_scale, spk_slider],
outputs=[audio, mel_spectrogram], outputs=[audio, mel_spectrogram],
) )
demo.queue(concurrency_count=5).launch(share=True) demo.queue().launch(share=True)
if __name__ == "__main__": if __name__ == "__main__":

View File

@@ -1,6 +1,7 @@
import argparse import argparse
import datetime as dt import datetime as dt
import os import os
import warnings
from pathlib import Path from pathlib import Path
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
@@ -17,13 +18,20 @@ from matcha.text import sequence_to_text, text_to_sequence
from matcha.utils.utils import assert_model_downloaded, get_user_data_dir, intersperse from matcha.utils.utils import assert_model_downloaded, get_user_data_dir, intersperse
MATCHA_URLS = { MATCHA_URLS = {
"matcha_ljspeech": "https://drive.google.com/file/d/1BBzmMU7k3a_WetDfaFblMoN18GqQeHCg/view?usp=drive_link" "matcha_ljspeech": "https://drive.google.com/file/d/1BBzmMU7k3a_WetDfaFblMoN18GqQeHCg/view?usp=drive_link",
} # , "matcha_vctk": ""} # Coming soon "matcha_vctk": "https://drive.google.com/file/d/1enuxmfslZciWGAl63WGh2ekVo00FYuQ9/view?usp=drive_link",
}
MULTISPEAKER_MODEL = {"matcha_vctk"} VOCODER_URLS = {
SINGLESPEAKER_MODEL = {"matcha_ljspeech"} "hifigan_T2_v1": "https://drive.google.com/file/d/14NENd4equCBLyyCSke114Mv6YR_j_uFs/view?usp=drive_link",
"hifigan_univ_v1": "https://drive.google.com/file/d/1qpgI41wNXFcH-iKq1Y42JlBC9j0je8PW/view?usp=drive_link",
}
VOCODER_URL = {"hifigan_T2_v1": "https://drive.google.com/file/d/14NENd4equCBLyyCSke114Mv6YR_j_uFs/view?usp=drive_link"} MULTISPEAKER_MODEL = {
"matcha_vctk": {"vocoder": "hifigan_univ_v1", "speaking_rate": 0.85, "spk": 0, "spk_range": (0, 107)}
}
SINGLESPEAKER_MODEL = {"matcha_ljspeech": {"vocoder": "hifigan_T2_v1", "speaking_rate": 0.95, "spk": None}}
def plot_spectrogram_to_numpy(spectrogram, filename): def plot_spectrogram_to_numpy(spectrogram, filename):
@@ -62,10 +70,14 @@ def get_texts(args):
def assert_required_models_available(args): def assert_required_models_available(args):
save_dir = get_user_data_dir() save_dir = get_user_data_dir()
if not hasattr(args, "checkpoint_path") and args.checkpoint_path is None:
model_path = args.checkpoint_path
else:
model_path = save_dir / f"{args.model}.ckpt" model_path = save_dir / f"{args.model}.ckpt"
vocoder_path = save_dir / f"{args.vocoder}"
assert_model_downloaded(model_path, MATCHA_URLS[args.model]) assert_model_downloaded(model_path, MATCHA_URLS[args.model])
assert_model_downloaded(vocoder_path, VOCODER_URL[args.vocoder])
vocoder_path = save_dir / f"{args.vocoder}"
assert_model_downloaded(vocoder_path, VOCODER_URLS[args.vocoder])
return {"matcha": model_path, "vocoder": vocoder_path} return {"matcha": model_path, "vocoder": vocoder_path}
@@ -81,7 +93,7 @@ def load_hifigan(checkpoint_path, device):
def load_vocoder(vocoder_name, checkpoint_path, device): def load_vocoder(vocoder_name, checkpoint_path, device):
print(f"[!] Loading {vocoder_name}!") print(f"[!] Loading {vocoder_name}!")
vocoder = None vocoder = None
if vocoder_name == "hifigan_T2_v1": if vocoder_name in ("hifigan_T2_v1", "hifigan_univ_v1"):
vocoder = load_hifigan(checkpoint_path, device) vocoder = load_hifigan(checkpoint_path, device)
else: else:
raise NotImplementedError( raise NotImplementedError(
@@ -124,21 +136,70 @@ def validate_args(args):
args.text or args.file args.text or args.file
), "Either text or file must be provided Matcha-T(ea)TTS need sometext to whisk the waveforms." ), "Either text or file must be provided Matcha-T(ea)TTS need sometext to whisk the waveforms."
assert args.temperature >= 0, "Sampling temperature cannot be negative" assert args.temperature >= 0, "Sampling temperature cannot be negative"
assert args.speaking_rate > 0, "Speaking rate must be greater than 0"
assert args.steps > 0, "Number of ODE steps must be greater than 0" assert args.steps > 0, "Number of ODE steps must be greater than 0"
if args.model in SINGLESPEAKER_MODEL:
assert args.spk is None, f"Speaker ID is not supported for {args.model}" if args.checkpoint_path is None:
if args.spk is not None: # When using pretrained models
assert args.spk >= 0 and args.spk < 109, "Speaker ID must be between 0 and 108" if args.model in SINGLESPEAKER_MODEL.keys():
assert args.model in MULTISPEAKER_MODEL, "Speaker ID is only supported for multispeaker model" args = validate_args_for_single_speaker_model(args)
if args.model in MULTISPEAKER_MODEL: if args.model in MULTISPEAKER_MODEL:
if args.spk is None: args = validate_args_for_multispeaker_model(args)
print("[!] Speaker ID not provided! Using speaker ID 0") else:
args.spk = 0 # When using a custom model
if args.vocoder != "hifigan_univ_v1":
warn_ = "[-] Using custom model checkpoint! I would suggest passing --vocoder hifigan_univ_v1, unless the custom model is trained on LJ Speech."
warnings.warn(warn_, UserWarning)
if args.speaking_rate is None:
args.speaking_rate = 1.0
if args.batched: if args.batched:
assert args.batch_size > 0, "Batch size must be greater than 0" assert args.batch_size > 0, "Batch size must be greater than 0"
assert args.speaking_rate > 0, "Speaking rate must be greater than 0"
return args
def validate_args_for_multispeaker_model(args):
if args.vocoder is not None:
if args.vocoder != MULTISPEAKER_MODEL[args.model]["vocoder"]:
warn_ = f"[-] Using {args.model} model! I would suggest passing --vocoder {MULTISPEAKER_MODEL[args.model]['vocoder']}"
warnings.warn(warn_, UserWarning)
else:
args.vocoder = MULTISPEAKER_MODEL[args.model]["vocoder"]
if args.speaking_rate is None:
args.speaking_rate = MULTISPEAKER_MODEL[args.model]["speaking_rate"]
spk_range = MULTISPEAKER_MODEL[args.model]["spk_range"]
if args.spk is not None:
assert (
args.spk >= spk_range[0] and args.spk <= spk_range[-1]
), f"Speaker ID must be between {spk_range} for this model."
else:
available_spk_id = MULTISPEAKER_MODEL[args.model]["spk"]
warn_ = f"[!] Speaker ID not provided! Using speaker ID {available_spk_id}"
warnings.warn(warn_, UserWarning)
args.spk = available_spk_id
return args
def validate_args_for_single_speaker_model(args):
if args.vocoder is not None:
if args.vocoder != SINGLESPEAKER_MODEL[args.model]["vocoder"]:
warn_ = f"[-] Using {args.model} model! I would suggest passing --vocoder {SINGLESPEAKER_MODEL[args.model]['vocoder']}"
warnings.warn(warn_, UserWarning)
else:
args.vocoder = SINGLESPEAKER_MODEL[args.model]["vocoder"]
if args.speaking_rate is None:
args.speaking_rate = SINGLESPEAKER_MODEL[args.model]["speaking_rate"]
if args.spk != SINGLESPEAKER_MODEL[args.model]["spk"]:
warn_ = f"[-] Ignoring speaker id {args.spk} for {args.model}"
warnings.warn(warn_, UserWarning)
args.spk = SINGLESPEAKER_MODEL[args.model]["spk"]
return args return args
@@ -166,9 +227,9 @@ def cli():
parser.add_argument( parser.add_argument(
"--vocoder", "--vocoder",
type=str, type=str,
default="hifigan_T2_v1", default=None,
help="Vocoder to use", help="Vocoder to use (default: will use the one suggested with the pretrained model))",
choices=VOCODER_URL.keys(), choices=VOCODER_URLS.keys(),
) )
parser.add_argument("--text", type=str, default=None, help="Text to synthesize") parser.add_argument("--text", type=str, default=None, help="Text to synthesize")
parser.add_argument("--file", type=str, default=None, help="Text file to synthesize") parser.add_argument("--file", type=str, default=None, help="Text file to synthesize")
@@ -182,7 +243,7 @@ def cli():
parser.add_argument( parser.add_argument(
"--speaking_rate", "--speaking_rate",
type=float, type=float,
default=1.0, default=None,
help="change the speaking rate, a higher value means slower speaking rate (default: 1.0)", help="change the speaking rate, a higher value means slower speaking rate (default: 1.0)",
) )
parser.add_argument("--steps", type=int, default=10, help="Number of ODE steps (default: 10)") parser.add_argument("--steps", type=int, default=10, help="Number of ODE steps (default: 10)")
@@ -199,8 +260,10 @@ def cli():
default=os.getcwd(), default=os.getcwd(),
help="Output folder to save results (default: current dir)", help="Output folder to save results (default: current dir)",
) )
parser.add_argument("--batched", action="store_true") parser.add_argument("--batched", action="store_true", help="Batched inference (default: False)")
parser.add_argument("--batch_size", type=int, default=32) parser.add_argument(
"--batch_size", type=int, default=32, help="Batch size only useful when --batched (default: 32)"
)
args = parser.parse_args() args = parser.parse_args()
@@ -333,6 +396,8 @@ def unbatched_synthesis(args, device, model, vocoder, denoiser, texts, spk):
def print_config(args): def print_config(args):
print("[!] Configurations: ") print("[!] Configurations: ")
print(f"\t- Model: {args.model}")
print(f"\t- Vocoder: {args.vocoder}")
print(f"\t- Temperature: {args.temperature}") print(f"\t- Temperature: {args.temperature}")
print(f"\t- Speaking rate: {args.speaking_rate}") print(f"\t- Speaking rate: {args.speaking_rate}")
print(f"\t- Number of ODE steps: {args.steps}") print(f"\t- Number of ODE steps: {args.steps}")

View File

@@ -35,7 +35,7 @@ torchaudio
matplotlib matplotlib
pandas pandas
conformer==0.3.2 conformer==0.3.2
diffusers==0.21.1 diffusers==0.21.2
notebook notebook
ipywidgets ipywidgets
gradio gradio