16 Commits

Author SHA1 Message Date
Shivam Mehta
d31cd92a61 Merge pull request #75 from shivammehta25/dev
Adding alginment information to readme
2024-05-27 13:57:49 +02:00
Shivam Mehta
068d135e20 Adding alginment information to readme 2024-05-27 13:57:10 +02:00
Shivam Mehta
bd37d03b62 Merge pull request #74 from shivammehta25/dev
Adding the possibility to use Matcha-TTS as an aligner and train from pretrained extracted alignments.
2024-05-27 13:54:27 +02:00
Shivam Mehta
ac0b258f80 Adding configuration for training from durations 2024-05-27 13:50:21 +02:00
Shivam Mehta
de910380bc Fixing batched synthesis for multispeaker model 2024-05-27 13:40:02 +02:00
Shivam Mehta
aa496aa13f Adding the possibility to train with durations 2024-05-27 13:24:21 +02:00
Shivam Mehta
e658aee6a5 Pinning gradio 2024-05-25 20:15:17 +02:00
Shivam Mehta
d816c40e3d Updating the notebook to adjust to the change 2024-05-24 11:46:03 +02:00
Shivam Mehta
4b39f6cad0 Adding the possibility of get durations out of pretrained model 2024-05-24 11:34:51 +02:00
Shivam Mehta
dd9105b34b Merge pull request #60 from jimregan/patch-1
Pin gradio to 3.43.2
2024-02-27 13:29:42 +01:00
Jim O’Regan
7d9d4cfd40 Pin gradio to 3.43.2
Fixes #59
2024-02-27 13:25:08 +01:00
Shivam Mehta
256adc55d3 Adding ICASSP 2024 2024-01-12 11:31:01 +00:00
Shivam Mehta
bfcbdbc82e Merge pull request #43 from shivammehta25/dev
Removing gdown for HifiGAN checkpoints too
2024-01-12 12:29:03 +01:00
Shivam Mehta
47a629f128 Merge pull request #42 from shivammehta25/dev
Merging dev adding another dataset, piper phonemizer and refractoring
2024-01-12 11:49:53 +01:00
Shivam Mehta
5a2a893750 Merge pull request #19 from shivammehta25/pre-commit-ci-update-config
[pre-commit.ci] pre-commit autoupdate
2024-01-12 11:47:10 +01:00
pre-commit-ci[bot]
dc035a09f2 [pre-commit.ci] pre-commit autoupdate
updates:
- [github.com/pre-commit/pre-commit-hooks: v4.4.0 → v4.5.0](https://github.com/pre-commit/pre-commit-hooks/compare/v4.4.0...v4.5.0)
- [github.com/psf/black: 23.9.1 → 23.12.1](https://github.com/psf/black/compare/23.9.1...23.12.1)
- [github.com/PyCQA/isort: 5.12.0 → 5.13.2](https://github.com/PyCQA/isort/compare/5.12.0...5.13.2)
- [github.com/asottile/pyupgrade: v3.14.0 → v3.15.0](https://github.com/asottile/pyupgrade/compare/v3.14.0...v3.15.0)
- [github.com/PyCQA/flake8: 6.1.0 → 7.0.0](https://github.com/PyCQA/flake8/compare/6.1.0...7.0.0)
- [github.com/pycqa/pylint: v3.0.0 → v3.0.3](https://github.com/pycqa/pylint/compare/v3.0.0...v3.0.3)
2024-01-08 21:15:26 +00:00
18 changed files with 395 additions and 46 deletions

View File

@@ -1,9 +1,9 @@
default_language_version: default_language_version:
python: python3.10 python: python3.11
repos: repos:
- repo: https://github.com/pre-commit/pre-commit-hooks - repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.4.0 rev: v4.5.0
hooks: hooks:
# list of supported hooks: https://pre-commit.com/hooks.html # list of supported hooks: https://pre-commit.com/hooks.html
- id: trailing-whitespace - id: trailing-whitespace
@@ -18,28 +18,28 @@ repos:
# python code formatting # python code formatting
- repo: https://github.com/psf/black - repo: https://github.com/psf/black
rev: 23.9.1 rev: 23.12.1
hooks: hooks:
- id: black - id: black
args: [--line-length, "120"] args: [--line-length, "120"]
# python import sorting # python import sorting
- repo: https://github.com/PyCQA/isort - repo: https://github.com/PyCQA/isort
rev: 5.12.0 rev: 5.13.2
hooks: hooks:
- id: isort - id: isort
args: ["--profile", "black", "--filter-files"] args: ["--profile", "black", "--filter-files"]
# python upgrading syntax to newer version # python upgrading syntax to newer version
- repo: https://github.com/asottile/pyupgrade - repo: https://github.com/asottile/pyupgrade
rev: v3.14.0 rev: v3.15.0
hooks: hooks:
- id: pyupgrade - id: pyupgrade
args: [--py38-plus] args: [--py38-plus]
# python check (PEP8), programming errors and code complexity # python check (PEP8), programming errors and code complexity
- repo: https://github.com/PyCQA/flake8 - repo: https://github.com/PyCQA/flake8
rev: 6.1.0 rev: 7.0.0
hooks: hooks:
- id: flake8 - id: flake8
args: args:
@@ -54,6 +54,6 @@ repos:
# pylint # pylint
- repo: https://github.com/pycqa/pylint - repo: https://github.com/pycqa/pylint
rev: v3.0.0 rev: v3.0.3
hooks: hooks:
- id: pylint - id: pylint

View File

@@ -17,7 +17,7 @@
</div> </div>
> This is the official code implementation of 🍵 Matcha-TTS. > This is the official code implementation of 🍵 Matcha-TTS [ICASSP 2024].
We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses [conditional flow matching](https://arxiv.org/abs/2210.02747) (similar to [rectified flows](https://arxiv.org/abs/2209.03003)) to speed up ODE-based speech synthesis. Our method: We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses [conditional flow matching](https://arxiv.org/abs/2210.02747) (similar to [rectified flows](https://arxiv.org/abs/2209.03003)) to speed up ODE-based speech synthesis. Our method:
@@ -252,6 +252,43 @@ python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs --vo
This will write `.wav` audio files to the output directory. This will write `.wav` audio files to the output directory.
## Extract phoneme alignments from Matcha-TTS
If the dataset is structured as
```bash
data/
└── LJSpeech-1.1
├── metadata.csv
├── README
├── test.txt
├── train.txt
├── val.txt
└── wavs
```
Then you can extract the phoneme level alignments from a Trained Matcha-TTS model using:
```bash
python matcha/utils/get_durations_from_trained_model.py -i dataset_yaml -c <checkpoint>
```
Example:
```bash
python matcha/utils/get_durations_from_trained_model.py -i ljspeech.yaml -c matcha_ljspeech.ckpt
```
or simply:
```bash
matcha-tts-get-durations -i ljspeech.yaml -c matcha_ljspeech.ckpt
```
---
## Train using extracted alignments
In the datasetconfig turn on load duration.
Example: `ljspeech.yaml`
```
load_durations: True
```
or see an examples in configs/experiment/ljspeech_from_durations.yaml
## Citation information ## Citation information
If you use our code or otherwise find this work useful, please cite our paper: If you use our code or otherwise find this work useful, please cite our paper:

View File

@@ -1,7 +1,7 @@
_target_: matcha.data.text_mel_datamodule.TextMelDataModule _target_: matcha.data.text_mel_datamodule.TextMelDataModule
name: ljspeech name: ljspeech
train_filelist_path: data/filelists/ljs_audio_text_train_filelist.txt train_filelist_path: data/LJSpeech-1.1/train.txt
valid_filelist_path: data/filelists/ljs_audio_text_val_filelist.txt valid_filelist_path: data/LJSpeech-1.1/val.txt
batch_size: 32 batch_size: 32
num_workers: 20 num_workers: 20
pin_memory: True pin_memory: True
@@ -19,3 +19,4 @@ data_statistics: # Computed for ljspeech dataset
mel_mean: -5.536622 mel_mean: -5.536622
mel_std: 2.116101 mel_std: 2.116101
seed: ${seed} seed: ${seed}
load_durations: false

View File

@@ -0,0 +1,19 @@
# @package _global_
# to execute this experiment run:
# python train.py experiment=multispeaker
defaults:
- override /data: ljspeech.yaml
# all parameters below will be merged with parameters from default configurations set above
# this allows you to overwrite only specified parameters
tags: ["ljspeech"]
run_name: ljspeech
data:
load_durations: True
batch_size: 64

View File

@@ -13,3 +13,4 @@ n_feats: 80
data_statistics: ${data.data_statistics} data_statistics: ${data.data_statistics}
out_size: null # Must be divisible by 4 out_size: null # Must be divisible by 4
prior_loss: true prior_loss: true
use_precomputed_durations: ${data.load_durations}

View File

@@ -1 +1 @@
0.0.5.1 0.0.6.0

View File

@@ -48,7 +48,7 @@ def plot_spectrogram_to_numpy(spectrogram, filename):
def process_text(i: int, text: str, device: torch.device): def process_text(i: int, text: str, device: torch.device):
print(f"[{i}] - Input text: {text}") print(f"[{i}] - Input text: {text}")
x = torch.tensor( x = torch.tensor(
intersperse(text_to_sequence(text, ["english_cleaners2"]), 0), intersperse(text_to_sequence(text, ["english_cleaners2"])[0], 0),
dtype=torch.long, dtype=torch.long,
device=device, device=device,
)[None] )[None]
@@ -326,12 +326,13 @@ def batched_synthesis(args, device, model, vocoder, denoiser, texts, spk):
for i, batch in enumerate(dataloader): for i, batch in enumerate(dataloader):
i = i + 1 i = i + 1
start_t = dt.datetime.now() start_t = dt.datetime.now()
b = batch["x"].shape[0]
output = model.synthesise( output = model.synthesise(
batch["x"].to(device), batch["x"].to(device),
batch["x_lengths"].to(device), batch["x_lengths"].to(device),
n_timesteps=args.steps, n_timesteps=args.steps,
temperature=args.temperature, temperature=args.temperature,
spks=spk, spks=spk.expand(b) if spk is not None else spk,
length_scale=args.speaking_rate, length_scale=args.speaking_rate,
) )

View File

@@ -1,6 +1,8 @@
import random import random
from pathlib import Path
from typing import Any, Dict, Optional from typing import Any, Dict, Optional
import numpy as np
import torch import torch
import torchaudio as ta import torchaudio as ta
from lightning import LightningDataModule from lightning import LightningDataModule
@@ -39,6 +41,7 @@ class TextMelDataModule(LightningDataModule):
f_max, f_max,
data_statistics, data_statistics,
seed, seed,
load_durations,
): ):
super().__init__() super().__init__()
@@ -68,6 +71,7 @@ class TextMelDataModule(LightningDataModule):
self.hparams.f_max, self.hparams.f_max,
self.hparams.data_statistics, self.hparams.data_statistics,
self.hparams.seed, self.hparams.seed,
self.hparams.load_durations,
) )
self.validset = TextMelDataset( # pylint: disable=attribute-defined-outside-init self.validset = TextMelDataset( # pylint: disable=attribute-defined-outside-init
self.hparams.valid_filelist_path, self.hparams.valid_filelist_path,
@@ -83,6 +87,7 @@ class TextMelDataModule(LightningDataModule):
self.hparams.f_max, self.hparams.f_max,
self.hparams.data_statistics, self.hparams.data_statistics,
self.hparams.seed, self.hparams.seed,
self.hparams.load_durations,
) )
def train_dataloader(self): def train_dataloader(self):
@@ -109,7 +114,7 @@ class TextMelDataModule(LightningDataModule):
"""Clean up after fit or test.""" """Clean up after fit or test."""
pass # pylint: disable=unnecessary-pass pass # pylint: disable=unnecessary-pass
def state_dict(self): # pylint: disable=no-self-use def state_dict(self):
"""Extra things to save to checkpoint.""" """Extra things to save to checkpoint."""
return {} return {}
@@ -134,6 +139,7 @@ class TextMelDataset(torch.utils.data.Dataset):
f_max=8000, f_max=8000,
data_parameters=None, data_parameters=None,
seed=None, seed=None,
load_durations=False,
): ):
self.filepaths_and_text = parse_filelist(filelist_path) self.filepaths_and_text = parse_filelist(filelist_path)
self.n_spks = n_spks self.n_spks = n_spks
@@ -146,6 +152,8 @@ class TextMelDataset(torch.utils.data.Dataset):
self.win_length = win_length self.win_length = win_length
self.f_min = f_min self.f_min = f_min
self.f_max = f_max self.f_max = f_max
self.load_durations = load_durations
if data_parameters is not None: if data_parameters is not None:
self.data_parameters = data_parameters self.data_parameters = data_parameters
else: else:
@@ -164,10 +172,29 @@ class TextMelDataset(torch.utils.data.Dataset):
filepath, text = filepath_and_text[0], filepath_and_text[1] filepath, text = filepath_and_text[0], filepath_and_text[1]
spk = None spk = None
text = self.get_text(text, add_blank=self.add_blank) text, cleaned_text = self.get_text(text, add_blank=self.add_blank)
mel = self.get_mel(filepath) mel = self.get_mel(filepath)
return {"x": text, "y": mel, "spk": spk} durations = self.get_durations(filepath, text) if self.load_durations else None
return {"x": text, "y": mel, "spk": spk, "filepath": filepath, "x_text": cleaned_text, "durations": durations}
def get_durations(self, filepath, text):
filepath = Path(filepath)
data_dir, name = filepath.parent.parent, filepath.stem
try:
dur_loc = data_dir / "durations" / f"{name}.npy"
durs = torch.from_numpy(np.load(dur_loc).astype(int))
except FileNotFoundError as e:
raise FileNotFoundError(
f"Tried loading the durations but durations didn't exist at {dur_loc}, make sure you've generate the durations first using: python matcha/utils/get_durations_from_trained_model.py \n"
) from e
assert len(durs) == len(text), f"Length of durations {len(durs)} and text {len(text)} do not match"
return durs
def get_mel(self, filepath): def get_mel(self, filepath):
audio, sr = ta.load(filepath) audio, sr = ta.load(filepath)
@@ -187,11 +214,11 @@ class TextMelDataset(torch.utils.data.Dataset):
return mel return mel
def get_text(self, text, add_blank=True): def get_text(self, text, add_blank=True):
text_norm = text_to_sequence(text, self.cleaners) text_norm, cleaned_text = text_to_sequence(text, self.cleaners)
if self.add_blank: if self.add_blank:
text_norm = intersperse(text_norm, 0) text_norm = intersperse(text_norm, 0)
text_norm = torch.IntTensor(text_norm) text_norm = torch.IntTensor(text_norm)
return text_norm return text_norm, cleaned_text
def __getitem__(self, index): def __getitem__(self, index):
datapoint = self.get_datapoint(self.filepaths_and_text[index]) datapoint = self.get_datapoint(self.filepaths_and_text[index])
@@ -214,8 +241,11 @@ class TextMelBatchCollate:
y = torch.zeros((B, n_feats, y_max_length), dtype=torch.float32) y = torch.zeros((B, n_feats, y_max_length), dtype=torch.float32)
x = torch.zeros((B, x_max_length), dtype=torch.long) x = torch.zeros((B, x_max_length), dtype=torch.long)
durations = torch.zeros((B, x_max_length), dtype=torch.long)
y_lengths, x_lengths = [], [] y_lengths, x_lengths = [], []
spks = [] spks = []
filepaths, x_texts = [], []
for i, item in enumerate(batch): for i, item in enumerate(batch):
y_, x_ = item["y"], item["x"] y_, x_ = item["y"], item["x"]
y_lengths.append(y_.shape[-1]) y_lengths.append(y_.shape[-1])
@@ -223,9 +253,22 @@ class TextMelBatchCollate:
y[i, :, : y_.shape[-1]] = y_ y[i, :, : y_.shape[-1]] = y_
x[i, : x_.shape[-1]] = x_ x[i, : x_.shape[-1]] = x_
spks.append(item["spk"]) spks.append(item["spk"])
filepaths.append(item["filepath"])
x_texts.append(item["x_text"])
if item["durations"] is not None:
durations[i, : item["durations"].shape[-1]] = item["durations"]
y_lengths = torch.tensor(y_lengths, dtype=torch.long) y_lengths = torch.tensor(y_lengths, dtype=torch.long)
x_lengths = torch.tensor(x_lengths, dtype=torch.long) x_lengths = torch.tensor(x_lengths, dtype=torch.long)
spks = torch.tensor(spks, dtype=torch.long) if self.n_spks > 1 else None spks = torch.tensor(spks, dtype=torch.long) if self.n_spks > 1 else None
return {"x": x, "x_lengths": x_lengths, "y": y, "y_lengths": y_lengths, "spks": spks} return {
"x": x,
"x_lengths": x_lengths,
"y": y,
"y_lengths": y_lengths,
"spks": spks,
"filepaths": filepaths,
"x_texts": x_texts,
"durations": durations if not torch.eq(durations, 0).all() else None,
}

View File

@@ -58,13 +58,14 @@ class BaseLightningClass(LightningModule, ABC):
y, y_lengths = batch["y"], batch["y_lengths"] y, y_lengths = batch["y"], batch["y_lengths"]
spks = batch["spks"] spks = batch["spks"]
dur_loss, prior_loss, diff_loss = self( dur_loss, prior_loss, diff_loss, *_ = self(
x=x, x=x,
x_lengths=x_lengths, x_lengths=x_lengths,
y=y, y=y,
y_lengths=y_lengths, y_lengths=y_lengths,
spks=spks, spks=spks,
out_size=self.out_size, out_size=self.out_size,
durations=batch["durations"],
) )
return { return {
"dur_loss": dur_loss, "dur_loss": dur_loss,

View File

@@ -35,6 +35,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
optimizer=None, optimizer=None,
scheduler=None, scheduler=None,
prior_loss=True, prior_loss=True,
use_precomputed_durations=False,
): ):
super().__init__() super().__init__()
@@ -46,6 +47,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
self.n_feats = n_feats self.n_feats = n_feats
self.out_size = out_size self.out_size = out_size
self.prior_loss = prior_loss self.prior_loss = prior_loss
self.use_precomputed_durations = use_precomputed_durations
if n_spks > 1: if n_spks > 1:
self.spk_emb = torch.nn.Embedding(n_spks, spk_emb_dim) self.spk_emb = torch.nn.Embedding(n_spks, spk_emb_dim)
@@ -147,7 +149,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
"rtf": rtf, "rtf": rtf,
} }
def forward(self, x, x_lengths, y, y_lengths, spks=None, out_size=None, cond=None): def forward(self, x, x_lengths, y, y_lengths, spks=None, out_size=None, cond=None, durations=None):
""" """
Computes 3 losses: Computes 3 losses:
1. duration loss: loss between predicted token durations and those extracted by Monotinic Alignment Search (MAS). 1. duration loss: loss between predicted token durations and those extracted by Monotinic Alignment Search (MAS).
@@ -179,17 +181,20 @@ class MatchaTTS(BaseLightningClass): # 🍵
y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask) y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask)
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2) attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
# Use MAS to find most likely alignment `attn` between text and mel-spectrogram if self.use_precomputed_durations:
with torch.no_grad(): attn = generate_path(durations.squeeze(1), attn_mask.squeeze(1))
const = -0.5 * math.log(2 * math.pi) * self.n_feats else:
factor = -0.5 * torch.ones(mu_x.shape, dtype=mu_x.dtype, device=mu_x.device) # Use MAS to find most likely alignment `attn` between text and mel-spectrogram
y_square = torch.matmul(factor.transpose(1, 2), y**2) with torch.no_grad():
y_mu_double = torch.matmul(2.0 * (factor * mu_x).transpose(1, 2), y) const = -0.5 * math.log(2 * math.pi) * self.n_feats
mu_square = torch.sum(factor * (mu_x**2), 1).unsqueeze(-1) factor = -0.5 * torch.ones(mu_x.shape, dtype=mu_x.dtype, device=mu_x.device)
log_prior = y_square - y_mu_double + mu_square + const y_square = torch.matmul(factor.transpose(1, 2), y**2)
y_mu_double = torch.matmul(2.0 * (factor * mu_x).transpose(1, 2), y)
mu_square = torch.sum(factor * (mu_x**2), 1).unsqueeze(-1)
log_prior = y_square - y_mu_double + mu_square + const
attn = monotonic_align.maximum_path(log_prior, attn_mask.squeeze(1)) attn = monotonic_align.maximum_path(log_prior, attn_mask.squeeze(1))
attn = attn.detach() attn = attn.detach() # b, t_text, T_mel
# Compute loss between predicted log-scaled durations and those obtained from MAS # Compute loss between predicted log-scaled durations and those obtained from MAS
# refered to as prior loss in the paper # refered to as prior loss in the paper
@@ -236,4 +241,4 @@ class MatchaTTS(BaseLightningClass): # 🍵
else: else:
prior_loss = 0 prior_loss = 0
return dur_loss, prior_loss, diff_loss return dur_loss, prior_loss, diff_loss, attn

View File

@@ -21,7 +21,7 @@ def text_to_sequence(text, cleaner_names):
for symbol in clean_text: for symbol in clean_text:
symbol_id = _symbol_to_id[symbol] symbol_id = _symbol_to_id[symbol]
sequence += [symbol_id] sequence += [symbol_id]
return sequence return sequence, clean_text
def cleaned_text_to_sequence(cleaned_text): def cleaned_text_to_sequence(cleaned_text):

View File

@@ -15,7 +15,6 @@ import logging
import re import re
import phonemizer import phonemizer
import piper_phonemize
from unidecode import unidecode from unidecode import unidecode
# To avoid excessive logging we set the log level of the phonemizer package to Critical # To avoid excessive logging we set the log level of the phonemizer package to Critical
@@ -106,11 +105,17 @@ def english_cleaners2(text):
return phonemes return phonemes
def english_cleaners_piper(text): # I am removing this due to incompatibility with several version of python
"""Pipeline for English text, including abbreviation expansion. + punctuation + stress""" # However, if you want to use it, you can uncomment it
text = convert_to_ascii(text) # and install piper-phonemize with the following command:
text = lowercase(text) # pip install piper-phonemize
text = expand_abbreviations(text)
phonemes = "".join(piper_phonemize.phonemize_espeak(text=text, voice="en-US")[0]) # import piper_phonemize
phonemes = collapse_whitespace(phonemes) # def english_cleaners_piper(text):
return phonemes # """Pipeline for English text, including abbreviation expansion. + punctuation + stress"""
# text = convert_to_ascii(text)
# text = lowercase(text)
# text = expand_abbreviations(text)
# phonemes = "".join(piper_phonemize.phonemize_espeak(text=text, voice="en-US")[0])
# phonemes = collapse_whitespace(phonemes)
# return phonemes

View File

@@ -94,6 +94,7 @@ def main():
cfg["batch_size"] = args.batch_size cfg["batch_size"] = args.batch_size
cfg["train_filelist_path"] = str(os.path.join(root_path, cfg["train_filelist_path"])) cfg["train_filelist_path"] = str(os.path.join(root_path, cfg["train_filelist_path"]))
cfg["valid_filelist_path"] = str(os.path.join(root_path, cfg["valid_filelist_path"])) cfg["valid_filelist_path"] = str(os.path.join(root_path, cfg["valid_filelist_path"]))
cfg["load_durations"] = False
text_mel_datamodule = TextMelDataModule(**cfg) text_mel_datamodule = TextMelDataModule(**cfg)
text_mel_datamodule.setup() text_mel_datamodule.setup()

View File

@@ -0,0 +1,195 @@
r"""
The file creates a pickle file where the values needed for loading of dataset is stored and the model can load it
when needed.
Parameters from hparam.py will be used
"""
import argparse
import json
import os
import sys
from pathlib import Path
import lightning
import numpy as np
import rootutils
import torch
from hydra import compose, initialize
from omegaconf import open_dict
from torch import nn
from tqdm.auto import tqdm
from matcha.cli import get_device
from matcha.data.text_mel_datamodule import TextMelDataModule
from matcha.models.matcha_tts import MatchaTTS
from matcha.utils.logging_utils import pylogger
from matcha.utils.utils import get_phoneme_durations
log = pylogger.get_pylogger(__name__)
def save_durations_to_folder(
attn: torch.Tensor, x_length: int, y_length: int, filepath: str, output_folder: Path, text: str
):
durations = attn.squeeze().sum(1)[:x_length].numpy()
durations_json = get_phoneme_durations(durations, text)
output = output_folder / Path(filepath).name.replace(".wav", ".npy")
with open(output.with_suffix(".json"), "w", encoding="utf-8") as f:
json.dump(durations_json, f, indent=4, ensure_ascii=False)
np.save(output, durations)
@torch.inference_mode()
def compute_durations(data_loader: torch.utils.data.DataLoader, model: nn.Module, device: torch.device, output_folder):
"""Generate durations from the model for each datapoint and save it in a folder
Args:
data_loader (torch.utils.data.DataLoader): Dataloader
model (nn.Module): MatchaTTS model
device (torch.device): GPU or CPU
"""
for batch in tqdm(data_loader, desc="🍵 Computing durations 🍵:"):
x, x_lengths = batch["x"], batch["x_lengths"]
y, y_lengths = batch["y"], batch["y_lengths"]
spks = batch["spks"]
x = x.to(device)
y = y.to(device)
x_lengths = x_lengths.to(device)
y_lengths = y_lengths.to(device)
spks = spks.to(device) if spks is not None else None
_, _, _, attn = model(
x=x,
x_lengths=x_lengths,
y=y,
y_lengths=y_lengths,
spks=spks,
)
attn = attn.cpu()
for i in range(attn.shape[0]):
save_durations_to_folder(
attn[i],
x_lengths[i].item(),
y_lengths[i].item(),
batch["filepaths"][i],
output_folder,
batch["x_texts"][i],
)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"-i",
"--input-config",
type=str,
default="ljspeech.yaml",
help="The name of the yaml config file under configs/data",
)
parser.add_argument(
"-b",
"--batch-size",
type=int,
default="32",
help="Can have increased batch size for faster computation",
)
parser.add_argument(
"-f",
"--force",
action="store_true",
default=False,
required=False,
help="force overwrite the file",
)
parser.add_argument(
"-c",
"--checkpoint_path",
type=str,
required=True,
help="Path to the checkpoint file to load the model from",
)
parser.add_argument(
"-o",
"--output-folder",
type=str,
default=None,
help="Output folder to save the data statistics",
)
parser.add_argument(
"--cpu", action="store_true", help="Use CPU for inference, not recommended (default: use GPU if available)"
)
args = parser.parse_args()
with initialize(version_base="1.3", config_path="../../configs/data"):
cfg = compose(config_name=args.input_config, return_hydra_config=True, overrides=[])
root_path = rootutils.find_root(search_from=__file__, indicator=".project-root")
with open_dict(cfg):
del cfg["hydra"]
del cfg["_target_"]
cfg["seed"] = 1234
cfg["batch_size"] = args.batch_size
cfg["train_filelist_path"] = str(os.path.join(root_path, cfg["train_filelist_path"]))
cfg["valid_filelist_path"] = str(os.path.join(root_path, cfg["valid_filelist_path"]))
cfg["load_durations"] = False
if args.output_folder is not None:
output_folder = Path(args.output_folder)
else:
output_folder = Path(cfg["train_filelist_path"]).parent / "durations"
print(f"Output folder set to: {output_folder}")
if os.path.exists(output_folder) and not args.force:
print("Folder already exists. Use -f to force overwrite")
sys.exit(1)
output_folder.mkdir(parents=True, exist_ok=True)
print(f"Preprocessing: {cfg['name']} from training filelist: {cfg['train_filelist_path']}")
print("Loading model...")
device = get_device(args)
model = MatchaTTS.load_from_checkpoint(args.checkpoint_path, map_location=device)
text_mel_datamodule = TextMelDataModule(**cfg)
text_mel_datamodule.setup()
try:
print("Computing stats for training set if exists...")
train_dataloader = text_mel_datamodule.train_dataloader()
compute_durations(train_dataloader, model, device, output_folder)
except lightning.fabric.utilities.exceptions.MisconfigurationException:
print("No training set found")
try:
print("Computing stats for validation set if exists...")
val_dataloader = text_mel_datamodule.val_dataloader()
compute_durations(val_dataloader, model, device, output_folder)
except lightning.fabric.utilities.exceptions.MisconfigurationException:
print("No validation set found")
try:
print("Computing stats for test set if exists...")
test_dataloader = text_mel_datamodule.test_dataloader()
compute_durations(test_dataloader, model, device, output_folder)
except lightning.fabric.utilities.exceptions.MisconfigurationException:
print("No test set found")
print(f"[+] Done! Data statistics saved to: {output_folder}")
if __name__ == "__main__":
# Helps with generating durations for the dataset to train other architectures
# that cannot learn to align due to limited size of dataset
# Example usage:
# python python matcha/utils/get_durations_from_trained_model.py -i ljspeech.yaml -c pretrained_model
# This will create a folder in data/processed_data/durations/ljspeech with the durations
main()

View File

@@ -2,6 +2,7 @@ import os
import sys import sys
import warnings import warnings
from importlib.util import find_spec from importlib.util import find_spec
from math import ceil
from pathlib import Path from pathlib import Path
from typing import Any, Callable, Dict, Tuple from typing import Any, Callable, Dict, Tuple
@@ -217,3 +218,42 @@ def assert_model_downloaded(checkpoint_path, url, use_wget=True):
gdown.download(url=url, output=checkpoint_path, quiet=False, fuzzy=True) gdown.download(url=url, output=checkpoint_path, quiet=False, fuzzy=True)
else: else:
wget.download(url=url, out=checkpoint_path) wget.download(url=url, out=checkpoint_path)
def get_phoneme_durations(durations, phones):
prev = durations[0]
merged_durations = []
# Convolve with stride 2
for i in range(1, len(durations), 2):
if i == len(durations) - 2:
# if it is last take full value
next_half = durations[i + 1]
else:
next_half = ceil(durations[i + 1] / 2)
curr = prev + durations[i] + next_half
prev = durations[i + 1] - next_half
merged_durations.append(curr)
assert len(phones) == len(merged_durations)
assert len(merged_durations) == (len(durations) - 1) // 2
merged_durations = torch.cumsum(torch.tensor(merged_durations), 0, dtype=torch.long)
start = torch.tensor(0)
duration_json = []
for i, duration in enumerate(merged_durations):
duration_json.append(
{
phones[i]: {
"starttime": start.item(),
"endtime": duration.item(),
"duration": duration.item() - start.item(),
}
}
)
start = duration
assert list(duration_json[-1].values())[0]["endtime"] == sum(
durations
), f"{list(duration_json[-1].values())[0]['endtime'], sum(durations)}"
return duration_json

View File

@@ -38,8 +38,7 @@ conformer==0.3.2
diffusers==0.25.0 diffusers==0.25.0
notebook notebook
ipywidgets ipywidgets
gradio gradio==3.43.2
gdown gdown
wget wget
seaborn seaborn
piper_phonemize

View File

@@ -38,6 +38,7 @@ setup(
"matcha-data-stats=matcha.utils.generate_data_statistics:main", "matcha-data-stats=matcha.utils.generate_data_statistics:main",
"matcha-tts=matcha.cli:cli", "matcha-tts=matcha.cli:cli",
"matcha-tts-app=matcha.app:main", "matcha-tts-app=matcha.app:main",
"matcha-tts-get-durations=matcha.utils.get_durations_from_trained_model:main",
] ]
}, },
ext_modules=cythonize(exts, language_level=3), ext_modules=cythonize(exts, language_level=3),

View File

@@ -19,7 +19,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 1, "execution_count": null,
"id": "148f4bc0-c28e-4670-9a5e-4c7928ab8992", "id": "148f4bc0-c28e-4670-9a5e-4c7928ab8992",
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
@@ -192,7 +192,7 @@
"source": [ "source": [
"@torch.inference_mode()\n", "@torch.inference_mode()\n",
"def process_text(text: str):\n", "def process_text(text: str):\n",
" x = torch.tensor(intersperse(text_to_sequence(text, ['english_cleaners2']), 0),dtype=torch.long, device=device)[None]\n", " x = torch.tensor(intersperse(text_to_sequence(text, ['english_cleaners2'])[0], 0),dtype=torch.long, device=device)[None]\n",
" x_lengths = torch.tensor([x.shape[-1]],dtype=torch.long, device=device)\n", " x_lengths = torch.tensor([x.shape[-1]],dtype=torch.long, device=device)\n",
" x_phones = sequence_to_text(x.squeeze(0).tolist())\n", " x_phones = sequence_to_text(x.squeeze(0).tolist())\n",
" return {\n", " return {\n",